О диапазоне частот, которые слышит человеческое ухо. Звуковой диапазон частот, эквалайзер

Каждый музыкальный инструмент звучит в собственном диапазоне частот. Информация о звуковых границах инструмента помогает звукорежиссеру: делать сведение музыки намного проще, когда знаешь, в каком диапазоне звучит тот или иной инструмент.

Чтобы не гадать и не искать нужный диапазон, в 2012 году журнал «Sound On Sound» подготовил специальную таблицу частот популярных музыкальных инструментов. Так как эта шпаргалка создана для людей владеющих английским языком, редакция сайт перевела и адаптировала таблицу для российских музыкантов.

Таблица звуковых частот музыкальных инструментов от Sound On Sound

Таблица звуковых частот состоит из двух частей. Первая часть представляет собой диаграмму «Частоты инструментов» , в которой приведена информация о частотных диапазонах ряда распространенных музыкальных инструментов. Инструменты разделены на пять групп - человеческий голос, перкуссионные инструменты, гитара и бас, струнные, духовые. Дополнительно диаграмма отражает диапазоны звучания приведенных инструментов, для чего иллюстрация дополняется списком октав и названиями и частотой входящих в них звуков.

Таблица звуковых частот. Скриншот первой части.

Вторая часть - «Субъективный характер звука» - представляет собой таблицу, в которой приведены основные частоты для эквализации популярных музыкальных инструментов, а также даны сравнительные описания этих частот. Информация из таблицы наглядно показывает, как сделать звук популярных инструментов четче, резче, яснее или разборчивее.

При этом создатели отмечают, что не стремились создать исчерпывающее руководство по эквализации, а хотели создать наглядный гайд, который поможет музыкантам и звукорежиссерам при записи и сведении музыки.


Таблица звуковых частот. Скриншот.

Редакция сайт перевела и адаптировала тексты в таблице, а также внесла ряд поясняющих дополнений. Таблица звуковых частот распространяется в виде PDF-файла, который готов к печати в высоком разрешении. Документ содержит поля для отреза и другую полезную для типографов информацию. Отметим, что таблицу лучше печатать в формате А3, так как при печати на листе А4 теряется разборчивость содержания из-за обилия мелкого текста.

Краткая таблица звуковых частот от iZotope

Компания iZotope также создала собственную таблицу звуковых частот, но сделала ее намного компактнее. В отличие от обширной работы Sound On Sound, специалисты iZotope привели в собственной таблице данные только по самым популярным музыкальным инструментам: мужскому и женскому голосу, ударной установке и гитарам.

iZotope решили не перегружать музыкантов информацией, разделив инструменты на три группы: вокал, перкуссия и ладовые инструменты (самое необходимое по мнению авторов). Несмотря на меньшую информативность, мы также перевели таблицу.

В приведенном ниже архиве вы найдете таблицу в формате PDF. Документ легко читается, без проблем умещается на лист А4. Единственный минус, который мы нашли в оригинальном документе заключается в отсутствии полей для обреза и прочей полезной типографской информации. В любом случае, даже без этих данных, таблица не теряет своей полезности для музыкантов.

Если вы скачали таблицы, мы будем рады благодарности в виде репоста этой записи к себе в социальные сети или подписки на наш Телеграм-канал @samesound . Удачи в творчестве!

Ниже 20 Гц и выше 20 кГц находятся соответственно области неслышимых человеком инфра- и ультразвука. Кривые, расположенные между кривой порога болевого ощущения и кривой порога слышимости называются кривыми равной громкости и отражают различие в восприятии звука человеком на разных частотах.

Поскольку звуковые волны представляют собой колебательный процесс, величины интенсивности звука и звуковое давление в точке звукового поля изменяются во времени по синусоидальному закону. Характерными величинами являются их среднеквадратичные значения. Зависимость среднеквадратичных значений синусоидальных составляющих шума или соответствующих им уровней в децибелах от частоты называется частотным спектром шума (или просто спектром). Спектры получают, используя набор электрических фильтров, которые пропускают сигнал в определенной полосе частот - полосе пропускания .

