Физиологические системы организма. Строение и функции органов дыхания

Е. ЗВЯГИНА.

Ученые-физиологи утверждают, что недостаток кислорода в ряде случаев может быть полезен для организма и даже способствует излечиванию от многих болезней.

Недостаток кислорода в органах и тканях (гипоксия) возникает по разным причинам.

Лауреат Государственной премии Украины профессор А. 3. Колчинская. Под ее руководством была создана компьютерная программа, оценивающая работу органов дыхания, а также разработана система гипоксической тренировки.

Сеанс гипоксической тренировки. Несколько минут пациент дышит через гипоксикатор, потом снимает маску и дышит обычным воздухом. Процедура повторяется четыре-шесть раз.

Можно разучиться плавать или ездить на велосипеде, но дыхание - процесс, протекающий помимо нашего сознания. Специального обучения тут, слава богу, не требуется. Может быть, поэтому большинство из нас имеет крайне приблизительные представления о том, как мы дышим.

Если спросить об этом у человека, далекого от естественных наук, ответ, скорее всего, будет следующим: мы дышим легкими. На самом деле это не совсем так. Человечеству понадобилось более двухсот лет, чтобы понять, что такое дыхание и в чем его суть.

Схематически современную концепцию дыхания можно представить следующим образом: движения грудной клетки создают условия для вдоха и выдоха; мы вдыхаем воздух, а с ним и кислород, который, проходя трахею и бронхи, поступает в легочные альвеолы и в кровеносные сосуды. Благодаря работе сердца и содержащемуся в крови гемоглобину кислород доставляется ко всем органам, к каждой клетке. В клетках имеются мельчайшие зернышки - митохондрии. В них-то и происходит переработка кислорода, то есть осуществляется собственно дыхание.

Кислород в митохондриях «подхватывается» дыхательными ферментами, которые доставляют его уже в виде отрицательно заряженных ионов к положительно заряженному иону водорода. При соединении ионов кислорода и водорода выделяется большое количество тепла, необходимого для синтеза основного накопителя биологической энергии - АТФ (аденозинт-рифосфорной кислоты). Энергия, выделяющаяся при распаде АТФ, используется организмом для осуществления всех жизненных процессов, для любой его деятельности.

Так протекает дыхание в нормальных условиях: то есть в воздухе содержится достаточное количество кислорода, а человек здоров и не испытывает перегрузок. Но что происходит, когда баланс нарушается?

Систему дыхания можно сравнить с компьютером. В компьютере есть чувствительные элементы, через которые информация о ходе процесса передается в центр управления. Такие же чувствительные элементы имеются и в дыхательной цепочке. Это хеморецепторы аорты и сонных артерий, передающие информацию о снижении концентрации кислорода в артериальной крови либо о повышении в ней содержания углекислого газа. Происходит так, например, в тех случаях, когда во вдыхаемом воздухе уменьшается количество кислорода. Сигнал об этом через специальные рецепторы передается дыхательному центру продолговатого мозга, а оттуда идет к мышцам. Усиливается работа грудной клетки и легких, человек начинает дышать чаще, соответственно улучшаются вентиляция легких и доставка кислорода в кровь. Возбуждение рецепторов сонных артерий вызывает также учащение сердечных сокращений, что усиливает кровообращение, и кислород быстрее доходит к тканям. Этому способствует и выброс в кровь новых эритроцитов, а следовательно, и содержащегося в них гемоглобина.

Именно этим объясняется благотворное влияние горного воздуха на жизненный тонус человека. Приезжая на горные курорты - скажем, на Кавказ, - многие замечают, что настроение у них улучшается, кровь будто бежит быстрее. А секрет прост: воздух в горах разреженный, кислорода в нем меньше. Организм работает в режиме «борьбы за кислород»: чтобы обеспечить полноценную доставку кислорода к тканям, ему необходимо мобилизовать внутренние ресурсы. Учащается дыхание, усиливается кровообращение, и как следствие жизненные силы активизируются.

Но если подняться выше в горы, где в воздухе содержится еще меньше кислорода, организм будет реагировать на его нехватку совсем по-другому. Гипоксия (по-научному - недостаток кислорода) будет уже опасна, и в первую очередь от нее пострадает центральная нервная система.

Если кислорода не хватает для поддержания работы головного мозга, человек может потерять сознание. Сильная гипоксия иногда приводит даже к смерти.

Но гипоксия не обязательно вызывается низким содержанием кислорода в воздухе. Ее причиной могут послужить те или иные болезни. Например, при хроническом бронхите, бронхиальной астме и различных заболеваниях легких (пневмония, пневмосклероз) не весь вдыхаемый кислород поступает в кровь. Результат - недостаточное снабжение кислородом всего организма. Если в крови мало эритроцитов и заключенного в них гемоглобина (как это бывает при анемии), страдает весь процесс дыхания. Можно дышать часто и глубоко, но доставка кислорода к тканям существенно не повысится: ведь именно гемоглобин отвечает за его транспорт. Вообще система кровообращения напрямую связана с дыханием, поэтому перебои в сердечной деятельности не могут не повлиять на доставку кислорода к тканям. К гипоксии ведет и образование тромбов в кровеносных сосудах.

Итак, работа дыхательной системы разлаживается при существенном недостатке кислорода в воздухе (например, высоко в горах), а также при различных заболеваниях. Но оказывается, что человек может испытывать гипоксию, даже если здоров и дышит насыщенным кислородом воздухом. Это происходит при увеличении нагрузки на организм. Дело в том, что в активном состоянии человек потребляет значительно больше кислорода, чем в спокойном. Любая работа - физическая, интеллектуальная, эмоциональная - требует определенных энергетических затрат. А энергия, как мы выяснили, генерируется при соединении кислорода и водорода в митохондриях, то есть при дыхании.

