Транспорт со2 кровью. Формы транспорта. Значение карбоангидразы. Углекислый газ в природе: естественные источники

СО2 образуется в тканях (основной источник – реакции окислительного декарбоксилирования альфа-кетокислот в матриксе митохондрий). За сутки в физиологических условиях легкими выводится 300-600 л СО2 (в среднем 480 л или 22 моля). pCО22 в межклеточной жидкости составляет примерно 50 мм рт. ст., а в артериальной крови – 40 мм рт. ст. И хотя разница pCО2 значительно меньше аналогичной для О2, но коэффициент диффузии СО2 в 30 раз больше и он быстро диффундирует из тканей через межклеточную жидкость, стенки капилляров в кровь. Содержание СО2 в венозной крови составляет 55-60 об. %, А в артериальной – 50 об. %. Таким образом, из тканей в легкие переносится 5-10 мл СО2 на каждые 100 мл крови. В форме растворенного в плазме газа транспортируется примерно 6%. Основное количество СО2 переносится в виде гидрокарбонатов, которые образуются в результате гидратации СО2 и диссоциации угольной кислоты.

Гидратация СО2 – процесс очень медленный, и только в эритроцитах является фермент карбоангидразой, который катализирует эту реакцию. Протоны, которые освобождаются при диссоциации угольной кислоты, связываются специфическими аминокислотными остатками гемоглобина. Это способствует освобождению кислорода из оксигемоглобина (эффект Бора) в капиллярах тканей. Таким образом, диссоциация оксигемоглобина в тканях обусловлено низким pО2 в тканях, связыванием ионов Н +, а также прямым присоединением СО2 к гемоглобину.
Все количество СО2, образующегося в тканях за сутки, эквивалентная 13000 ммоль Н + / 2 л конц. НСl. Огромное количество ионов Н + могла бы мгновенно снизить рН крови и межклеточной жидкости до 1,0, если бы они не связывались с гемоглобином. Дезоксигемоглобин, в отличие от оксигемоглобина, является слабой кислотой.

Анионы НСО3- выходят по градиенту концентрации из эритроцитов в плазму, а вместо них для сохранения электронейтральности в эритроциты поступают ионы Сl-.

Когда венозная кровь попадает в капилляры легких, О2 диффундирует в эритроциты, образуется оксигемоглобин, что как сильная кислота распадается, освобождая ионы водорода. Гидрокарбонаты плазмы также поступают в эритроциты, взаимодействуют с протонами, с угольной кислоты под действием карбоангидразы освобождается СО2, который диффундирует в альвеолярный воздух. Перехода СО2 из эритроцитов в альвеолярный пространство способствуют градиент парциального давления СО2 и высокая диффузионная способность. Схематично процессы, происходящие в капиллярах тканей и капиллярах легких, изображены на рис.

Как упоминалось выше, гемоглобин непосредственно связывает СО2, N-конечной альфа-аминогруппой каждого из 4-х полипептидных цепей с образованием карбгемоглобин (карбаминогемоглобину).

Реакция обратная и в капиллярах тканей вследствие высокого pО2 происходит слева направо, а в легких – в обратном направлении. В виде карбгемоглобин переносится незначительное количество СО2, которая уменьшает сродство его с 2 и наоборот, связывание в легких гемоглобином кислорода уменьшает сродство его с СО2.

Таким образом, гемоглобин может связывать по 4 молекулы О2 или СО2, примерно 4 ионы Н + и 1 молекулу ДФГ. Изменение концентрации любого из этих 4 лигандов гемоглобина через изменение конформации молекулы белка регулирует его родство с другими лигандами. Благодаря этому молекула гемоглобина прекрасно приспособлена к осуществлению одновременного переноса эритроцитами О2, СО2 и ионов Н +.

ПОДІЛИТИСЯ:

ГАЗООБМЕН И ТРАНСПОРТ ГАЗОВ

Газообмен и транспорт СО2

Поступление СО2 в легких из крови в альвеолы обеспечивается из следующих источников: 1) из СО2, растворенного в плазме крови (5-10%); 2) из гидрокарбонатов (80-95%); 3) из карбаминовых соединений эритроцитов (5-15%), которые способны диссоцииро­вать.