Для получения частотной характеристики шума звуковой диапазон по частоте разбивается на полосы с определенным соотношением граничных частот (рис.2)

Октавная полоса - полоса частот, в которой верхняя граничная частота f в равна удвоенной нижней частоте f н , т.е. f в/ f н = 2. Например, если взять музыкальный звукоряд, то звук с частотой f = 262 Гц это «до» первой октавы. Звук с f = 262 x 2 = 524 Гц - «до» второй октавы. «Ля» первой октавы это 440 Гц, «Ля» второй - 880 Гц. Чаще всего применяется разбиение звукового диапазона именно на октавы, или октавные полосы. Октавная полоса характеризуется среднегеометрической частотой

f с.г. = f н f в

В некоторых случаях (детальное исследование источников шума, эффективности звукоизоляции) используют деление на полуоктавные полосы (fв/fн =
) и третьеоктавные полосы (fв/fн =
= 1,26).

3. Измерение производственного шума

Звук характеризуется своей интенсивностью
и звуковым давлениемР Па. Кроме этого, любой источник шума характеризуется звуковой мощностью, которая представляет собой общее количество звуковой энергии, излучаемой источником шума в окружающее пространство.

С учетом логарифмической зависимости ощущения от изменения энергии раздражителя (закон Вебера-Фехнера) и целесообразности унификации единиц и удобства оперирования с цифрами принято использовать не сами величины интенсивности, звукового давления и мощности, а их логарифмические уровни

L J = 10 lg ,

где I – интенсивность звука в данной точке, I 0 – интенсивность звука, соответствующая порогу слышимости, равному 10 -12 Вт/м, Р – звуковое давление в данной точке пространства, Р 0 – пороговое звуковое давление, равное 210 -5 Па, Ф – мощность звука в данной точке, Ф 0 - пороговая звуковая мощность, равная 10 -12 Вт.

При нормальном атмосферном давлении

L J = L p = L

Для измерения шума с целью оценки его воздействия на человека, используется уровень звукового давления L p (часто обозначается просто L ). Уровень интенсивности L J используют при акустических расчетах помещений.

При оценке и нормировании шума используют также специфическую величину, называемую уровнем звука. Уровень звука - это общий уровень шума, измеренный по шкале А шумомера. В современных шумомерах используют обычно две характеристики чувствительности - «А» и «С» (см. рис.). Характеристика «С» практически линейна во всем измеряемом диапазоне и используется для исследования спектра шума. Характеристика «А» имитирует кривую чувствительности человеческого уха. Единица измерения уровня звука – Дб(А) . Таким образом уровень в дБ(А) соответствует субъективному восприятию шума человеком.

Сейчас в Интернете очень много возможностей проверить остроту своего слуха онлайн. Для этого нужно запустить видео со звуком, частота которого нарастает. Создатели теста рекомендуют проводить проверку в наушниках, чтобы не мешали посторонние шумы. Диапазон звуковых частот в ролике начинается с таких высоких значений, услышать которые могут единицы. Дальше частота звука плавно понижается, и в конце видео слышен звук, который услышит даже человек с ослабленным слухом.

На протяжении ролика пользователю показывают значение частоты звука, который воспроизводится. Условия теста предполагают, что видео нужно остановить в тот момент, когда человек сможет расслышать звук. Далее следует посмотреть, на какой отметке остановилась частота. Ее значение даст понять, что слух в норме, лучше, чем у большинства людей, либо стоит обратиться к врачу. Некоторые тесты показывают, какому возрасту соответствует предельная частота, которую смог услышать человек.

Что собой представляет звук и звуковая волна

Звук — это субъективное ощущение, но слышим мы его, потому что в наше ухо попадает что-то реально существующее. Это звуковая волна. Физиков интересует, как ощущения, которые мы испытываем, связаны с характеристиками звуковой волны.

Звуковые волны — это продольные механические, обладающие малой амплитудой волны, диапазон частот которых 20 Гц-20 кГц. Малая амплитуда — это когда изменение давления вследствие сжатия-разрежения гораздо меньше, чем давление в этой среде. В воздухе в областях сжатия-разрежения изменение давления гораздо меньше атмосферного. Если амплитуда того же порядка или больше атмосферного давления, то это уже не звуковые волны, а ударные, они распространяются со сверхзвуковой скоростью.