Конечно, в организме есть механизмы, регулирующие поступление кислорода при увеличении нагрузки. Здесь осуществляется тот же принцип, что и в случае с разреженным воздухом, когда рецепторы аорты и сонных артерий регистрируют снижение концентрации кислорода в артериальной крови. Возбуждение этих рецепторов передается коре больших полушарий головного мозга и всем его отделам. Усиливаются вентиляция легких и кровоснабжение, что предотвращает снижение скорости доставки кислорода к органам и клеткам.

Любопытно, что организм в ряде случаев заранее может принимать меры против гипоксии, в частности возникающей при нагрузке. Основа этого - прогнозирование будущего увеличения нагрузки. На этот случай в организме также есть особые чувствительные элементы - они реагируют на звуковые, цветовые сигналы, изменения запаха и вкуса. Например, спортсмен, услышав команду «На старт!», получает сигнал к перестройке работы дыхательной системы. В легкие, в кровь и к тканям начинает поступать больше кислорода.

Однако нетренированный организм зачастую не способен наладить полноценную доставку кислорода при значительной нагрузке. И тогда человек страдает от гипоксии.

Проблема гипоксии давно привлекала внимание ученых. Серьезные разработки велись под руководством академика Н. Н. Сиротинина в Институте физиологии им. А. А. Богомольца АН УССР. Продолжением этих исследований стала работа профессора лауреата Государственной премии Украины А. 3. Колчинской и ее учеников. Они создали компьютерную программу, позволяющую оценивать работу дыхательной системы человека по различным показателям (объем вдыхаемого воздуха, скорость попадания кислорода в кровь, частота сердечных сокращений и т. д.). Работа велась, с одной стороны, со спортсменами и альпинистами и с другой - с людьми, страдающими теми или иными заболеваниями (хроническим бронхитом, бронхиальной астмой, анемией, диабетом, маточными кровотечениями, детским церебральным параличом, близорукостью и др.). Компьютерный анализ показал, что даже те болезни, которые, казалось бы, не имеют прямого отношения к дыхательной системе, отрицательно на ней отражаются. Логично предположить и обратную связь: функционирование системы дыхания может отразиться на состоянии всего организма.

И тогда возникла идея гипоксической тренировки. Вспомним: при небольшом снижении количества кислорода в воздухе (например, в предгорье) организм активизирует жизненные силы. Дыхательная система перестраивается, приспосабливаясь к новым условиям. Увеличивается объем дыхания, усиливается кровообращение, происходит наращивание эритроцитов и гемоглобина, увеличивается число митохондрий. Таких результатов можно добиться и в клинических условиях, обеспечив пациенту приток воздуха с пониженным содержанием кислорода. Для этого был создан специальный аппарат - гипоксикатор.

Но ведь человек не может постоянно быть подключенным к аппарату. Необходимо добиться устойчивых результатов, качественных изменений в системе дыхания. С этой целью было решено разбить сеанс гипоксического воздействия на серии: оказалось, что именно при таком режиме механизмы, наработанные организмом для адаптации к гипоксии, закрепляются. Несколько минут пациент дышит через гипоксикатор (содержание кислорода в подаваемом воздухе составляет 11 - 16%), потом снимает маску и какое-то время дышит обычным воздухом. Такое чередование повторяется четыре-шесть раз. В результате от сеанса к сеансу тренируются органы дыхания, кровообращения, кроветворения и те органеллы клеток, которые принимают участие в утилизации кислорода, - митохондрии.

Для каждого пациента режим интервальной гипоксической тренировки подбирается индивидуально. Важно определить ту концентрацию кислорода во вдыхаемом воздухе, при которой в организме начнут действовать механизмы адаптации к гипоксии. Конечно, для спортсмена и для больного бронхиальной астмой эти концентрации неодинаковы. Поэтому перед тем, как назначить курс лечения, делают гипоксическую пробу, которая определяет реакцию организма на вдыхание воздуха с пониженным содержанием кислорода.

Сегодня гипоксическая тренировка уже доказала свою эффективность при лечении самых разнообразных болезней. Преяеде всего, конечно, при заболеваниях дыхательных путей, таких как

обструктивный хронический бронхит и бронхиальная астма. Уже одно это более чем оправдывает труд ученых, разработавших метод. Но самое удивительное, что с его помощью поддаются лечению и те болезни, которые, на первый взгляд, вообще не имеют отношения к дыханию.

Например, как показал Б. X. Хацуков, метод оказался эффективен при лечении близорукости. Более 60% близоруких детей, с которыми был проведен курс гипоксическои тренировки, полностью восстановили зрение, у остальных оно значительно улучшилось. Дело в том, что причиной близорукости является плохое кровоснабжение и снабжение кислородом реснитчатой мышцы глаза и затылочных долей коры головного мозга, регулирующих зрение. У близоруких детей система дыхания отстает в возрастном развитии. А при ее нормализации зрение восстанавливается.

А. 3. Колчинская и ее ученики М. П. Закусило и 3. X. Абазова провели удачный эксперимент по применению гипоксическои тренировки для лечения гипотериоза (пониженной активности щитовидной железы). При вдыхании пациентом воздуха с пониженным содержанием кислорода его щитовидная железа начала вырабатывать большее количество гормонов. Через несколько сеансов содержание гормонов в крови стало нормальным.

В настоящее время в России и странах СНГ работает уже довольно много специализированных центров гипоксическои терапии. В этих центрах успешно лечат больных анемией, ишеми-ческой болезнью сердца, гипертонией в начальной стадии, нейроциркуляторной дистонией, сахарным диабетом, некоторыми гинекологическими заболеваниями.

Хорошие результаты достигнуты и в тренировке спортсменов. После 15-дневного курса гипоксическои тренировки максимальное потребление кислорода у велосипедистов, гребцов и лыжников увеличивается на 6%. При обычной систематической спортивной тренировке на это уходит около года. А ведь дыхание в таких видах спорта - залог успеха. Кроме того, как мы знаем, от него зависит общее состояние организма, его потенциал.

