Сумма бесконечной геометрической прогрессии формула. Геометрическая прогрессия — Гипермаркет знаний

Если каждому натуральному числу n поставить в соответствие действительное число a n , то говорят, что задано числовую последовательность :

a 1 , a 2 , a 3 , . . . , a n , . . . .

Итак, числовая последовательность — функция натурального аргумента.

Число a 1 называют первым членом последовательности , число a 2 вторым членом последовательности , число a 3 третьим и так далее. Число a n называют n-м членом последовательности , а натуральное число n его номером .

Из двух соседних членов a n и a n +1 последовательности член a n +1 называют последующим (по отношению к a n ), а a n предыдущим (по отношению к a n +1 ).

Чтобы задать последовательность, нужно указать способ, позволяющий найти член последовательности с любым номером.

Часто последовательность задают с помощью формулы n-го члена , то есть формулы, которая позволяет определить член последовательности по его номеру.

Например,

последовательность положительных нечётных чисел можно задать формулой

a n = 2n - 1,

а последовательность чередующихся 1 и -1 — формулой

b n = (-1) n +1 .

Последовательность можно определить рекуррентной формулой , то есть формулой, которая выражает любой член последовательности, начиная с некоторого, через предыдущие (один или несколько) члены.

Например,

если a 1 = 1 , а a n +1 = a n + 5

a 1 = 1,

a 2 = a 1 + 5 = 1 + 5 = 6,

a 3 = a 2 + 5 = 6 + 5 = 11,

a 4 = a 3 + 5 = 11 + 5 = 16,

a 5 = a 4 + 5 = 16 + 5 = 21.

Если а 1 = 1, а 2 = 1, a n +2 = a n + a n +1 , то первые семь членов числовой последовательности устанавливаем следующим образом:

a 1 = 1,

a 2 = 1,

a 3 = a 1 + a 2 = 1 + 1 = 2,

a 4 = a 2 + a 3 = 1 + 2 = 3,

a 5 = a 3 + a 4 = 2 + 3 = 5,

a 6 = a 4 + a 5 = 3 + 5 = 8,

a 7 = a 5 + a 6 = 5 + 8 = 13.

Последовательности могут быть конечными и бесконечными .

Последовательность называется конечной , если она имеет конечное число членов. Последовательность называется бесконечной , если она имеет бесконечно много членов.

Например,

последовательность двузначных натуральных чисел:

10, 11, 12, 13, . . . , 98, 99

конечная.

Последовательность простых чисел:

2, 3, 5, 7, 11, 13, . . .

бесконечная.

Последовательность называют возрастающей , если каждый её член, начиная со второго, больше чем предыдущий.

Последовательность называют убывающей , если каждый её член, начиная со второго, меньше чем предыдущий.

Например,

2, 4, 6, 8, . . . , 2n , . . . — возрастающая последовательность;

1, 1 / 2 , 1 / 3 , 1 / 4 , . . . , 1 / n , . . . — убывающая последовательность.

Последовательность, элементы которой с увеличением номера не убывают, или, наоборот, не возрастают, называется монотонной последовательностью .

Монотонными последовательностями, в частности, являются возрастающие последовательности и убывающие последовательности.

Арифметическая прогрессия

Арифметической прогрессией называется последовательность, каждый член которой, начиная со второго, равен предыдущему, к которому прибавляется одно и то же число.

a 1 , a 2 , a 3 , . . . , a n , . . .

является арифметической прогрессией, если для любого натурального числа n выполняется условие:

a n +1 = a n + d ,

где d — некоторое число.

Таким образом, разность между последующим и предыдущим членами данной арифметической прогрессии всегда постоянна:

а 2 - a 1 = а 3 - a 2 = . . . = a n +1 - a n = d .

Число d называют разностью арифметической прогрессии .

Чтобы задать арифметическую прогрессию, достаточно указать её первый член и разность.

Например,

если a 1 = 3, d = 4 , то первые пять членов последовательности находим следующим образом:

a 1 =3,

a 2 = a 1 + d = 3 + 4 = 7,

a 3 = a 2 + d = 7 + 4 = 11,

a 4 = a 3 + d = 11 + 4 = 15,

a 5 = a 4 + d = 15 + 4 = 19.

Для арифметической прогрессии с первым членом a 1 и разностью d её n

a n = a 1 + (n - 1)d.

Например,

найдём тридцатый член арифметической прогрессии

1, 4, 7, 10, . . .

a 1 =1, d = 3,

a 30 = a 1 + (30 - 1)d = 1 + 29· 3 = 88.

a n-1 = a 1 + (n - 2)d,

a n = a 1 + (n - 1)d,

a n +1 = a 1 + nd ,

то, очевидно,

a n =
a n-1 + a n+1
2

каждый член арифметической прогрессии, начиная со второго, равен среднему арифметическому предшествующего и последующего членов.

числа a, b и c являются последовательными членами некоторой арифметической прогрессии тогда и только тогда, когда одно из них равно среднему арифметическому двух других.

Например,

a n = 2n - 7 , является арифметической прогрессией.

Воспользуемся приведённым выше утверждением. Имеем:

a n = 2n - 7,

a n-1 = 2(n - 1) - 7 = 2n - 9,

a n+1 = 2(n + 1) - 7 = 2n - 5.

Следовательно,

a n+1 + a n-1
=
2n - 5 + 2n - 9
= 2n - 7 = a n ,
2
2

Отметим, что n -й член арифметической прогрессии можно найти не толь через a 1 , но и любой предыдущий a k

a n = a k + (n - k )d .