Слышимость звуков

Мы уже выяснили, каков диапазон звуковых частот, но что же лежит за его границами? Если частота меньше 20 Гц, такие волны называются инфразвуковыми. Если больше 20 кГц — это ультразвуковые волны. И инфра-, и ультразвук не вызывают слуховых ощущений. Границы достаточно размыты: младенцы слышат 22-23 кГц, нестарые люди могут воспринять 21 кГц, кто-то слышит 16 Гц. То есть чем младше человек, тем выше частоты он может услышать.

Собаки слышат более высокие частоты. Эту их способность используют дрессировщики, они подают команды ультразвуковым свистком, не слышимым людьми. На рисунке показаны диапазоны частот, доступные для восприятия разными животными.

Звук как оружие полицейских

Приведем пример случая, который показывает, что диапазон звуковых частот, слышимых человеком, приблизителен и зависит от индивидуальных особенностей.

В Вашингтоне полиция нашла способ ненасильственного разгона молодежи. Юноши и девушки постоянно собирались около одной из станций метро, общались. Власти посчитали, что их бесцельное времяпрепровождение мешает другим, т. к. у входа скапливается слишком много людей. Полицейские установили устройство «Москит», издававшее звук на частоте 17,5 кГц. Этот прибор предназначен для отпугивания насекомых, но производители уверяли, что звуковые волны данной частоты воспринимаются только подростками от 13 и не старше 25 лет.

Благодаря устройству от молодежи удалось избавиться, но мужчина 28 лет услышал звук и пожаловался в администрацию города. Местным властям пришлось прекратить использование прибора.

Диапазон длины волны

Волны звуковых частот в разных средах имеют разные характеристики. Отличаются длина и скорость распространения волны. В воздухе (при комнатной температуре) скорость составляет 340 м/ с.

Рассмотрим волны с частотами, находящимися в слышимом для нас диапазоне. Их минимальная длина — 17 мм, максимальная — 17 м. Звук с наименьшей длиной волны находится на грани ультразвука, а с наибольшей — приближается к инфразвуку.

Скорость звуковой волны

Считается, что свет распространяется мгновенно, а для распространения звука нужно определенное время. На самом деле свет тоже имеет скорость, просто она является предельной, быстрее, чем свет, ничего не движется. Что касается звука, то наибольший интерес представляет его распространение в воздухе, хотя скорость звуковой волны в более плотных средах намного выше. Вспомним грозу: вначале мы видим вспышку молнии, затем слышим раскат грома. Звук запаздывает, потому что его скорость во много раз ниже, чем скорость света. Впервые скорость звука измеряли, фиксируя промежуток времени между выстрелом из мушкета и звуком. Затем брали расстояние между орудием и исследователем и делили его на время «опоздания» звука.

Такой способ имеет два недостатка. Во-первых, это погрешность секундомера, особенно на близком расстоянии до источника звука. Во-вторых, это скорость реакции. При таком измерении результаты не будут точными. Для вычисления скорости удобнее брать известную частоту определенного звука. Существует генератор частот, прибор с диапазоном звуковых частот от 20 Гц до 20 кГц.

Его включают на нужную частоту, в ходе эксперимента измеряют длину волны. Перемножив обе величины, получают скорость звука.

Гиперзвук

Длина волны вычисляется путем деления скорости на частоту, поэтому с увеличением частоты длина волны уменьшается. Можно создать колебания настолько высокой частоты, что длина волны будет одного порядка с длиной свободного пробега молекул газа, например, воздуха. Это и есть гиперзвук. Он плохо распространяется, потому что воздух перестает считаться сплошной средой, т. к. длина волны ничтожно мала. В нормальных условиях (при атмосферном давлении) длина свободного пробега молекул равна 10 -7 м. Каков диапазон частот волн? Звуковыми они не являются, потому что мы их не слышим. Если рассчитать частоту гиперзвука, то окажется, что она составляет 3×10 9 Гц и выше. Измеряют гиперзвук в гигагерцах (1 ГГц = 1 миллиард Гц).