Для СО2 коэффициент растворимости в мембранах аэрогематического барьера больше, чем для О2, и составляет в среднем 0,231 ммоль*л-1 кПа-1 поэтому СО2 диффундирует быстрее, чем O2. Это положение является верным только для диффузии молекулярного СО2. Большая часть СО2 транспортируется в организме в связанном состоянии в виде гидрокарбонатов и карбаминовых соединений, что увеличивает время обмена СО2, затрачиваемое на диссоциацию этих соединений.

В венозной крови, притекающей к капиллярам легких, напря­жение СО2 составляет в среднем 46 мм рт.ст. (6,1 кПа), а в альвеолярном воздухе парциальное давление СО2 равно в среднем 40 мм рт.ст. (5,3 кПа), что обеспечивает диффузию СО2 из плазмы крови в альвеолы легких по концентрационному градиенту.

Эндотелий капилляров проницаем только для молекулярного СО2 как полярной молекулы (О - С - О). Из крови в альвеолы диффундирует физически растворенный в плазме крови молеку­лярный СО2. Кроме того, в альвеолы легких диффундирует СО2, который высвобождается из карбаминовых соединений эритроцитов благодаря реакции окисления гемоглобина в капиллярах легкого, а также из гидрокарбонатов плазмы крови в результате их быстрой диссоциации с помощью фермента карбоангидразы, содержащейся в эритроцитах.

Молекулярный СО2 проходит аэрогематический барьер, а затем поступает в альвеолы.

В норме через 1 с происходит выравнивание концентраций СО2 на альвеолярно-капиллярной мембране, поэтому за половину времени капиллярного кровотока происходит полный обмен СО2 через аэрогематический барьер. Реально равновесие наступает не­сколько медленнее. Это связано с тем, что перенос СО2, так же как и О2, ограничивается скоростью перфузии капилляров легких.

Диффузия СО2 из тканей в кровь. Обмен СО2 между клетками тканей с кровью тканевых капилляров осуществляется с помощью следующих реакций: 1) обмена С1- и НСО3- через мембрану эрит­роцита; 2) образования угольной кислоты из гидрокарбонатов; 3) диссоциации угольной кислоты и гидрокарбонатов.

В ходе газообмена СО2 между тканями и кровью содержание НСОз- в эритроците повышается и они начинают диффундировать в кровь. Для поддержания электронейтральности в эритроциты нач­нут поступать из плазмы дополнительно ионы С1- Наибольшее количество бикарбонатов плазмы крови образуется при участии карбоангидразы эритроцитов.

Карбаминовый комплекс СО2 с гемоглобином образуется в ре­зультате реакции СО2 с радикалом NH2 глобина. Эта реакция про­текает без участия какого-либо фермента, т. е. она не нуждается в катализе. Реакция СО2 с Нb приводит, во-первых, к высвобождению Н+; во-вторых, в ходе образования карбаминовых комплексов сни­жается сродство Нb к О2. Эффект сходен с действием низкого рН. Как известно, в тканях низкое рН потенцирует высвобождение О2 из оксигемоглобина при высокой концентрации СО2 (эффект Бора). С другой стороны, связывание О2 гемоглобином снижает сродство его аминогрупп к СО2 (эффект Холдена).

Каждая реакция в настоящее время хорошо изучена. Например, полупериод обмена С1-и НСО3- равен 0,11-0,16 с при 37 oС. В ус­ловиях in vitro образование молекулярного СО2 из гидрокарбонатов происходит чрезвычайно медленно и диффузия этого газа занимает около 5 мин, тогда как в капиллярах легкого равновесие наступает через 1 с. Это определяется функцией фермента карбоангидразы угольной кислоты. В функции карбоангидразы выделяют следующие типы реакций:

СО2+Н2Оß> H2СО3 ß> H++НСО3-

Процесс выведения СО2 из крови в альвеолы легкого менее лимитирован, чем оксигенация крови. Это обусловлено тем, что молекулярный СО2 легче проникает через биологические мембраны, чем О2. По этой причине он легко проникает из тканей в кровь. К тому же карбоангидраза способствует образованию гидрокарбо­ната. Яды, которые ограничивают транспорт О2 (такие как СО, метгемоглобинобразующие субстанции - нитриты, метиленовый си­ний, ферроцианиды и др.) не действуют на транспорт СО2. Блокаторы карбоангидразы, например диакарб, которые используются нередко в клинической практике или для профилактики горной или высотной болезни, полностью никогда не нарушают образование молекуляр­ного СО2. Наконец, ткани обладают большой буферной емкостью, но не защищены от дефицита О2. По этой причине нарушение транспорта О2 наступает в организме гораздо чаще и быстрее, чем нарушения газообмена СО2. Тем не менее при некоторых заболе­ваниях высокое содержание СО2 и ацидоз могут быть причиной смерти.

Измерение напряжения О2 и СО2 в артериальной или смешанной венозной крови производят полярографическими методами с исполь­зованием очень небольшого количества крови. Количество газов в крови измеряют после их полного извлечения из пробы крови, взятой для анализа.

Такие исследования выполняют с помощью манометрических приборов типа аппарата Ван-Слайка, или гемоалкариметра (необ­ходимо 0,5-2,0 мл крови) или на микроманометре Холандера (не­обходимо около 50 мкл крови).

Из венозной крови можно извлечь 55-58 об.% углекислого газа . Большая часть СО 2 , извлекаемого из крови, происходит из имеющихся в плазме и эритроцитах солей угольной кислоты и только около 2,5 об.% углекислого газа растворено и около 4-5об.% находится в соединении с гемоглобином в виде карбогемоглобина.

Образованно угольной кислоты из углекислого газа происходит в эритроцитах, где содержится фермент карбоангидраза, являющийся мощным катализатором, ускоряющим реакцию гидратации СО 2 .

. Существование этого фермента предполагал еще И. М. Сеченов, но открыт он был лишь в 1932 г. Мелдрумом и Рафтоном.

Связывание углекислого газа кровью в капиллярах большого круга . Углекислый газ, образующийся в тканях, диффундирует в кровь кровеносных капилляров, так как напряжение СО 2 в тканях значительно превышает его напряжение в артериальной крови. Растворяющийся в плазме СО 2 диффундирует внутрь эритроцита, где под влиянием карбоангидразы он мгновенно превращается в угольную кислоту,

Согласно расчетам, активность карбоангидразы в эритроцитах такова, что реакция гидратации углекислоты ускоряется в 1500-2000 раз. Так как весь углекислый газ внутри эритроцита превращается в угольную кислоту, то напряжение СО 2 внутри эритроцита близко к нулю, поэтому все новые и новые количества СО 2 поступают внутрь эритроцита. В связи с образованием угольной кислоты из СО 3 в эритроците концентрация ионов НСО 3 " возрастает, и они начинают диффундировать в плазму. Это возможно потому, что поверхностная мембрана эритроцита проницаема для анионов. Для катионов мембрана эритроцита практически непроницаема. Взамен ионов НСО 3 " в эритроциты входит ион хлора. Переход ионов хлора из плазмы внутрь эритроцита освобождает в плазме ионы натрия, которые связывают поступающие нз эритроцита ионы НСО 3 , образуя NaHCО 3 Химический анализ плазмы венозной крови показывает значительное увеличение в ней бикарбоната.

Накопление внутри эритроцита анионов приводит к повышению осмотического давления внутри эритроцита, а это вызывает переход воды из плазмы через поверхностную мембрану эритроцита. В результате объем эритроцитов в капиллярах большого круга увеличивается. При исследовании с помощью гематокрнта установлено, что эритроциты занимают 40% объема артериальной крови и 40,4% объема венозной крови. Из этого следует, что объем эритроцитов венозной крови больше, чем эритроцитом артериальной, что объясняется проникновением в них воды.