Например,

для a 5 можно записать

a 5 = a 1 + 4d ,

a 5 = a 2 + 3d ,

a 5 = a 3 + 2d ,

a 5 = a 4 + d .

a n = a n-k + kd ,

a n = a n+k - kd ,

то, очевидно,

a n =
a n-k + a n+k
2

любой член арифметической прогрессии, начиная со второго равен полусумме равноотстоящих от него членов этой арифметической прогрессии.

Кроме того, для любой арифметической прогрессии справедливо равенство:

a m + a n = a k + a l ,

m + n = k + l.

Например,

в арифметической прогрессии

1) a 10 = 28 = (25 + 31)/2 = (a 9 + a 11 )/2;

2) 28 = a 10 = a 3 + 7d = 7 + 7·3 = 7 + 21 = 28;

3) a 10 = 28 = (19 + 37)/2 = (a 7 + a 13 )/2;

4) a 2 + a 12 = a 5 + a 9 , так как

a 2 + a 12 = 4 + 34 = 38,

a 5 + a 9 = 13 + 25 = 38.

S n = a 1 + a 2 + a 3 + . . . + a n ,

первых n членов арифметической прогрессии равна произведению полусуммы крайних слагаемых на число слагаемых:

Отсюда, в частности, следует, что если нужно просуммировать члены

a k , a k +1 , . . . , a n ,

то предыдущая формула сохраняет свою структуру:

Например,

в арифметической прогрессии 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, . . .

S 10 = 1 + 4 + . . . + 28 = (1 + 28) · 10/2 = 145;

10 + 13 + 16 + 19 + 22 + 25 + 28 = S 10 - S 3 = (10 + 28 ) · (10 - 4 + 1)/2 = 133.

Если дана арифметическая прогрессия, то величины a 1 , a n , d , n и S n связаны двумя формулами:

Поэтому, если значения трёх из этих величин даны, то соответствующие им значения двух остальных величин определяются из этих формул, объединённых в систему двух уравнений с двумя неизвестными.

Арифметическая прогрессия является монотонной последовательностью. При этом:

  • если d > 0 , то она является возрастающей;
  • если d < 0 , то она является убывающей;
  • если d = 0 , то последовательность будет стационарной.

Геометрическая прогрессия

Геометрической прогрессией называется последовательность, каждый член которой, начиная со второго, равен предыдущему, умноженному на одно и то же число.

b 1 , b 2 , b 3 , . . . , b n , . . .

является геометрической прогрессией, если для любого натурального числа n выполняется условие:

b n +1 = b n · q ,

где q ≠ 0 — некоторое число.

Таким образом, отношение последующего члена данной геометрической прогрессии к предыдущему есть число постоянное:

b 2 / b 1 = b 3 / b 2 = . . . = b n +1 / b n = q .

Число q называют знаменателем геометрической прогрессии .

Чтобы задать геометрическую прогрессию, достаточно указать её первый член и знаменатель.

Например,

если b 1 = 1, q = -3 , то первые пять членов последовательности находим следующим образом:

b 1 = 1,

b 2 = b 1 · q = 1 · (-3) = -3,

b 3 = b 2 · q = -3 · (-3) = 9,

b 4 = b 3 · q = 9 · (-3) = -27,

b 5 = b 4 · q = -27 · (-3) = 81.

b 1 и знаменателем q её n -й член может быть найден по формуле:

b n = b 1 · q n -1 .

Например,

найдём седьмой член геометрической прогрессии 1, 2, 4, . . .

b 1 = 1, q = 2,

b 7 = b 1 · q 6 = 1 · 2 6 = 64 .

b n-1 = b 1 · q n -2 ,

b n = b 1 · q n -1 ,

b n +1 = b 1 · q n ,

то, очевидно,

b n 2 = b n -1 · b n +1 ,

каждый член геометрической прогрессии, начиная со второго, равен среднему геометрическому (пропорциональному) предшествующего и последующего членов.

Так как верно и обратное утверждение, то имеет место следующее утверждение:

числа a, b и c являются последовательными членами некоторой геометрической прогрессии тогда и только тогда, когда квадрат одного из них равен произведению двух других, то есть одно из чисел является средним геометрическим двух других.

Например,

докажем, что последовательность, которая задаётся формулой b n = -3 · 2 n , является геометрической прогрессией. Воспользуемся приведённым выше утверждением. Имеем:

b n = -3 · 2 n ,

b n -1 = -3 · 2 n -1 ,

b n +1 = -3 · 2 n +1 .

Следовательно,

b n 2 = (-3 · 2 n ) 2 = (-3 · 2 n -1 ) · (-3 · 2 n +1 ) = b n -1 · b n +1 ,

что и доказывает нужное утверждение.

Отметим, что n -й член геометрической прогрессии можно найти не только через b 1 , но и любой предыдущий член b k , для чего достаточно воспользоваться формулой

b n = b k · q n - k .

Например,

для b 5 можно записать

b 5 = b 1 · q 4 ,

b 5 = b 2 · q 3 ,

b 5 = b 3 · q 2 ,

b 5 = b 4 · q .

b n = b k · q n - k ,

b n = b n - k · q k ,

то, очевидно,

b n 2 = b n - k · b n + k

квадрат любого члена геометрической прогрессии, начиная со второго равен произведению равноотстоящих от него членов этой прогрессии.

Кроме того, для любой геометрической прогрессии справедливо равенство:

b m · b n = b k · b l ,

m + n = k + l .