Как частота звука влияет на его высоту

Диапазон звуковых частот влияет на диапазон высоты. Хотя высота звука — это субъективное ощущение, но определяется она объективной характеристикой звука, частотой. Высокие частоты порождают высокий звук. Зависит ли высота звука от длины волны? Конечно, скорость, частота и длина волны взаимосвязаны. Однако звук одной и той же частоты будет иметь разную длину волны в разных средах, но восприниматься он будет одинаково.

Мы слышим звук, потому что изменения давления заставляют колебаться нашу барабанную перепонку. Давление меняется с одной и той же частотой, поэтому неважно, что в разной среде длина волны разная. Из-за одинаковой частоты мы воспримем звук как высокий или низкий хоть в воде, хоть в воздухе. В воде скорость звука составляет 1,5 км/ с, что почти в 5 раз больше, чем в воздухе, следовательно, намного больше и длина волны. Но если тело будет вибрировать с неизменной частотой (допустим, 500 Гц) в обоих средах, высота звука будет одинаковой.

Существуют звуки, не имеющие высоты, например, звук «ш-ш-ш». Их колебания частоты не периодические, а хаотичные, поэтому мы воспринимаем их как шум.

Cтраница 1


Диапазон звуковых частот подразделяется на октавные полосы, характерные тем, что у них верхние частоты вдвое больше нижних граничных частот.  

Диапазон звуковых частот условно разделяют на три поддиапазона: нижние, верхние и средние частоты. К нижним относят частоты до 200 - 300 гц, к средним - частоты от 200 - 300 до 2 500 - 3000 гц и к верхним - частоты выше 2000 - 3000 гц. Наряду с этим применяют термины низшая частота и высшая частота, подразумевая при этом соответственно самую низкую и самую высокую частоты, воспринимаемые ухом или воспроизводимые тем или иным источником звука, например громкоговорителем.  

Диапазон звуковых частот, которые воспринимает человеческое ухо, - 16 - 20 000 Гц. Частоты ниже 16 - 20 Гц являются инфразвуковыми, а выше 10 000 Гц - ультразвуковыми.  

Поскольку диапазон звуковых частот является сравнительно узким, примерно от 50 гц до 10 кгц, то в качестве У.  

В диапазоне звуковых частот для измерения токов применяются также приборы детекторной системы.  

В диапазоне звуковых частот сопротивление варисторов чисто активное.  

В диапазоне звуковых частот внутреннее трение в металлах и сплавах в твердой фазе определяется главным образом гистерезисом. В этом случае коэффициент потерь не зависит от частоты.  

Опыт со струной.  

Числом октав оценивают диапазоны звуковых частот музыкальных инструментов, голоса людей, певчих птиц.  

Смеситель работает в диапазоне звуковых частот. На частотах свыше 500 кГц начинают сказываться межэлектродные емкости, которые уменьшают коэффициент передачи смесителя. На рис. 14.2, 6 приведена передаточная характеристика смесителя.  

Так как в диапазоне звуковых частот трудно осуществить перестаиваемый преселектор, то перенос спектра на более низкую частоту целесообразно применять только при измерении сигналов фиксированной частоты.  

Двухтактные усилители в диапазоне звуковых частот могут работать в классе А, АВ или В. Типичная схема такого усилителя представлена на фиг. Класс усиления определяется величиной смещения рабочей точки.  

Для работы в диапазоне звуковых частот нужны р-и-переходы с высоким значением Сбаргп. Этот параметр не зависит от площади р-я-перехода, так как емкость Сбар пропорциональна, а сопротивление гп обратно пропорционально пл щади / з-п-перехода. Для получения малых обратных токов на единицу площади р-п-перехода следует использовать полупроводники с широкой запрещенной зоной. Низкочастотные варикапы изготовляют из кремния.  