Эффект гипоксическои тренировки сродни закалке или утренней гимнастике. Точно так же, как мы тренируем мышцы или повышаем иммунитет, обливаясь холодной водой, можно «натренировать» дыхательную систему. Жаль только, что в домашних условиях такую гимнастику не сделаешь. Пока еще за здоровье приходится платить.

Происхождение мозга Савельев Сергей Вячеславович

§ 6. Потребление мозгом кислорода

Совершенно неверно связывать интенсивность метаболизма мозга с общим потреблением кислорода организмом (Шмидт-Ниельсен, 1982). Действительно, у землеройки потребление кислорода на 1 кг массы тела составляет 7,4 л/ч, а у слона - 0,07 л/ч. Однако это общее потребление кислорода, которое различается на порядки в разных частях тела как слона, так и бурозубки. Более того, у животных с разной биологией величина потребления кислорода одинаковыми органами тела также значительно различается. Представления о пропорциональном размерам тела изменении потребления кислорода мозгом остаются странным заблуждением. Если у любого млекопитающего потребление кислорода мозгом становится меньше 12,6 л/(кг-ч), наступает смерть. При таком уровне кислорода мозг может сохранять активность только 10–15 с. Через 30-120 с угасает рефлекторная активность, а спустя 5–6 мин начинается гибель нейронов. Иначе говоря, собственных ресурсов у нервной ткани практически нет. Ни у землеройки, ни тем более у слона не было бы никаких шансов выжить, если бы потребление кислорода мозгом не обеспечивалось специальными механизмами. Мозг получает кислород, воду с растворами электролитов и питательные вещества по законам, не имеющим никакого отношения к интенсивности метаболизма других органов. Величины потребления всех «расходных» компонентов относительно стабильны и не могут быть ниже определённого уровня, который обеспечивает функциональную активность мозга.

Надо отметить, что мозг часто оказывает решающее влияние на метаболизм всего животного. Энергопотребление мозга не может быть ниже определённой величины. Обеспечение этого уровня достигается в разных систематических группах изменением скорости кровообращения в сосудах нервной системы. Причиной этих различий являются изменения числа капилляров в 1 мм з ткани мозга. Конечно, в разных отделах мозга протяжённость капилляров может существенно различаться. В зависимости от физиологической нагрузки просвет капилляров также может динамически изменяться. Тем не менее этот весьма усреднённый показатель освещает причины увеличения частоты сердечных сокращений у мелких млекопитающих. Чем меньше капиллярная сеть мозга, тем больше должна быть скорость кровотока, чтобы обеспечить необходимый приток кислорода и питательных веществ. Увеличить обмен можно за счёт частоты сердечных сокращений, дыхания и скорости потребления пищи. Это и происходит у мелких млекопитающих. Сведения о плотности расположения капилляров в головном мозге животных весьма отрывочны. Однако существует общая тенденция, показывающая эволюционное развитие капиллярной сети мозга. У прудовой лягушки длина капилляров в 1 мм 3 ткани мозга составляет около 160 мм, у цельноголовой хрящевой рыбы - 500, у акулы - 100, у амбистомы - 90, у черепахи - 350, у гаттерии - 100 мм, у землеройки - 400, у мыши 700, у крысы - 900, у кролика - 600, у кошки - 900, у собаки - 900, а у приматов и человека - 12001400 мм. Надо учесть, что при сокращении длины капилляров площадь их контактной поверхности с нервной тканью уменьшается в геометрической прогрессии. Это свидетельствует о том, что для сохранения минимального уровня снабжения мозга кислородом у землеройки сердце должно сокращаться в несколько раз чаще, чем у приматов и человека. Действительно, для человека эта величина составляет 60–90 в минуту, а для землеройки - 130–450. Масса сердца землеройки должна быть пропорционально больше. Она составляет у человека около 4 %, у капуцина - 8 %, а у землеройки - 14 % массы всего тела. Следовательно, одним из ключевых органов, определяющих метаболизм животных, является мозг.

Попробуем оценить реальную долю энергии, потребляемой организмом животных с различной массой мозга и тела. Большая относительная масса нервной системы мелких млекопитающих предъявляет высокие требования к уровню метаболизма самого мозга. Расходы на его содержание сопоставимы с расходами на содержание мозга человека, которые хорошо исследованы. Базовое потребление мозгом человека питательных веществ и кислорода составляет примерно 8-10 % всего организма. Когда организм неактивен, эта величина более или менее постоянна, хотя может существенно колебаться у крупных и мелких представителей данного вида. Однако даже эта величина непропорционально велика. Мозг человека составляет 1/50 массы тела, а потребляет 1/10 всей энергии - в 5 раз больше, чем любой другой орган. Это несколько заниженные цифры, поскольку только потребление кислорода составляет 18 %. Прибавим и расходы на содержание спинного мозга и периферической системы и получим примерно 1/7. Следовательно, в неактивном состоянии нервная система человека потребляет около 15 % энергии всего организма. Теперь рассмотрим ситуацию с активно работающими мозгом и периферической нервной системой. По самым скромным оценкам, энергетические затраты одного головного мозга возрастают более чем в 2 раза. Учитывая генерализованное повышение активности всей нервной системы, можно уверенно предположить, что около 25–30 % всех расходов организма приходится на её содержание (рис. I-8).

Нервная система млекопитающих оказывается крайне «дорогим» органом, поэтому чем меньше времени мозг работает в интенсивном режиме, тем дешевле обходится его содержание. Проблема решается по-разному. Один из способов связан с минимизацией времени интенсивного режима работы нервной системы. Это достигается большим набором врождённых, инстинктивных программ поведения, которые хранятся в мозге как набор инструкций. Инструкции для различных форм поведения нуждаются только в небольших коррекциях для конкретных условий. Мозг почти не используется для принятия индивидуальных решений, основанных на личном опыте животного. Выживание становится статистическим процессом применения готовых форм поведения к конкретным условиям среды. Энергетические затраты на содержание мозга становятся ограничителем интеллектуальной активности для мелких животных.