Одновременно с поступлением СО 2 внутрь эритроцита и образованием в нем угольной кислоты происходит отдача кислорода оксигемоглобином и превращение его в редуцированный гемоглобин. Последний является значительно менее диссоциирующей кислотой, чем оксигемоглобин и угольная кислота. Поэтому при превращении оксигемоглобина в гемоглобин Н 2 СО 3 вытесняет из гемоглобина ионы калия и, соединяясь с ними, образует калиевую соль бикарбоната.

Освобождающийся Н˙ ион угольной кислоты связывается гемоглобином. Так как редуцированный гемоглобин является малодиссоциированной кислотой, то при этом не происходит закисления крови и разница рН венозной и артериальной крови крайне невелика. Происходящую в эритроцитах тканевых капилляров реакцию можно представить следующим образом:

КНbO 2 + Н 2 СO 3 = HHb + O 2 + КНСO 3

Из изложенного следует, что оксигемоглобин, превращаясь в гемоглобин и отдавая связанные им основания углекислоте, способствует образованию бикарбоната и транспорту в таком виде углекислоты. Кроме того, гкмоглобин образует химическое соединение с СО 2 - карбогемоглобин. Наличие в крови соединения гемоглобина с углекислым газом было установлено путем следующего опыта. Если к цельной крови прибавить цианистый калий, который полностью инактивирует карбоангидразу, то оказывается, что эритроциты такой крови связывают больше СО 2 , чем плазма. Отсюда был сделан вывод, что связывание СО 2 эритроцитами после инактивирования карбоангидразы объясняется наличием в эритроцитах соединения гемоглобина с СО 2 . В дальнейшем выяснилось, что СО 2 присоединяется к аминной группе гемоглобина, образуя так называемую карбаминовую связь.

Реакция образования карбогемоглобина может идти в одну или другую сторону в зависимости от напряжения углекислого газа в крови. Хотя небольшая часть всего количества углекислого газа, которое может быть извлечено из крови, находится в соединении с гемоглобином (8-10%), однако роль этого соединения в транспорте углекислоты кровью достаточно велика. Примерно 25-30% углекислого газа, поглощаемого кровью в капиллярах большого круга, вступает в соединение с гемоглобином, образуя карбогемоглобин.

Отдача СО2 кровью в легочных капиллярах . Вследствие более низкого парциального давления СО 2 в альвеолярном воздухе по сравнению с напряжением его в венозной крови углекислый газ переходит путем диффузии из крови легочных капилляров в альвеолярный воздух. Напряжение СО 2 в крови падает.

Одновременно с этим вследствие более высокого парциального давления кислорода в альвеолярном воздухе по сравнению с его напряжением в венозной крови кислород поступает из альвеолярного воздуха в кровь капилляров легких. Напряжение О2 в крови возрастает, и гемоглобин превращается в оксигемоглобин. Так как последний является кислотой, диссоциация которой значительно выше, чем гемоглобина угольной кислоты, то он вытесняет угольную кислоту из ее калиевой. Реакция идет следующим образом:

ННb + O 2 + КНСO 3 = КНbO 2 +H 2 CO 3

Освободившаяся из своей связи с основаниями угольная кислота расщепляется карбоангидразой на углекислый газ в воду. Значение карбоангидразы в отдаче углекислого газа в легких видно из следующих данных. Для того чтобы произошла реакция дегидратации Н 2 СО 3 растворенной в воде, с образованием того количества углекислого газа, которое выходит из крови за время ее нахождения в капиллярах легких, требуется 300 секунд. Кровь же проходит через капилляры легких в течение 1-2 секунд, но за это время успевает произойти дегидратация угольной кислоты внутри эритроцита и диффузия образовавшегося СО 2 сначала в плазму крови, а затем в альвеолярный воздух.

Так как в легочных капиллярах уменьшается в эритроцитах концентрация ионов НСО 3 , то эти ионы из плазмы начинают диффундировать в эритроциты, а ионы хлора диффундируют из эритроцитов в плазму. В связис тем что напряжение углекислого газа в крови легочных капилляров уменьшается, карбаминовая связь расщепляется и карбогемоглобин отдает углекислый газ.

Схематически все эти процессы приведены на рис. 57 .

Рис. 57. Схема процессов, происходящих в эритроците при поглощении или отдаче кровью кислорода и углекислого газа.