Применение LC-фильтров в диапазоне инфразвуковых и низших звуковых частот встречает трудности из-за увеличения габаритов и веса индуктивностей, а также из-за сложности экранирования от непосредственного воздействия внешних магнитных полей. Для уменьшения влияния этих факторов катушку индуктивности обычно выполняют на тороидальном сердечнике из магнитомягкого материала с относительно высокой магнитной проницаемостью и достаточно хорошей стабильностью. В табл. 2 - 1 приведены основные параметры отечественных марганец-цинковых ферритов, которые рекомендуются использовать в качестве сердечника индуктивности в диапазоне низких частот.  

Известно, что 90% информации об окружающем мире человек получает со зрением. Казалось бы, что на долю слуха остаётся не так много, но на самом деле, человеческий орган слуха - это не только высокоспециализированный анализатор звуковых колебаний, но и очень мощное средство коммуникации. Врачей и физиков давно волновал вопрос: можно ли точно определить диапазон слуха человека в разных условиях, различается ли слух у мужчин и у женщин, есть ли «особо выдающиеся» рекордсмены, которые слышат недоступные звуки, или могут производить их? Попробуем подробнее ответить на эти и некоторые другие смежные вопросы.

Но перед тем, как понять, сколько герц слышит человеческое ухо, нужно разобраться с таким фундаментальным понятием как звук, и вообще, понять что именно измеряют в герцах.

Звуковые колебания - это уникальный способ передачи энергии без передачи материи, они представляют собой упругие колебания в какой-либо среде. Когда речь идет об обычной жизни человека, такой средой является воздух. Он содержат молекулы газов, которые могут передавать акустическую энергию. Эта энергия представляет чередование полос сжатия и растяжения плотности акустической среды. В абсолютном вакууме звуковые колебания передать невозможно.

Любой звук является физической волной, и содержит все необходимые волновые характеристики. Это частота, амплитуда, время затухания, если речь идет о затухающем свободном колебании. Рассмотрим это на простых примерах. Представим себе, например, звук открытой струны соль на скрипке при извлечении его смычком. Мы можем определить следующие характеристики:

  • тихий звук или громкий. Это не что иное, как амплитуда, или сила звука. Более громкому звуку соответствует большая амплитуда колебаний, а тихому звуку - меньшая. Звук, имеющий большую силу, можно услышать на более далеком расстоянии от места возникновения;
  • длительность звука. Это всем понятно, и каждый способен отличить раскаты барабанной дроби от протяженного звучания хоральной органной мелодии;
  • высота звука, или частота звукового колебания. Именно эта основополагающая характеристика и помогает нам отличать «пищащие» звуки от басового регистра. Если бы не было частоты звука, музыка было бы возможна только в виде ритма. Частота измеряется в герцах, а 1 герц равен одному колебанию в секунду;
  • тембр звука. Он зависит от примешивания акустических дополнительных колебаний – формант, но объяснить его простыми словами очень легко: даже с закрытыми глазами мы понимаем, что звучит именно скрипка, а не тромбон, даже если у них будут совершенно одинаковые вышеперечисленные характеристики.

Тембр звука можно сравнить с многочисленными вкусовыми оттенками. Всего у нас есть горький, сладкий, кислый и соленый вкус, но этими четырьмя характеристиками далеко не исчерпываются всевозможные вкусовые ощущения. То же самое происходит и с тембром.

Остановимся подробнее на высоте звука, поскольку именно от этой характеристики и зависит в наибольшей степени острота слуха и диапазон воспринимаемых акустических колебаний. Что же такое диапазон звуковых частот?

Диапазон слуха в идеальных условиях

Частоты, воспринимаемые человеческим ухом в лабораторных, или идеальных условиях, находятся в сравнительно широкой полосе от 16 Герц до 20000 Герц (20 кГц). Всё, что ниже и выше - человеческое ухо слышать не может. Речь идет об инфразвуке и ультразвуке. Что это такое?

Инфразвук

Его слышать нельзя, но тело может ощущать его, как работу большой басовой колонки – сабвуфера. Это -инфразвуковые колебания. Все прекрасно знают, если постоянно ослаблять басовую струну на гитаре, то, несмотря на продолжающиеся вибрации, звук исчезает. Но эти колебания можно по-прежнему ощущать кончиками пальцев, прикоснувшись к струне.