Например, допустим, что американский крот-скалёпус решил попользоваться своим мозгом, как приматы или человек. Рассмотрим исходные условия. Крот массой 40 г обладает головным мозгом массой 1,2 г и спинным мозгом вместе с периферической нервной системой массой примерно 0,9 г. Имея нервную систему, составляющую более 5 % массы тела, крот затрачивает на её содержание около 30 % всех энергетических ресурсов организма. Если он задумается над решением шахматной задачи, то расходы его организма на содержание мозга удвоятся, а сам крот моментально погибнет от голода. Даже если крот затолкнёт в кишечник бесконечного дождевого червя из чёрной икры, то он всё равно погибнет. Мозгу будет нужно столько энергии, что возникнут неразрешимые проблемы со скоростью получения кислорода и доставки исходных метаболических компонентов из желудочно-кишечного тракта. Появятся аналогичные трудности с выведением продуктов метаболизма нервной системы и её элементарным охлаждением. Таким образом, мелкие насекомоядные и грызуны обречены не стать шахматистами. Их мозг инстинктивен, а энергетические проблемы его содержания ставят непреодолимые барьеры для развития индивидуального поведения. На индивидуальном уровне может возникнуть только вариабельность применения врождённых программ поведения.

Рис. I-8. Обменные процессы в головном мозге приматов.

В метаболизме нервной системы можно выделить три основных динамических процесса: обмен кислорода и углекислого газа, потребление органических веществ и выделение продуктов катаболизма, обмен воды и растворов электролитов. Доля потребления этих веществ мозгом человека указана в нижней части. Обмен воды и растворов электролитов вычисляется как время прохождения всей воды организма через мозг. Верхняя строка - пассивное состояние, нижняя - напряжённая работа нервной системы.

Однако достаточно немного увеличить размеры тела, и возникает качественно иная ситуация. Серая крыса (Rattus rattus) обладает нервной системой массой примерно 1/60 массы тела. Этого уже достаточно, чтобы достигнуть заметного снижения относительного метаболизма мозга. Результаты интеллектуальных экспериментов и наблюдений за крысами не имеет смысла пересказывать, а степень индивидуализации поведения не сопоставима с таковой кротов и землероек. Очевидным преимуществом увеличения массы тела является уменьшение расходов на содержание мозга. Постоянно работающие периферические отделы не столь затратны, как мозг, поэтому увеличение массы тела приводит к относительному «удешевлению» мозга.

Следовательно, для создания индивидуализированного мозга нужно животное с достаточно большой массой тела. Иначе говоря, существует своеобразный барьер, который через размеры тела и массу мозга ограничивает способность животных к обучению и индивидуализированному поведению. Мелкое животное с большим мозгом и высокими затратами на его содержание не сможет обеспечить энергетических затрат на повышение его активности. Таким образом, решения сложных задач или глубокой индивидуализации адаптивного поведения ждать не приходится. Если животное большое, а размеры мозга относительно невелики, то допустимы существенные колебания энергетических затрат на его содержание. В этой ситуации возможны и индивидуализация поведения, и сложные процессы научения. Однако даже у крупного животного с хорошо развитым мозгом существуют энергетические проблемы. Нервная система слишком дорога для её интенсивной эксплуатации. Небольшая и интенсивно работающая нервная система потребляет колоссальную долю ресурсов организма. Эта ситуация невыгодна. Энергетически оправданным решением может быть только кратковременное использование мозга для решения конкретных задач. Это и наблюдается у крупных млекопитающих. Краткая активность быстро сменяется длительным покоем.

Таким образом, у маленькой и большой нервной системы есть свои преимущества. Для реализации инстинктивного поведения можно иметь небольшой мозг, но его адаптивность сводится к модификациям инстинкта. Большой мозг обходится своему владельцу довольно дорого, но высокие энергетические расходы вполне оправданы. Большой мозг позволяет справляться со сложными задачами, которые не имеют готовых инстинктивных решений. Затратность реализации таких механизмов адаптивного поведения очень высока, поэтому как животные, так и человек стараются использовать мозг как можно реже.

Привилегированность нервной системы

Нервная система многих животных (и особенно у млекопитающих) обладает одним свойством, которое ставит её в исключительное положение. Это свойство связано с её изолированностью от остального организма. Будучи основным механизмом интеграции работы внутренних органов и основой поведения, она является «инородным телом» для собственного организма. Иммунная система рассматривает нервную систему примерно как занозу. Если иммунная система «добирается» до мозга, то начинаются тяжёлые аутоиммунные процессы, малосовместимые с жизнью.

Возникает парадоксальная ситуация. Нервная система потребляет огромную часть кислорода и питательных веществ всего организма, которую получает через кровь. Одновременно она должна быть тщательно изолирована от кровеносной системы, поскольку рассматривается клетками иммунной системы как инородный объект.

С точки зрения биологической целесообразности видно явное противоречие. Основной интегрирующий орган не должен быть чужеродным для иммунной системы. Тем не менее это факт, которому довольно легко найти внятное объяснение. В головном мозге слишком много специализированных органических компонентов, которые больше нигде в организме не используются. Создавать в иммунной системе механизм их распознавания как «своих» клеток крайне сложно и неоправданно. Намного «дешевле» просто отделить нервную систему от всего остального организма. Этот принцип изоляции реализован в семенниках, яичниках и нервной системе. В самом общем виде изоляция нервной системы поддерживается при помощи гематоэнцефалического барьера, состоящего из нескольких типов специализированных клеток. Чтобы разобраться с изолированностью нервной системы от остального организма, надо рассмотреть элементарные принципы её строения.