Кривые диссоциации соединений угольной кислоты в крови . Как мы уже говорили, свыше 85% углекислого газа, которое может быть извлечено из крови подкислении ее, освобождается в результате расщепления бикарбонатов (калия в эритроцитах и натрия в плазме).

Связывание углекислого газа и отдача его кровью зависят от его парциального напряжения. Можно построить кривые диссоциации соединений углекислоты в крови, подобные кривым диссоциации оксигемоглобина. Для этого по оси ординат откладывают объемные проценты связанного кровью углекислого газа, а по оси абсцисс- парциальные напряжения углекислого газа. Нижняя кривая на рис. 58 показывает связывание углекислого газа артериальной кровью, гемоглобин которой почти полностью насыщен кислородом. Верхняя кривая показывает связывание кислого газа венозной кровью.

Точка А на нижней кривой на рис. 58 соответствует напряжению кислоты, равному 40 мм рт. ст., т. е. тому напряжению, которое фактически имеется в артериальной крови. При таком напряжении связано 52 об.% СО 2 . Точка V на верхней кривой соответствует напряжению кислого газа 46 мм рт. ст., т. е. фактически имеющемуся в венозной крови. Как видно из кривой, при таком напряжении венозная кровь связывает 58 об.% углекислого газа. Линия AV, соединяющая верхнюю и нижнюю кривую, соответствует тем изменениям способности связывать углекислый газ, которые происходят при превращении артериальной крови в венозную или, наоборот, венозной крови в артериальную.

Венозная кровь благодаря тому, что содержащийся в ней гемоглобин переходит в оксигемоглобин, в капиллярах легких отдает около 6 об.% СО 2 . Если бы в легких гемоглобин не превращался в оксигемоглобин, то, как видно из кривой, венозная кровь при имеющемся в альвеолах парциальном давлении углекислого газа, равном 40 мм рт. ст.. связывала бы 54 об.% СО 2 , следовательно, отдала бы не 6, а только 4об.%. Равным образом, если бы артериальная кровь в капиллярах большого круга не отдавала своего кислорода, т. е. если бы гемоглобин ее оставался насыщенным кислородом, то эта артериальная кровь при парциальпом давлении углекислого газа, имеющемся в капиллярах тканей тела, смогла бы связат не 58 об.% СО 2 , а лишь 55 об.%.

Таким образом, переход гемоглобина в оксигемоглобин в легких и оксигемоглобина в гемоглобин в тканях тела способствует поглощению и отдаче примерно 3-4 об.% углекислого газа из тех 6 об.%, которые поглощает кровь в тканях и отдает в легких. Около 25-30% выделяемого в легких углекислого газа переносится карбогемоглобином.

Из всего сказанного вытекает, что в механизме транспорта и кислорода, и углекислого газа кровью важнейшая роль принадлежит эритроцитам, в которых содержатся гемоглобин и карбоангидраза.

В венозной крови содержится около 580 мл/л СО 2 . Транспорт обеспечивается в таких формах, как: 1) растворенный СО 2 в плазме крови (5-10%); 2) в виде гидрокарбонатов (80-90%); 3) карбаминовые соединения эритроцитов (5-15%).

Небольшая часть СО 2 транспортируется в легкие в растворенном виде (0,3 мл/100 мл крови). Растворенный в крови СО 2 реагирует с водой:

CO 2 + Н 2 О = H 2 CO 3

В плазме крови эта реакция протекает медленно и не имеет особого значения. Но в эритроцитах имеется цинк-содержащий фермент - карбоангидраза - который смещает равновесие реакции вправо (в сторону образования угольной кислоты). Образование H 2 CO 3 происходит в 1000 раз быстрее, чем в плазме, кроме того, около 99,9% H 2 CO 3 диссоциирует с образованием HCO 3 - - и иона водорода (H +):

CO 2 + Н 2 О =H 2 CO 3 = HCO - 3 + H +

Образующиеся протоны (H +) нейтрализуются гемоглобиновым буфером (H + + Hb = HHb). Образующийся HCO 3 - выходит из эритроцитов в плазму, для

поддержания электронейтральности в эритроциты поступают ионы Cl - .