Например,

в геометрической прогрессии

1) b 6 2 = 32 2 = 1024 = 16 · 64 = b 5 · b 7 ;

2) 1024 = b 11 = b 6 · q 5 = 32 · 2 5 = 1024;

3) b 6 2 = 32 2 = 1024 = 8 · 128 = b 4 · b 8 ;

4) b 2 · b 7 = b 4 · b 5 , так как

b 2 · b 7 = 2 · 64 = 128,

b 4 · b 5 = 8 · 16 = 128.

S n = b 1 + b 2 + b 3 + . . . + b n

первых n членов геометрической прогрессии со знаменателем q 0 вычисляется по формуле:

А при q = 1 — по формуле

S n = nb 1

Заметим, что если нужно просуммировать члены

b k , b k +1 , . . . , b n ,

то используется формула:

S n - S k -1 = b k + b k +1 + . . . + b n = b k · 1 - q n - k +1
.
1 - q

Например,

в геометрической прогрессии 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, . . .

S 10 = 1 + 2 + . . . + 512 = 1 · (1 - 2 10) / (1 - 2) = 1023;

64 + 128 + 256 + 512 = S 10 - S 6 = 64 · (1 - 2 10-7+1) / (1 - 2) = 960.

Если дана геометрическая прогрессия, то величины b 1 , b n , q , n и S n связаны двумя формулами:

Поэтому, если значения каких-либо трёх из этих величин даны, то соответствующие им значения двух остальных величин определяются из этих формул, объединённых в систему двух уравнений с двумя неизвестными.

Для геометрической прогрессии с первым членом b 1 и знаменателем q имеют место следующие свойства монотонности :

  • прогрессия является возрастающей, если выполнено одно из следующих условий:

b 1 > 0 и q > 1;

b 1 < 0 и 0 < q < 1;

  • прогрессия является убывающей, если выполнено одно из следующих условий:

b 1 > 0 и 0 < q < 1;

b 1 < 0 и q > 1.

Если q < 0 , то геометрическая прогрессия является знакопеременной: её члены с нечётными номерами имеют тот же знак, что и её первый член, а члены с чётными номерами — противоположный ему знак. Ясно, что знакопеременная геометрическая прогрессия не является монотонной.

Произведение первых n членов геометрической прогрессии можно рассчитать по формуле:

P n = b 1 · b 2 · b 3 · . . . · b n = (b 1 · b n ) n / 2 .

Например,

1 · 2 · 4 · 8 · 16 · 32 · 64 · 128 = (1 · 128) 8/2 = 128 4 = 268 435 456;

3 · 6 · 12 · 24 · 48 = (3 · 48) 5/2 = (144 1/2) 5 = 12 5 = 248 832.

Бесконечно убывающая геометрическая прогрессия

Бесконечно убывающей геометрической прогрессией называют бесконечную геометрическую прогрессию, модуль знаменателя которой меньше 1 , то есть

|q | < 1 .

Заметим, что бесконечно убывающая геометрическая прогрессия может не быть убывающей последовательностью. Это соответствует случаю

1 < q < 0 .

При таком знаменателе последовательность знакопеременная. Например,

1, - 1 / 2 , 1 / 4 , - 1 / 8 , . . . .

Суммой бесконечно убывающей геометрической прогрессии называют число, к которому неограниченно приближается сумма первых n членов прогрессии при неограниченном возрастании числа n . Это число всегда конечно и выражается формулой

S = b 1 + b 2 + b 3 + . . . = b 1
.
1 - q

Например,

10 + 1 + 0,1 + 0,01 + . . . = 10 / (1 - 0,1) = 11 1 / 9 ,

10 - 1 + 0,1 - 0,01 + . . . = 10 / (1 + 0,1) = 9 1 / 11 .

Связь арифметической и геометрической прогрессий

Арифметическая и геометрическая прогрессии тесно связаны между собой. Рассмотрим лишь два примера.

a 1 , a 2 , a 3 , . . . d , то

b a 1 , b a 2 , b a 3 , . . . b d .

Например,

1, 3, 5, . . . — арифметическая прогрессия с разностью 2 и

7 1 , 7 3 , 7 5 , . . . — геометрическая прогрессия с знаменателем 7 2 .

b 1 , b 2 , b 3 , . . . — геометрическая прогрессия с знаменателем q , то

log a b 1 , log a b 2 , log a b 3 , . . . — арифметическая прогрессия с разностью log a q .

Например,

2, 12, 72, . . . — геометрическая прогрессия с знаменателем 6 и

lg 2, lg 12, lg 72, . . . — арифметическая прогрессия с разностью lg 6 .

Геометрическая прогрессия, наряду с арифметической, является важным числовым рядом, который изучается в школьном курсе алгебры в 9 классе. В данной статье рассмотрим знаменатель геометрической прогрессии, и то, как его значение влияет на ее свойства.

Определение прогрессии геометрической

Для начала приведем определение этого числового ряда. Прогрессией геометрической называют такой ряд рациональных чисел, который формируется путем последовательного умножения его первого элемента на постоянное число, носящее название знаменателя.

Например, числа в ряду 3, 6, 12, 24, ... - это прогрессия геометрическая, поскольку если умножить 3 (первый элемент) на 2, то получим 6. Если 6 умножить на 2, то получим 12, и так далее.

Члены рассматриваемой последовательности принято обозначать символом ai, где i - это целое число, указывающее на номер элемента в ряду.