Из книги Новейшая книга фактов. Том 1 [Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина] автора

Из книги Глаз разума автора Хофштадтер Дуглас Роберт

Из книги Мозг и душа [Как нервная деятельность формирует наш внутренний мир] автора Фрит Крис

26 ДАГЛАС ХОФСТАДТЕР Беседа с мозгом Эйнштейна Ахилл и Черепаха случайно сталкиваются на берегу восьмиугольного пруда в Люксембургском саду в Париже. Пруд этот всегда служил излюбленным местом для лодочных прогулок молодых парочек; в наши дни их лодчонки зачастую бывают

Из книги Новейшая книга фактов. Том 1. Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина автора Кондрашов Анатолий Павлович

Мы воспринимаем не мир, а его модель, создаваемую мозгом То, что мы воспринимаем, это не те необработанные и неоднозначные сигналы, поступающие из окружающего мира к нашим глазам, ушам и пальцам. Наше восприятие намного богаче – оно совмещает все эти необработанные

Из книги Кровь: река жизни [От древних легенд до научных открытий] автора Азимов Айзек

Чему равна мощность, потребляемая головным мозгом человека? Установлено, что в состоянии бодрствования головной мозг человека потребляет мощность около 20

Из книги Разведение рыбы, раков и домашней водоплавающей птицы автора Задорожная Людмила Александровна

Почему регулярное потребление алкоголя, даже умеренное, вредно для организма? Алкоголизм – одна из разновидностей наркомании. Даже умеренное потребление алкоголя может привести к тяжелой, иногда почти непреодолимой зависимости от него. Механизм возникновения этой

Из книги Современное состояние биосферы и экологическая политика автора Колесник Ю. А.

Глава 4 Препятствия на пути кислорода В нормальной атмосфере гемоглобин связывает только кислород. Это значит, что на связывание кислорода не оказывают воздействия другие компоненты воздуха: азот, двуокись углерода, пары воды или аргон. Гемоглобин собирает

Из книги Биологическая химия автора Лелевич Владимир Валерьянович

Из книги автора

7.5. Круговорот кислорода Из всех газов, имеющихся в атмосфере, а также растворенных в Мировом океане, особый интерес представляет кислород, т. к. он обеспечивает высокий выход энергии при аэробной диссимиляциии практически для всех организмов Земли и по существу лежит в

Из книги автора

Активные формы кислорода (свободные радикалы) В организме в результате окислительно-восстановительных реакций постоянно происходит генерация активных форм кислорода (АФК) при одноэлектронном восстановлении кислорода (молекула имеет неспаренный электрон на

На вопрос Сколько процентов кислорода забирает мозг? заданный автором Просчет лучший ответ это Хотя у взрослого человека вес мозга составляет только около 2% от веса тела, мозг потребляет примерно 25% всего поглощаемого организмом кислорода...
Мозг расходует примерно столько же кислорода, сколько и активная мышца.
(«отдыхающий» мозг потребляет 9% всей энергии и 20% кислорода, «думающий» - потребляет около 25% поступающих в организм питательных веществ и примерно 33% необходимого организму кислорода)

Ответ от Marksman [гуру]
Зачем так мозг нагружать....


Ответ от Невроз [гуру]
Мизер


Ответ от Бросок [активный]
Все питательные вещества и кислород и вообще все что нужно доставляется в органы посредствм крови, а как известно состав крови соблюдается организмом очень строго...малейшее отклонение ведет к различным паталогиям. С этой точки зрения концентрация кислорода в крови постоянна и доставляется в органы согласно их массовому отношению, а не 10-30 и тем более не 90% углеводов как замечено выше. Ну и как правильно было сказано зависит от токо в какой степени нагружаются работой те или иные ткани, где быстрее идут окислительно-восстановительные процессы там и перенос крови более интенсивный, а следовательно и погложение кислорода..ни о каких среднестатистических процентах речи быть не может. А наиболшьй расход кислорода всетаки в мышцах...а не в мозге:))))


Ответ от Ledi Galina cskdf [гуру]
Если мозг напряжен, т.е. работает, то берет ровно столько, сколько ему нужно, ведь он же МОЗГ! Ну а если он ленивый, то зачем ему кислород? Он и так без стремления работать погибнет. Правда ведь?


Ответ от Кристина это Я [активный]
у меня ни одного....


Ответ от Георгий Юрьевич [гуру]
А есл мозги куринные


Ответ от Белкина Екатерина [гуру]
Смотря какой мозг и мыслительный процесс.


Ответ от Иванов Иван [гуру]
По разным оценкам 10-30%.
Но важнее не это, а что другие органы без кислогода могут очень долго обходиться,
то мозг минут через несколько гибнет частями (инсульт) или полностью.
Перекрыт кровоток, по которому гемоглобин несет кислород мозгу - и все.
А при недостатке О2 в воздухе, тоже нет механизма, чтоб он весь мобилизовался именно на мозг, так что и тут он первым страдает


Ответ от Ѓспех [гуру]
Столько,сколько нужно для полноценной работы организма!


Ответ от Irka-durka [эксперт]
a 4e tebya takou vopros zainteresoval=)


Ответ от Ђертый джинн [гуру]
15 процентов кислорода.


Ответ от Александр Твёрдый [гуру]
Поступление кислорода к мозгу зависит от цвета, в который покрашены волосы. Если у женщины волосы светлые, соломенные или под седину, то по каждому волоску в мозг поступает кислорода больше. А если темные, каштановые или черные, то структура волоса забивается краской и затрудняет поступление кислорода.
Наименьшее поступление кислорода к мозгу, замечено у тех женщин, которые красят волосы в разные цвета одновременно. (красный - фиолетовый - зеленый)
У женщин с длинными, светлыми волосами (их называю блондинки) самый высокий процент поступления кислорода в мозг! Ученые считают, что именно количество кислорода протекающему внутри волоса, влияет на окислительные, умственные и другие биологические процессы. Именно по этой причине у блондинок, головокружение, не одекватная оценка окружающего её мира происходит чаще.