В эритроците CO 2 может также связываться гемоглобином с образованием HbCO 2 . Как и в первом случае, образующийся при этом H + связывается гемоглобиновым буфером.

Как сатурация гемоглобина кислородом коррелирует с PО 2 , так и общее

Рис. 17. Кривая диссоциации двуокиси углерода

Даже при выраженных нарушениях Va/Q (то есть при выраженной легочной патологии) Paco 2 , как правило, остается в пределах нормальных значений. Это является следствием того, что кривая диссоциации CO 2 (рис. 17) нарастает монотонно. Артериовенозная разница по Pco 2 в покое обычно составляет 5 мм рт. ст.и редко превышает 10 мм рт. ст. При данном значении Pco 2 деоксигенированная кровь содержит большее количество CO 2 , чем оксигенированная (эффект Холдена). В отличие от кривой насыщения Hb кислородом кривая содержания CO 2 не имеет плато и в клинически значимом диапазоне представляет собой прямую линию.

В венозной крови, притекающей к капиллярам легких, напря­жение СО 2 составляет в среднем 46 мм рт.ст., а в альвеолярном воздухе парциальное давление СО 2 равно в среднем 40 мм рт.ст., что обеспечивает диффузию СО 2 из плазмы крови в альвеолы легких по концентрационному градиенту.

Эндотелий капилляров проницаем только для молекулярного СО 2 как полярной молекулы. Из крови в альвеолы диффундирует физически растворенный в плазме крови молеку­лярный СО 2 . Кроме того, в альвеолы легких диффундирует СО 2 , который высвобождается из карбаминовых соединений эритроцитов благодаря реакции окисления гемоглобина в капиллярах легкого, а также из гидрокарбонатов плазмы крови в результате их быстрой диссоциации с помощью фермента карбоангидразы, содержащейся в эритроцитах. Молекулярный СО 2 проходит аэрогематический барьер, а затем поступает в альвеолы. В норме через 1 с происходит выравнивание концентраций СО 2 на альвеолярно-капиллярной мембране, поэтому за половину времени капиллярного кровотока происходит полный обмен СО 2 через аэрогематический барьер. Реально равновесие наступает не­сколько медленнее. Это связано с тем, что перенос СО 2 , так же как и О 2 , ограничивается скоростью перфузии капилляров легких.


Контрольные вопросы

1. Какие транспортные формы углекислого газа существуют?

2. Какая форма транспорта углекислого газа основная?

3. Почему кривая диссоциации двуокиси углерода в виде прямой линии?

Поступление СО2 в легких из крови в альвеолы обеспечивается из следующих источников: 1) из СО2, растворенного в плазме крови (5-10%); 2) из гидрокарбонатов (80-90%); 3) из карбаминовых соединений эритроцитов (5-15%), которые способны диссоциировать.

Для СО2 коэффициент растворимости в мембранах аэрогематического барьера больше, чем для О2, и составляет в среднем 0,231 ммоль*л-1 кПа-1 поэтому СО2 диффундирует быстрее, чем O2. Это положение является верным только для диффузии молекулярного СО2. Большая часть СО2 транспортируется в организме в связанном состоянии в виде гидрокарбонатов и карбаминовых соединений, что увеличивает время обмена СО2, затрачиваемое на диссоциацию этих соединений.

Хотя СO2 растворяется в жидкости гораздо лучше, чем O2 , только 3−6 % общего количества продуцируемого тканями СO2 переносится плазмой крови в физически растворенном состоянии. Остальная часть вступает в химические связи.

Поступая в тканевые капилляры, СО2 гидратируется, образуя нестойкую угольную кислоту:

Направление этой обратимой реакции зависит от РCО2 в среде. Она резко ускоряется под действием фермента карбоангидразы, находящегося в эритроцитах, куда СO2 быстро диффундирует из плазмы.