Приведенное выше определение прогрессии можно записать на языке математики следующим образом: an = bn-1 * a1, где b - знаменатель. Проверить эту формулу легко: если n = 1, то b1-1 = 1, и мы получаем a1 = a1. Если n = 2, тогда an = b * a1, и мы снова приходим к определению рассматриваемого ряда чисел. Аналогичные рассуждения можно продолжить для больших значений n.

Знаменатель прогрессии геометрической


Число b полностью определяет, какой характер будет носить весь числовой ряд. Знаменатель b может быть положительный, отрицательный, а также иметь значение больше единицы или меньше. Все перечисленные варианты приводят к разным последовательностям:

  • b > 1. Имеет место возрастающий ряд рациональных чисел. Например, 1, 2, 4, 8, ... Если элемент a1 будет отрицательным, тогда вся последовательность будет возрастать только по модулю, но убывать с учетом знака чисел.
  • b = 1. Часто такой случай не называют прогрессией, поскольку имеет место обычный ряд одинаковых рациональных чисел. Например, -4, -4, -4.

Формула для суммы

Перед тем как перейти к рассмотрению конкретных задач с использованием знаменателя рассматриваемого вида прогрессии, следует привести важную формулу для суммы ее первых n элементов. Формула имеет вид: Sn = (bn - 1) * a1 / (b - 1).

Получить это выражение можно самостоятельно, если рассмотреть рекурсивную последовательность членов прогрессии. Также заметим, что в приведенной формуле достаточно знать только первый элемент и знаменатель, чтобы найти сумму произвольного числа членов.

Бесконечно убывающая последовательность


Выше было дано пояснение, что она собой представляет. Теперь, зная формулу для Sn, применим ее к этому числовому ряду. Так как любое число, модуль которого не превышает 1, при возведении в большие степени стремится к нулю, то есть b∞ => 0, если -1

Поскольку разность (1 - b) всегда будет положительной, независимо от значения знаменателя, то знак суммы убывающей бесконечно прогрессии геометрической S∞ однозначно определяется знаком ее первого элемента a1.

Теперь рассмотрим несколько задач, где покажем, как применять полученные знания на конкретных числах.

Задача № 1. Вычисление неизвестных элементов прогрессии и суммы

Дана прогрессия геометрическая, знаменатель прогрессии 2, а ее первый элемент 3. Чему будут равны ее 7-й и 10-й члены, и какова сумма ее семи начальных элементов?

Условие задачи составлено достаточно просто и предполагает непосредственное использование вышеназванных формул. Итак, для вычисления элемента с номером n используем выражение an = bn-1 * a1. Для 7-го элемента имеем: a7 = b6 * a1, подставляя известные данные, получаем: a7 = 26 * 3 = 192. Аналогичным образом поступаем для 10-го члена: a10 = 29 * 3 = 1536.

Воспользуемся известной формулой для суммы и определим эту величину для 7-ми первых элементов ряда. Имеем: S7 = (27 - 1) * 3 / (2 - 1) = 381.

Задача № 2. Определение суммы произвольных элементов прогрессии

Пусть -2 равен знаменатель прогрессии в геометрической прогрессии bn-1 * 4, где n - целое число. Необходимо определить сумму с 5-го по 10-й элемент этого ряда включительно.

Поставленная проблема не может быть решена непосредственно с использованием известных формул. Решить ее можно 2-мя различными методами. Для полноты изложения темы приведем оба.

Метод 1. Идея его проста: необходимо рассчитать две соответствующие суммы первых членов, а затем вычесть из одной другую. Вычисляем меньшую сумму: S10 = ((-2)10 - 1) * 4 / (-2 - 1) = -1364. Теперь вычисляем большую сумму: S4 = ((-2)4 - 1) * 4 / (-2 - 1) = -20. Отметим, что в последнем выражении суммировались только 4 слагаемых, поскольку 5-е уже входит в сумму, которую требуется вычислить по условию задачи. Наконец, берем разницу: S510 = S10 - S4 = -1364 - (-20) = -1344.

Метод 2. Перед тем, как подставлять цифры и считать, можно получить формулу для суммы между членами m и n рассматриваемого ряда. Поступаем абсолютно так же, как в методе 1, только работаем сначала с символьным представлением суммы. Имеем: Snm = (bn - 1) * a1 / (b - 1) - (bm-1 - 1) * a1 / (b - 1) = a1 * (bn - bm-1) / (b - 1). В полученное выражение можно подставлять известные числа и вычислять конечный результат: S105 = 4 * ((-2)10 - (-2)4) / (-2 - 1) = -1344.

Задача № 3. Чему равен знаменатель?


Пусть a1 = 2, найдите знаменатель прогрессии геометрической, при условии, что ее бесконечная сумма составляет 3, и известно, что это убывающий ряд чисел.

По условию задачи нетрудно догадаться, какой формулой следует пользоваться для ее решения. Конечно же, для суммы прогрессии бесконечно убывающей. Имеем: S∞ = a1 / (1 - b). Откуда выражаем знаменатель: b = 1 - a1 / S∞. Осталось подставить известные значения и получить требуемое число: b = 1 - 2 / 3 = -1 / 3 или -0,333(3). Можно качественно проверить этот результат, если вспомнить, что для этого типа последовательности модуль b не должен выходить за пределы 1. Как видно, |-1 / 3|

Задача № 4. Восстановление ряда чисел

Пусть даны 2 элемента числового ряда, например, 5-й равен 30 и 10-й равен 60. Необходимо по этим данным восстановить весь ряд, зная, что он удовлетворяет свойствам прогрессии геометрической.