Ответ от B-boy Haseky [гуру]
1% мозга


Ответ от Ольга Сеник [гуру]
В процентах оценить количество потребляемого кислорода сложно т.к. это достаточно индивидуальный и мобильный показатель, в условиях гипоксии (недостатка кислорода) другие ткани могут на время переходить на анаэробные пути метаболизма, а мозг работает только на кислороде (и глюкозе, кстати), поэтому в этих условиях дефицита кислорода ПРОЦЕНТНОЕ потребление кислорода мозгом соответственно возрастает.


Ответ от Пользователь удален [гуру]
мозги попадает от 3 до 8 % кислорода


Ответ от светлана [гуру]
ха-ха-ха-ха-ха


Ответ от Олег Агафонов [гуру]
Привет.
Забирает 0%, т.к. он(кислород) туда(в мозг) попасть никак не может...))
Пока.


Ответ от Александра [гуру]
Человеческий организм, когда он находится в спокойном, расслабленном состоянии, поглощает около трехсот кубических сантиметров кислорода в минуту. Мозг забирает на себя шестую часть - это пятьдесят кубических сантиметров, независимо от того, спит человек или бодрствует. А из пятисот граммов углеводов, которые поглощает человеческий организм, мозг берет на себя – девяносто.


Ответ от Aqua Irina [гуру]
..все зависит от количества мозга...


В нашем теле кислород отвечает за процесс выработки энергии. В наших клетках только благодаря кислороду происходит оксигенация — превращение питательных веществ (жиров и липидов) в энергию клетки. При снижении парциального давления (содержания) кислорода во вдыхаемом уровне - снижается его уровень в крови — снижается активность организма на клеточном уровне. Известно, что более 20% кислорода потребляет головной мозг. Дефицит кислорода способствует Соответственно, при падении уровня кислорода страдают самочувствие, работоспособность, общий тонус, иммунитет.
Важно также знать, что именно кислород может выводить из организма токсины.
Обратите внимание, что во всех иностранных фильмах при аварии или человеку в тяжелом состоянии медики экстренных служб первым делом надевают пострадавшему кислородный аппарат, чтобы поднять сопротивляемость организма и повысить его шансы на выживание.
Лечебное воздействие кислорода известно и используется в медицине с конца XVIII века. В СССР активное использование кислорода в профилактических целях началось в 60х годах прошлого века.

Гипоксия

Гипоксия или кислородное голодание — пониженное содержание кислорода в организме или отдельных органах и тканях. Гипоксия возникает при недостатке кислорода во вдыхаемом воздухе и в крови, при нарушении биохимических процессов тканевого дыхания. Вследствие гипоксии в жизненно важных органах развиваются необратимые изменения. Наиболее чувствительными к кислородной недостаточности являются центральная нервная система, мышца сердца, ткани почек, печени.
Проявлениями гипоксии являются нарушение дыхания, одышка; нарушение функций органов и систем.

Вред кислорода

Иногда можно услышать, что «Кислород - окислитель, который ускоряет старение организма».
Здесь из верного посыла делается неверный вывод. Да, кислород - окислитель. Только благодаря ему питательные вещества из пищи перерабатываются в энергию организма.
Страх перед кислородом связан с двумя исключительными его свойствами: свободными радикалами и отравлением им при избыточном давлении.

1. Что такое свободные радикалы?
Некоторые из огромного количества постоянно протекающих окислительных (вырабатывающих энергию) и восстановительных реакций организма не завершаются до конца, и тогда образуются вещества с нестабильными молекулами, имеющими на внешних электронных уровнях неспаренные электроны, называемые «свободные радикалы». Они стремятся захватить недостающий электрон у любой другой молекулы. Эта молекула, превратившись в свободный радикал, похищает электрон у следующей, и так далее..
Зачем это нужно? Определенное количество свободных радикалов, или оксидантов, жизненно необходимо организму. Прежде всего — для борьбы с вредными микроорганизмами. Свободные радикалы используются иммунной системой в качестве «снарядов» против «интервентов». В норме в организме человека 5% образовавшихся в ходе химических реакций веществ становятся свободными радикалами.
Главными причинами нарушения естественного биохимического равновесия и роста количества свободных радикалов ученые называют эмоциональный стресс, тяжелые физические нагрузки, травмы и истощение на фоне загрязнения воздуха, употребления в пищу консервированных и технологически неправильно переработанных продуктов, овощей и фруктов, выращенных с помощью гербицидов и пестицидов, ультрафиолетового и радиационного облучения.

Таким образом, старение — это биологический процесс замедления деления клеток, а ошибочно связываемые со старением свободные радикалы — естественные и необходимые организму механизмы защиты и их вредоносное воздействие связано с нарушением естественных процессов в организме негативными факторами окружающей среды и стрессом.

2. «Кислородом легко отравиться».
Действительно, избыток кислорода опасен. Избыток кислорода вызывает увеличение количества окисленного гемоглобина в крови и снижение количества восстановленного гемоглобина. И, поскольку именно восстановленный гемоглобин выводит углекислый газ, его задержка в тканях приводит к гиперкапнии - отравлению CO2.
При переизбытке кислорода растет число свободнорадикальных метаболитов, тех самых страшных «свободных радикалов», которые обладают высокой активностью, действуя в качестве окислителей, способных повредить биологические мембраны клеток.

Ужасно, правда? Сразу хочется перестать дышать. К счастью, для того, чтобы отравиться кислородом, необходимо повышенное давление кислорода как, например, в барокамере (при оксигенобаротерапии) или при погружении со специальными дыхательными смесями. В обычной жизни такие ситуации не встречаются.