Около4/5 углекислого газа транспортируется в виде гидрокарбоната НСО-3. Связыванию СO2 способствует уменьшение кислотных свойств (протонного сродства) гемоглобина в момент отдачи им кислорода - дезоксигенирование (эффект Холдена). При этом гемоглобин высвобождает связанный с ним ион калия, с которым в свою очередь, реагирует угольная кислота:

Часть ионов НСО-3 диффундирует в плазму, связывая там ионы натрия, в эритроцит же поступают в порядке сохранения ионного равновесия ионы хлора. Кроме того, также за счет уменьшения протонного сродства дезоксигенированный гемоглобин легче образует карбаминовые соединения, связывая при этом еще около 15 % переносимого кровью СO2 .

В легочных капиллярах происходит высвобождение части СO2 , который диффундирует в альвеолярный газ. Этому способствует более низкое, чем в плазме, альвеолярное РCO2 также усиление кислотных свойств гемоглобина при его оксигенации. В ходе дегидратации угольной кислоты в эритроцитах (эта реакция тоже резко ускоряется карбоангидразой) оксигемоглобин вытесняет ионы калия из гидрокарбоната. Ионы НСО-3 поступают из плазмы в эритроцит, а ионы Cl- - в обратном направлении. Таким путем каждые 100 мл крови отдают в легких 4−5 мл СО2 - то же количество, какое кровь получает в тканях (артериовенозная разница по СO2).



Дыхательный центр и его отделы (дорсальная и вентральная группы респираторных нейронов, пневмотаксический центр). Регуляция дыхания при изменении газового состава крови (с хеморецепторов рефлексогенных зон), при раздражении механорецепторов легких и верхних дыхательных путей.

Регуляция дыхания. Дыхательный центр.

Бульбарный дыхательный центр расположен в медиальной части ретикулярной формации продолговатого мозга. Его верхняя граница находится ниже ядра лицевого нерва, а нижняя выше писчего пера. Этот центр состоит из инспираторных и экспираторных нейронов. В первых: нервные импульсы начинают генерироваться незадолго до вдоха и продолжаются в течение всего вдоха. Несколько ниже расположенные экспираторные нейроны. Они возбуждаются к концу вдоха и находятся в возбужденном состоянии в течение всего выдоха. В инспираторном центре имеется 2 группы нейронов. Это респираторные α и β-нейроны. Первые возбуждаются при вдохе. Одновременно к β-респираторным нейронам поступают импульсы от экспираторных. Они активируются одновременно с α-респираторными нейронами и обеспечивают их торможение в конце вдоха. Благодаря этим связям нейронов дыхательного центра они находятся в реципрокных отношениях (т.е. при возбуждении инспираторных нейронов экспираторные тормозятся и наоборот). Кроме того, нейронам бульбарного дыхательного центра свойственно явление автоматии. Эти их способность даже в отсутствии нервных импульсов от периферических рецепторов генерировать ритмические разряды биопотенциалов. Благодаря автоматии дыхательного центра происходит самопроизвольная смена фаз дыхания. Автоматия нейронов объясняется ритмическими колебаниями обменных процессов в них, в также воздействием на них углекислого газа. Эфферентные пути от бульбарного дыхательного центра идут к мотонейронам дыхательных межреберных и диафрагмальных мышц. Мотонейроны диафрагмальных мышц находятся в передних рогах 3-4 шейных сегментов спинного мозга, а межреберных в передних рогах грудных сегментов. Вследствие этого перерезка на уровне 1-2 шейных сегментов ведет к прекращению сокращений дыхательных мышц. В передней части варолиева моста также имеются группы нейронов участвующих в регуляции дыхания. Эти нейроны имеют восходящие и нисходящие связи с нейронами бульбарного центра. К ним идут импульсы от его инспираторных нейронов, а от них к экспираторным. За счет этого обеспечивается плавный переход от вдоха к выдоху, а также координация длительности фаз дыхания. Поэтому при перерезке ствола выше моста дыхание практически не изменяется. Если он перерезается ниже моста, то возникает гас-пинг – длительный вдох сменяется короткими выдохами. При перерезке между верхней и средней третью моста – апнейзис. Дыхание останавливается на вдохе, прерываемом короткими выдохами. Раньше считали, что в мосту находится пневмотаксический центр. Сейчас этот термин не применяется. Кроме этих отделов центральной нервной системы в регуляции дыхания участвуют гипоталамус, лимбическая система, кора больших полушарий. Они осуществляют более тонкую регуляцию дыхания.