Чтобы решить задачу, необходимо для начала записать для каждого известного члена соответствующее выражение. Имеем: a5 = b4 * a1 и a10 = b9 * a1. Теперь разделим второе выражение на первое, получим: a10 / a5 = b9 * a1 / (b4 * a1) = b5. Отсюда определяем знаменатель, взяв корень пятой степени от отношения известных из условия задачи членов, b = 1,148698. Полученное число подставляем в одно из выражений для известного элемента, получаем: a1 = a5 / b4 = 30 / (1,148698)4 = 17,2304966.

Таким образом, мы нашли, чему равен знаменатель прогрессии bn, и геометрическую прогрессию bn-1 * 17,2304966 = an, где b = 1,148698.

Где применяются прогрессии геометрические?


Если бы не существовало применения этого числового ряда на практике, то его изучение сводилось бы к чисто теоретическому интересу. Но такое применение существует.


Ниже перечислены 3 самых знаменитых примера:

  • Парадокс Зенона, в котором ловкий Ахиллес не может догнать медленную черепаху, решается с использованием понятия убывающей бесконечно последовательности чисел.
  • Если на каждую клетку шахматной доски класть зерна пшеницы так, что на 1-ю клетку положить 1 зерно, на 2-ю - 2, на 3-ю - 3 и так далее, то чтобы заполнить все клетки доски понадобится 18446744073709551615 зерен!
  • В игре "Башня Ханоя", чтобы переставить диски с одного стержня на другой, необходимо выполнить 2n - 1 операций, то есть их число растет в геометрической прогрессии от количества используемых дисков n.

Рассмотрим некоторый ряд.

7 28 112 448 1792...

Совершенно ясно видно, что значение любого его элемента больше предыдущего ровно в четыре раза. Значит, данный ряд является прогрессией.

Геометрической прогрессиейименуется бесконечная последовательность чисел, главной особенностью которой является то, что следующее число получается из предыдущего посредством умножения на какое-то определенное число. Это выражается следующей формулой.

a z +1 =a z ·q, где z - номер выбранного элемента.

Соответственно, z ∈ N.

Период, когда в школе изучается геометрическая прогрессия - 9 класс. Примеры помогут разобраться в понятии:

0.25 0.125 0.0625...

Исходя из этой формулы, знаменатель прогрессии возможно найти следующим образом:

Ни q, ни b z не могут равняться нулю. Так же каждый из элементов прогрессии не должен равняться нулю.

Соответственно, чтобы узнать следующее число ряда, нужно умножить последнее на q.

Чтобы задать данную прогрессию, необходимо указать первый ее элемент и знаменатель. После этого возможно нахождение любого из последующих членов и их суммы.

Разновидности

В зависимости от q и a 1, данная прогрессия разделяется на несколько видов:

  • Если и a 1 , и q больше единицы, то такая последовательность - возрастающая с каждым следующим элементом геометрическая прогрессия. Пример таковой представлен далее.

Пример: a 1 =3, q=2 - оба параметра больше единицы.

Тогда числовая последовательность может быть записана так:

3 6 12 24 48 ...

  • Если |q| меньше единицы, то есть, умножение на него эквивалентно делению, то прогрессия с подобными условиями - убывающая геометрическая прогрессия. Пример таковой представлен далее.

Пример: a 1 =6, q=1/3 - a 1 больше единицы, q - меньше.

Тогда числовую последовательность можно записать таким образом:

6 2 2/3 ... - любой элемент больше элемента, следующего за ним, в 3 раза.

  • Знакопеременная. Если q<0, то знаки у чисел последовательности постоянно чередуются вне зависимости от a 1 , а элементы ни возрастают, ни убывают.

Пример: a 1 = -3 , q = -2 - оба параметра меньше нуля.

Тогда числовую последовательность можно записать так:

3, 6, -12, 24,...

Формулы

Для удобного использования геометрических прогрессий существует множество формул:

  • Формула z-го члена. Позволяет рассчитать элемент, стоящий под конкретным номером без расчета предыдущих чисел.

Пример: q = 3, a 1 = 4. Требуется посчитать четвертый элемент прогрессии.

Решение: a 4 = 4 · 3 4-1 = 4 · 3 3 = 4 · 27 = 108.

  • Сумма первых элементов, чье количество равно z . Позволяет рассчитать сумму всех элементов последовательности до a z включительно.

Так как (1- q ) стоит в знаменателе, то (1 - q) ≠ 0, следовательно, q не равно 1.

Замечание: если бы q=1, то прогрессия представляла бы собой ряд из бесконечно повторяющегося числа.

Сумма геометрической прогрессии, примеры: a 1 = 2, q = -2. Посчитать S 5 .

Решение: S 5 = 22 - расчет по формуле.

  • Сумма, если | q | < 1 и если z стремится к бесконечности.

Пример: a 1 = 2 , q = 0.5. Найти сумму.

Решение: S z = 2 · = 4

S z = 2 + 1 + 0.5 + 0.25 + 0.125 + 0.0625 = 3.9375 4

Некоторые свойства:

  • Характеристическое свойство. Если следующее условие выполняется для любого z , то заданный числовой ряд - геометрическая прогрессия:

a z 2 = a z -1 · a z+1

  • Так же квадрат любого числа геометрической прогрессии находится при помощи сложения квадратов двух других любых чисел в заданном ряду, если они равноудалены от этого элемента.

a z 2 = a z - t 2 + a z + t 2 , где t - расстояние между этими числами.