3. «В горах мало кислорода, зато много долгожителей! Т.е. кислород вреден».
Действительно, в Советском союзе в горных районах Кавказа и в Закавказье был зарегистрировано некоторое число долгожителей. Если же посмотреть на список верифицированных (т.е. подтвержденных) долгожителей мира за всю его историю, то картина не будет такой очевидной: старейшие долгожители, зарегистрированные во Франции, США и Японии в горах не жили..

В Японии, где до сих пор живет и здравствует самая старая женщина планеты Мисао Окава, которой уже более 116 лет, находится и «остров долгожителей» Окинава. Средняя продолжительность жизни здесь у мужчин — 88 лет, у женщин — 92; это выше, чем в остальной Японии, на 10-15 лет. На острове собраны данные о семистах с лишним местных долгожителей старше ста лет. Там говорят, что: «В отличие от кавказских горцев, хунзакутов Северного Пакистана и других народностей, похваляющихся своим долголетием, все окинавские акты рождения с 1879 года задокументированы в японском семейном реестре — косэки». Сами окинвацы считают, что секрет их долголетия покоится на четырех китах: диета, активный образ жизни, самодостаточность и духовность. Местные жители никогда не переедают, придерживаясь принципа «хари хачи бу» — наесться на восемь десятых. Эти «восемь десятых» у них состоят из свинины, водорослей и тофу, овощей, дайкона и местного горького огурца. Старейшие окинавцы не сидят без дела: они активно работают на земле, и их отдых тоже активен: больше всего они любят играть в местную разновидность крокета.: Окинаву называют самым счастливым островом - там нет свойственной крупным островам Японии спешки и стресса. Местные жители привержены философии юимару — «добросердечное и дружеское совместное усилие».
Интересно, что как только окинавцы переезжают в другие части страны, то среди таких людей уже не встречается долгожителей.. Таким образом, ученые, изучающие этот феномен выяснили, что в долгожительстве островитян генетический фактор роли не играет. А мы, со своей стороны, считаем крайне важным, что Окинавские острова находятся в активно продуваемой ветрами зоне в океане, и уровень содержания кислорода в таких зонах фиксируют как наиболее высокий - 21,9 - 22% кислорода.

Чистота воздуха

«Но ведь на улице грязный воздух, а кислород переносит с собой все вещества».
Именно поэтому в системах OxyHaus установлена трехступенчатая система фильтрации входящего воздуха. И уже очищенный воздух попадает на цеолитовое молекулярное сито, в котором отделяется кислород воздуха.

«Можно ли отравиться кислородом?»

Кислородное отравление, гипероксия, — возникает вследствие дыхания кислородосодержащими газовыми смесями (воздуха, нитрокса) при повышенном давлении. Отравление кислородом может произойти при использовании кислородных аппаратов, регенеративных аппаратов, при использовании для дыхания искусственных газовых смесей, во время проведения кислородной рекомпрессии, а также вследствие превышения лечебных доз в процессе оксигенобаротерапии. При отравлении кислородом развиваются нарушения функций центральной нервной системы, органов дыхания и кровообращения.

Как действует кислород на организм человека?

Большее его количество требуется растущему организму и тем, кто занимается интенсивными физическими нагрузками. Вообще активность дыхания во многом зависит от множества внешних факторов. Например, если вы встанете под достаточно прохладный душ, то количество потребляемого вами кислорода увеличится на 100% по сравнению с условиями при комнатной температуре воздуха. То есть, чем больше человек отдаёт тепло, тем чаще становится частота его дыхания. Вот несколько интересных фактов по этому поводу:


  • за 1 час человек потребляет 15-20 л кислорода;

  • количество потребляемого кислорода: во время бодрствования увеличивается на 30-35%, во время спокойной ходьбы - на 100%, при лёгкой работе - на 200%, при тяжёлой физической работе - на 600% и более;

  • активность дыхательных процессов напрямую зависит от ёмкости лёгких. Так, например, у спортсменов она больше нормы на 1-1,5 литра, а вот у профессиональных пловцов может достигать до 6 литров!

  • Чем больше ёмкость лёгких, тем меньше частота дыхания и больше глубина вдоха. Наглядный пример: спортсмен делает 6-10 вдыханий в минуту, тогда как обычный человек (не являющийся спортсменом) дышит с частотой 14-18 дыханий в минуту.

Так зачем нужен кислород?

Он необходим для всего живого на земле: животные потребляют его в процессе дыхания, а растения выделяют его в процессе фотосинтеза. В каждой живой клеточке содержится больше кислорода, чем любого другого элемента - около 70%.

Он находится в составе молекул всех веществ - липидов, белков, углеводов, нуклеиновых кислот и низкомолекулярных соединений. Да и жизнь человека была бы просто немыслима без этого важного элемента!

Процесс его метаболизма таков: сначала он поступает через лёгкие в кровь, где поглощается гемоглобином и образует оксигемоглобин. Затем через кровь «транспортируется» ко всем клеткам органов и тканей. В связанном состоянии он поступает в виде воды. В тканях расходуется в основном на окисление многих веществ во время их метаболизма. Далее метаболизируется до воды и диоксида углерода, потом выводится из организма через органы дыхательной и выделительной систем.

Избыток кислорода

Для здоровья человека очень опасно длительное вдыхание воздуха, обогащённого этим элементом. Высокие концентрации О2 могут вызвать в тканях появление свободных радикалов, являющихся «разрушителями» биополимеров, точнее, их структуры и функций.

Однако в медицине для лечения некоторых заболеваний всё же используется процедура насыщения кислородом под повышенным давлением, которая называется гипербарическая оксигенация.