Рефлекторная регуляция дыхания.

Основная роль в рефлекторной саморегуляции дыхания принадлежит механорецепторам легких. В зависимости от локализации и характера чувствительности выделяют три их вида:

1. Рецепторы растяжения. Находятся преимущественно в гладких мышцах трахеи и бронхов. Возбуждаются при растяжении их стенок. В основном они обеспечивают смену фаз дыхания.

2. Ирритантрые рецепторы. Расположены в эпителии слизистой трахеи и бронхов. Они реагируют на раздражающие вещества и пылевые частицы, а также резкие изменения объема легких (пневмоторакс, ателектаз). Обеспечивают защитные дыхательные рефлексы, рефлекторное сужение бронхов и учащение дыхания.

3. Юкстакапиллярные рецепторы. Находятся в интерстициальной ткани альвеол и бронхов. Возбуждаются при повышении давления в малом круге кровообращения, а также увеличении объема интерстициальной жидкости. Эти явления возникают при застое в малом круге кровообращения или пневмониях.

Важнейшим для дыхания является рефлекс Геринга-Брейера. При вдохе легкие растягиваются и возбуждаются рецепторы растяжения. Импульсы от них по афферентным волокнам блуждающих нервов поступают в бульбарный дыхательный центр. Они идут к β-респираторным нейронам, которые в свою очередь тормозят α-респираторные. Вдох прекращается и начинается выдох. После перерезки блуждающих нервов дыхание становится редким и глубоким. Поэтому данный рефлекс обеспечивает нормальную частоту и глубину дыхания, а также препятствует перерастяжению легких. Определенное значение в рефлекторной регуляции дыхания имеют проприорецепторы дыхательных мышц. При сокращении мышц импульсы от их проприорецепторов поступают к соответствующим мотонейронам дыхательных мышц. За счет этого регулируется сила сокращений мышц при каком-либо сопротивлении дыхательным движениям.

Гуморальная регуляция дыхания.

В гуморальной регуляции дыхания принимают участие хеморецепторы, расположенные в сосудах и продолговатом мозге. Периферические хеморецепторы находятся в стенке дуги аорты и каротидных синусов. Они реагируют на напряжение углекислого газа и кислорода в крови. Повышение напряжения углекислого газа называется гиперкапнией, понижение – гипокапнией. Даже при нормальном напряжении углекислого газа рецепторы находятся в возбужденном состоянии. При гиперкапнии частота нервных импульсов идущих от них к бульбарному центру возрастает. Частота и глубина дыхания увеличивается. При снижении напряжения кислорода в крови, т.е. гипоксемии, хеморецепторы также возбуждаются, и дыхание усиливается. Причем периферические хеморецепторы более чувствительны к недостатку кислорода, чем избытку углекислоты.

Центральные или медуллярные хеморецепторные нейроны располагаются на переднебоковых поверхностях продолговатого мозга. От них идут волокна к нейронам дыхательного центра. Эти рецепторные нейроны чувствительны к катионам водорода. Гематоэнцефалический барьер хорошо проницаем для углекислого газа и лишь незначительно для протонов. Поэтому рецепторы реагируют на протоны, которые накапливаются в межклеточной и спинномозговой жидкости в результате поступления в них углекислого газа. Под влиянием катионов водорода на центральные хеморецепторы резко усиливается биоэлектрическая активность инспираторных и экспираторных нейронов. Дыхание учащается и углубляется. Медуллярные рецепторные нейроны более чувствительны к повышению напряжения углекислого газа.

Механизм активации инспираторных нейронов дыхательного центра лежит в основе первого вдоха новорожденного. После перевязки пуповины в его крови накапливается углекислый газ и снижается содержание кислорода. Возбуждаются хеморецепторы сосудистых рефлексогенных зон, активируются инспираторные нейроны, сокращаются инспираторные мышцы, происходит вдох. Начинается ритмическое дыхание.

Похожие статьи