  • Элементы различаются в q раз.
  • Логарифмы элементов прогрессии так же образуют прогрессию, но уже арифметическую, то есть каждый из них больше предыдущего на определенное число.

Примеры некоторых классических задач

Чтобы лучше понять, что такое геометрическая прогрессия, примеры с решением для 9 класса могут помочь.

  • Условия: a 1 = 3, a 3 = 48. Найти q .

Решение: каждый последующий элемент больше предыдущего в q раз. Необходимо выразить одни элементы через другие с помощью знаменателя.

Следовательно, a 3 = q 2 · a 1

При подстановке q = 4

  • Условия: a 2 = 6, a 3 = 12. Рассчитать S 6 .

Решение: Для этого достаточно найти q, первый элемент и подставить в формулу.

a 3 = q · a 2 , следовательно, q = 2

a 2 = q · a 1 , поэтому a 1 = 3

S 6 = 189

  • · a 1 = 10, q = -2. Найти четвертый элемент прогрессии.

Решение: для этого достаточно выразить четвертый элемент через первый и через знаменатель.

a 4 = q 3 · a 1 = -80

Пример применения:

  • Клиент банка совершил вклад на сумму 10000 рублей, по условиям которого каждый год клиенту к основной сумме будут прибавляться 6% от нее же. Сколько средств будет на счету через 4 года?

Решение: Изначальная сумма равна 10 тысячам рублей. Значит, через год после вложения на счету будет сумма, равная 10000 + 10000· 0.06 = 10000 · 1.06

Соответственно, сумма на счете еще через один год будет выражаться следующим образом:

(10000 · 1.06) · 0.06 + 10000 · 1.06 = 1.06 · 1.06 · 10000

То есть с каждым годом сумма увеличивается в 1.06 раз. Значит, чтобы найти количество средств на счете через 4 года, достаточно найти четвертый элемент прогрессии, которая задана первым элементом, равным 10 тысячам, и знаменателем, равным 1.06.

S = 1.06·1.06·1.06·1.06·10000 = 12625

Примеры задач на вычисление суммы:

В различных задачах используется геометрическая прогрессия. Пример на нахождение суммы может быть задан следующим образом:

a 1 = 4, q = 2, рассчитать S 5 .

Решение: все необходимые для расчета данные известны, нужно просто подставить их в формулу.

S 5 = 124

  • a 2 = 6, a 3 = 18. Рассчитать сумму первых шести элементов.

Решение:

В геом. прогрессии каждый следующий элемент больше предыдущего в q раз, то есть для вычисления суммы необходимо знать элемент a 1 и знаменатель q .

a 2 · q = a 3

q = 3

Аналогичным образом требуется найти a 1 , зная a 2 и q .

a 1 · q = a 2

a 1 = 2

S 6 = 728.

Урок и презентация на тему: "Числовые последовательности. Геометрическая прогрессия"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 9 класса
Степени и корни Функции и графики

Ребята, сегодня мы познакомимся с еще одним видом прогрессии.
Тема сегодняшнего занятия - геометрическая прогрессия.

Геометрическая прогрессия

Определение. Числовая последовательность, в которой каждый член, начиная со второго, равен произведению предыдущего и некоторого фиксированного числа, называется геометрической прогрессией.
Зададим нашу последовательность рекуррентно: $b_{1}=b$, $b_{n}=b_{n-1}*q$,
где b и q – определенные заданные числа. Число q называется знаменателем прогрессии.

Пример. 1,2,4,8,16… Геометрическая прогрессия, у которой первый член равен единице, а $q=2$.

Пример. 8,8,8,8… Геометрическая прогрессия, у которой первый член равен восьми,
а $q=1$.

Пример. 3,-3,3,-3,3… Геометрическая прогрессия, у которой первый член равен трем,
а $q=-1$.

Геометрическая прогрессия обладает свойствами монотонности.
Если $b_{1}>0$, $q>1$,
то последовательность возрастающая.
Если $b_{1}>0$, $0 Последовательность принято обозначать в виде: $b_{1}, b_{2}, b_{3}, ..., b_{n}, ...$.

Также как и в арифметической прогрессии, если в геометрической прогрессии количество элементов конечно, то прогрессия называется конечной геометрической прогрессией .

$b_{1}, b_{2}, b_{3}, ..., b_{n-2}, b_{n-1}, b_{n}$.
Отметим, если последовательность является геометрической прогрессией, то и последовательность квадратов членов, также является геометрической прогрессией. У второй последовательность первый член равен $b_{1}^2$, а знаменатель равен $q^2$.

Формула n-ого члена геометрической прогрессии

Геометрическую прогрессию можно задавать и в аналитической форме. Давайте посмотрим, как это сделать:
$b_{1}=b_{1}$.
$b_{2}=b_{1}*q$.
$b_{3}=b_{2}*q=b_{1}*q*q=b_{1}*q^2$.
$b_{4}=b_{3}*q=b_{1}*q^3$.
$b_{5}=b_{4}*q=b_{1}*q^4$.
Мы легко замечаем закономерность: $b_{n}=b_{1}*q^{n-1}$.
Наша формула называется "формулой n-ого члена геометрической прогрессии".

Вернемся к нашим примерам.

Пример. 1,2,4,8,16… Геометрическая прогрессия, у которой первый член равен единице,
а $q=2$.
$b_{n}=1*2^{n}=2^{n-1}$.