Избыток кислорода также опасен, как избыточная солнечная радиация. По жизни человек просто медленно сгорает в кислороде, как свечка. Старение - это процесс сгорания. В прошлом, крестьяне, которые постоянно были на свежем воздухе и солнце, жили значительно меньше своих хозяев - дворян, музицирующих в закрытых домах и проводящих время за карточными играми.

Деятельность каждой специализированной защитно-приспособительной системы тесно связана со специфическими особенностями охраняемого объекта. Поэтому при изучении принципа работы специализированных защитно-приспособительных систем важно предварительно ознакомиться с основными особенностями охраняемых ими органов.

В этой главе мы расскажем о работе саногенетических механизмов мозга.

Нет необходимости останавливаться на том, какую важную роль играет этот орган, а точнее - система во всей жизнедеятельности организма. С каждым годом в различных лабораториях мира накапливается все больше новых экспериментальных данных о теснейших зависимостях между функциональным состоянием мозга и работой всех других органов и систем.

При исследовании мозга ученых поражает и удивительная его компактность (примерно в 1500 см3 объема черепа вмещается несколько десятков миллиардов клеток и около 1200 км сосудов), и слаженность действия всей этой многомиллиардной структуры, и многое другое. Исключительно интересно решила природа проблему защиты систем мозга.
Основным источником энергии, необходимой для функционирования нервных клеток мозга, является окисление глюкозы. Однако в мозгу почти нет запасов углеводов, поэтому нормальный обмен веществ в нем целиком зависит от постоянной доставки энергетических материалов с кровью. Мозг активен не только во время бодрствования, но и во время сна.

Мозг чрезвычайно чувствителен к недостатку кислорода, его потребность в кислороде значительно выше, чем других органов.

Мозговая ткань потребляет кислорода в 5 раз больше, чем сердце, и в 20 раз больше, чем мышцы. Составляя всего около 2% веса тела человека, мозг поглощает 18-25% потребляемого всем организмом кислорода. Мозг значительно превосходит другие органы и по потреблению глюкозы - 60-70%, что составляет в сутки около 115 г.

По объему крови, наполняющей его сосуды, мозг стоит на одном из последних мест, в них содержится 1,2% всей крови организма, в то время как в печени и в мышцах 29%.

Парадоксальное несоответствие между количеством крови, наполняющей сосуды мозга, и значительным потреблением кислорода компенсируется большой скоростью кровотока, который в сосудах мозга в 6-7 раз выше, чем в мышцах.
У здоровых людей через 100 г мозгового вещества протекает более 50 мл крови в минуту, что при среднем весе мозга в 1400 г составляет 700-1000 мл. У лиц старше 70 лет мозговой кровоток значительно уменьшается.

В обоих полушариях количество нервных клеток составляет около 15 миллиардов. Кровоснабжение этих клеток осуществляется через капилляры, диаметр которых у человека равен 5-8 мк. В итоге в головном мозгу образуется огромная капиллярная сеть, общая протяженность которой составляет около 1200 км. Кора головного мозга без поступления кислорода может сохранять деятельное состояние в течение 10 секунд. Острая и полная задержка подачи крови мозгу на 6-7 секунд даже у молодых здоровых людей может вызвать обморок, через 40-60 секунд угасают рефлексы, а через 7 минут после клинической смерти наступает гибель нервных клеток в обширных участках различных отделов мозга. Отсюда становится понятным, какое важное значение для нормальной жизнедеятельности мозга имеет непрерывность кровоснабжения. В какой бы ситуации ни находился человек - за рабочим столом или у станка, в разреженной атмосфере высокогорья или в кабине космического корабля, с огромным ускорением набирающим скорость, - мозг должен бесперебойно получать необходимое количество кислорода. Эту задачу успешно решают защитные устройства в системе кровообращения мозга.

Скорость кровообращения в мозгу определяется разницей в давлении крови между мозговыми артериями и венами и величиной просвета сосудов. Давление в артериях мозга пропорционально общему артериальному давлению и в больших артериях виллизиева круга равно примерно 100/60 мм рт. столба, а в капиллярах приблизительно- 13 мм.

Венозное давление в мозге лежащего человека равняется 6-8 мм рт. столба, а в вертикальном положении падает почти до нуля. Падение артериального давления или подъем венозного замедляет мозговое кровообращение.

Головной мозг снабжают кровью две пары артерий: внутренние сонные и позвоночные. Позвоночные артерии являются ветвями подключичных, они идут вверх через отверстия в поперечных отростках шести верхних шейных позвонков и проникают в полость черепа через большое затылочное отверстие.

Отток крови от мозга осуществляют вены, и он происходит при любых положениях головы в пространстве. Продвижению крови в разных направлениях способствует богатство синусов лакунами, расширение средней части верхнего сагиттального синуса.

Хороший отток крови - необходимое условие нормальной жизнедеятельности мозга. Всякое его нарушение приводит к накоплению крови в венах, венозных синусах и капиллярах, что немедленно отражается на питании всех тканей и систем головного мозга, крайне чувствительных к кислородному голоданию. Функция органа в таких условиях быстро понижается. П. Ф. Лесгафт (1922) писал об этом явлении: «В таком случае вся психическая деятельность лица притуплена, замедлена. Все это наблюдается у лиц меланхолического темперамента, самое название которого происходит от слова «черное», указывающего, что в этом случае преобладает черная венозная кровь в теле». Хотя мы сегодня и не имеем возможности сказать, полностью ли прав П. Ф. Лесгафт в своих теоретических предпосылках, тем не менее роль вен головного мозга в патологии мозгового кровотока становится предметом многих исследований.

Из многочисленных факторов внешнего мира, воздействующих прямым и косвенным образом на вены головного мозга, следует назвать колебания атмосферного давления.

Изменение давления отражается на оттоке крови, нередко вызывая этим плохое настроение, тоску, апатию, безразличие и грусть, пониженную работоспособность.

Похожие статьи