Пример. 16,8,4,2,1,1/2… Геометрическая прогрессия, у которой первый член равен шестнадцати, а $q=\frac{1}{2}$.
$b_{n}=16*(\frac{1}{2})^{n-1}$.

Пример. 8,8,8,8… Геометрическая прогрессия, у которой первый член равен восьми, а $q=1$.
$b_{n}=8*1^{n-1}=8$.

Пример. 3,-3,3,-3,3… Геометрическая прогрессия, у которой первый член равен трем, а $q=-1$.
$b_{n}=3*(-1)^{n-1}$.

Пример. Дана геометрическая прогрессия $b_{1}, b_{2}, …, b_{n}, … $.
а) Известно,что $b_{1}=6, q=3$. Найти $b_{5}$.
б) Известно,что $b_{1}=6, q=2, b_{n}=768$. Найти n.
в) Известно,что $q=-2, b_{6}=96$. Найти $b_{1}$.
г) Известно,что $b_{1}=-2, b_{12}=4096$. Найти q.

Решение.
а) $b_{5}=b_{1}*q^4=6*3^4=486$.
б) $b_n=b_1*q^{n-1}=6*2^{n-1}=768$.
$2^{n-1}=\frac{768}{6}=128$,так как $2^7=128 => n-1=7; n=8$.
в) $b_{6}=b_{1}*q^5=b_{1}*(-2)^5=-32*b_{1}=96 => b_{1}=-3$.
г) $b_{12}=b_{1}*q^{11}=-2*q^{11}=4096 => q^{11}=-2048 => q=-2$.

Пример. Разность между седьмым и пятым членами геометрической прогрессии равны 192, сумма пятого и шестого члена прогрессии равна 192. Найти десятый член этой прогрессии.

Решение.
Нам известно, что: $b_{7}-b_{5}=192$ и $b_{5}+b_{6}=192$.
Мы так же знаем: $b_{5}=b_{1}*q^4$; $b_{6}=b_{1}*q^5$; $b_{7}=b_{1}*q^6$.
Тогда:
$b_{1}*q^6-b_{1}*q^4=192$.
$b_{1}*q^4+b_{1}*q^5=192$.
Получили систему уравнений:
$\begin{cases}b_{1}*q^4(q^2-1)=192\\b_{1}*q^4(1+q)=192\end{cases}$.
Приравняв, наши уравнения получим:
$b_{1}*q^4(q^2-1)=b_{1}*q^4(1+q)$.
$q^2-1=q+1$.
$q^2-q-2=0$.
Получили два решения q: $q_{1}=2, q_{2}=-1$.
Последовательно подставим во второе уравнение:
$b_{1}*2^4*3=192 => b_{1}=4$.
$b_{1}*(-1)^4*0=192 =>$ нет решений.
Получили что: $b_{1}=4, q=2$.
Найдем десятый член: $b_{10}=b_{1}*q^9=4*2^9=2048$.

Сумма конечной геометрической прогрессии

Пусть у нас есть конечная геометрическая прогрессия. Давайте, также как и для арифметической прогрессии, посчитаем сумму ее членов.

Пусть дана конечная геометрическая прогрессия: $b_{1},b_{2},…,b_{n-1},b_{n}$.
Введем обозначение суммы ее членов: $S_{n}=b_{1}+b_{2}+⋯+b_{n-1}+b_{n}$.
В случае, когда $q=1$. Все члены геометрической прогрессии равны первому члену, тогда очевидно, что $S_{n}=n*b_{1}$.
Рассмотрим теперь случай $q≠1$.
Умножим указанную выше сумму на q.
$S_{n}*q=(b_{1}+b_{2}+⋯+b_{n-1}+b_{n})*q=b_{1}*q+b_{2}*q+⋯+b_{n-1}*q+b_{n}*q=b_{2}+b_{3}+⋯+b_{n}+b_{n}*q$.
Заметим:
$S_{n}=b_{1}+(b_{2}+⋯+b_{n-1}+b_{n})$.
$S_{n}*q=(b_{2}+⋯+b_{n-1}+b_{n})+b_{n}*q$.

$S_{n}*q-S_{n}=(b_{2}+⋯+b_{n-1}+b_{n})+b_{n}*q-b_{1}-(b_{2}+⋯+b_{n-1}+b_{n})=b_{n}*q-b_{1}$.

$S_{n}(q-1)=b_{n}*q-b_{1}$.

$S_{n}=\frac{b_{n}*q-b_{1}}{q-1}=\frac{b_{1}*q^{n-1}*q-b_{1}}{q-1}=\frac{b_{1}(q^{n}-1)}{q-1}$.

$S_{n}=\frac{b_{1}(q^{n}-1)}{q-1}$.

Мы получили формулу суммы конечной геометрической прогрессии.


Пример.
Найти сумму первых семи членов геометрической прогрессии, у которой первый член равен 4, а знаменатель 3.

Решение.
$S_{7}=\frac{4*(3^{7}-1)}{3-1}=2*(3^{7}-1)=4372$.

Пример.
Найти пятый член геометрической прогрессии, о которой известно: $b_{1}=-3$; $b_{n}=-3072$; $S_{n}=-4095$.

Решение.
$b_{n}=(-3)*q^{n-1}=-3072$.
$q^{n-1}=1024$.
$q^{n}=1024q$.

$S_{n}=\frac{-3*(q^{n}-1)}{q-1}=-4095$.
$-4095(q-1)=-3*(q^{n}-1)$.
$-4095(q-1)=-3*(1024q-1)$.
$1365q-1365=1024q-1$.
$341q=1364$.
$q=4$.
$b_5=b_1*q^4=-3*4^4=-3*256=-768$.

Характеристическое свойство геометрической прогрессии

Ребята, дана геометрическая прогрессия. Давайте рассмотрим три последовательных её члена: $b_{n-1},b_{n},b_{n+1}$.
Мы знаем что:
$\frac{b_{n}}{q}=b_{n-1}$.
$b_{n}*q=b_{n+1}$.
Тогда:
$\frac{b_{n}}{q}*b_{n}*q=b_{n}^{2}=b_{n-1}*b_{n+1}$.
$b_{n}^{2}=b_{n-1}*b_{n+1}$.
Если прогрессия конечная, то это равенство выполняется для всех членов, кроме первого и последнего.
Если заранее неизвестно, какой вид у последовательности, но известно что: $b_{n}^{2}=b_{n-1}*b_{n+1}$.
Тогда можно смело говорить, что это геометрическая прогрессия.

Числовая последовательность является геометрической прогрессией, только когда квадрат каждого её члена равен произведению двух соседних с ним членов прогрессии. Не забываем, что для конечной прогрессии это условие не выполняется для первого и последнего члена.


Давайте посмотрим вот на это тождество: $\sqrt{b_{n}^{2}}=\sqrt{b_{n-1}*b_{n+1}}$.
$|b_{n}|=\sqrt{b_{n-1}*b_{n+1}}$.
$\sqrt{a*b}$ называется средним геометрическим чисел a и b.

Модуль любого члена геометрической прогрессии равен среднему геометрическому двух соседних с ним членов.


Пример.
Найти такие х, что бы $х+2; 2x+2; 3x+3$ являлись тремя последовательными членами геометрической прогрессии.

Решение.
Воспользуемся характеристическим свойством:
$(2x+2)^2=(x+2)(3x+3)$.
$4x^2+8x+4=3x^2+3x+6x+6$.
$x^2-x-2=0$.
$x_{1}=2$ и $x_{2}=-1$.
Подставим последовательно в исходные выражение, наши решения:
При $x=2$, получили последовательность: 4;6;9 – геометрическая прогрессия, у которой $q=1,5$.
При $х=-1$, получили последовательность: 1;0;0.
Ответ: $х=2.$

Задачи для самостоятельного решения

1. Найдите восьмой первый член геометрической прогрессии 16;-8;4;-2… .
2. Найдите десятый член геометрической прогрессии 11,22,44… .
3. Известно, что $b_{1}=5, q=3$. Найти $b_{7}$.
4. Известно, что $b_{1}=8, q=-2, b_{n}=512$. Найти n.
5. Найдите сумму первых 11 членов геометрической прогрессии 3;12;48… .
6. Найти такие х, что $3х+4; 2x+4; x+5$ являются тремя последовательными членами геометрической прогрессии.

Геометрическая прогрессия не менее важная в математике по сравнению с арифметической. Геометрической прогрессией называют такую последовательность чисел b1, b2,..., b[n] каждый следующий член которой, получается умножением предыдущего на постоянное число. Это число, которое также характеризует скорость роста или убывания прогрессии называют знаменателем геометрической прогрессии и обозначают

Для полного задания геометрической прогрессии кроме знаменателя необходимо знать или определить первый ее член. Для положительного значения знаменателя прогрессия является монотонной последовательностью, причем если это последовательность чисел является монотонно убывающей и при монотонно возрастающей. Случай, когда знаменатель равен единице на практике не рассматривается, поскольку имеем последовательность одинаковых чисел, а их суммирование не вызывает практического интереса

Общий член геометрической прогрессии вычисляют по формуле

Сумма n первых членов геометрической прогрессии определяют по формуле

Рассмотрим решения классических задач на геометрическую прогрессию. Начнем для понимания с простейших.

Пример 1. Первый член геометрической прогрессии равен 27, а ее знаменатель равен 1/3. Найти шесть первых членов геометрической прогрессии.

Решение: Запишем условие задачи в виде

Для вычислений используем формулу n-го члена геометрической прогрессии

На ее основе находим неизвестные члены прогрессии

Как можно убедиться, вычисления членов геометрической прогрессии несложные. Сама прогрессия будет выглядеть следующим образом

Пример 2. Даны три первых члена геометрической прогрессии : 6; -12; 24. Найти знаменатель и седьмой ее член.

Решение: Вычисляем знаменатель геомитрической прогрессии исходя из его определения

Получили знакопеременную геометрическую прогрессию знаменатель которой равен -2. Седьмой член вычисляем по формуле

На этом задача решена.

Пример 3. Геометрическая прогрессия задана двумя ее членами . Найти десятый член прогрессии.

Решение:

Запишем заданные значения через формулы

По правилам нужно было бы найти знаменатель, а затем искать нужное значение, но для десятого члена имеем

Такую же формулу можно получить на основе нехитрых манипуляций с входными данными. Разделим шестой член ряда на другой, в результате получим

Если полученное значение умножить на шестой член, получим десятый

Таким образом, для подобных задач с помощью несложных преобразований в быстрый способ можно отыскать правильное решение.

Пример 4. Геометрическая прогрессия задано рекуррентными формулами

Найти знаменатель геометрической прогрессии и сумму первых шести членов.

Решение:

Запишем заданные данные в виде системы уравнений

Выразим знаменатель разделив второе уравнение на первое

Найдем первый член прогрессии из первого уравнения

Вычислим следующие пять членов для нахождения суммы геометрической прогрессии

Похожие статьи