В инфразвуковом диапазоне работают многие внутренние органы человека: происходит сокращение кишечника, расширение и сужение сосудов, многие биохимические реакции. Очень сильный инфразвук может вызвать серьезное болезненное состояние, даже волны панического ужаса, на этом основано действие инфразвукового оружия.

Ультразвук

На противоположном участке спектра находятся очень высокие звуки. Если звук имеет частоту выше 20 килогерц, то он перестает «пищать» и становится неслышным для уха человека в принципе. Он становится ультразвуком. Ультразвук имеет большое применение в народном хозяйстве, на нём основана ультразвуковая диагностика. С помощью ультразвука ориентируются корабли в море, обходя айсберги и избегая мелководья. Благодаря ультразвуку специалисты находят пустоты в цельнометаллических конструкциях, например, в рельсах. Все видели, как по рельсам рабочие катят специальную дефектоскопическую тележку, генерирующую и принимающую высокочастотные акустические колебания. Ультразвуком пользуются летучие мыши, чтобы находить в темноте безошибочно дорогу, не натыкаясь на стенки пещер, киты и дельфины.

Известно, что с возрастом снижается способность к различению именно высоких звуков, и лучше всего слышать их могут дети. Современные исследования показывают, что уже в возрасте 9-10 лет у детей начинает постепенно уменьшаться диапазон слуха, а у пожилых людей слышимость высоких частот значительно хуже.

Чтобы услышать, как пожилые люди воспринимают музыку, нужно просто на многополосном эквалайзере в плеере вашего сотового телефона убавить один или два ряда высоких частот. Получившееся некомфортное «бубнение, как из бочки», и будет прекрасной иллюстрацией того, как вы сами будете слышать в возрасте после 70 лет.

В снижении слуха важную роль играет неправильное питание, употребление алкоголя и курения, откладывание холестериновых бляшек на стенках сосудов. Статистика ЛОР — врачей утверждает, что люди с первой группой крови чаще и быстрее приходят к тугоухости, чем остальные. Приближает тугоухость избыточный вес, эндокринная патология.

Диапазон слуха в обычных условиях

Если отсечь «маргинальные участки» звукового спектра, то для комфортной жизни человека доступно не так уж и много: это промежуток от 200 Гц до 4000 Гц, что практически полностью соответствует диапазону человеческого голоса, от глубокого бассо — профундо, до высокого колоратурного сопрано. Тем не менее, даже при комфортных условиях, слух человека ухудшается постоянно. Обычно наибольшая чувствительность и восприимчивость у взрослых людей в возрасте до 40 лет находится на уровне 3 килогерц, а в возрасте 60 лет и более понижается до 1 килогерца.

Диапазон слуха у мужчин и женщин

В настоящее время не приветствуется половая сегрегация, но мужчины и женщины действительно различно воспринимают звук: женщины способны слышать лучше в высоком диапазоне, и возрастная инволюция звука в области высоких частот у них более медленная, а мужчины воспринимают высокие звуки несколько хуже. Логично, казалось бы, предположить, что мужчины лучше слышат в басовом регистре, но это не так. Восприятие басовых звуков, как у мужчин, так и у женщин практически одинаковое.

Но есть уникальные женщины по «генерации» звуков. Так, диапазон голоса перуанской певицы Имы Сумак (почти в пять октав) простирался от звука «си» большой октавы (123,5 Гц) до «ля» четвертой октавы (3520 Гц). Пример ее уникального вокала можно найти ниже.

При этом у мужчин и женщин существует довольно большая разница в работе речевого аппарата. Женщины производят звуки от 120 до 400 герц, а мужчины — от 80 до 150 Гц, по среднестатистическим данным.

Различные шкалы для указания диапазона слуха

Вначале мы говорили о том, что высота не является единственной характеристикой звука. Поэтому существуют различные шкалы, в соответствии с различными диапазонами. Звук, слышимый человеческим ухом, может быть, например, тихим и громким. Наиболее простая и приемлемая в клинической практике шкала громкости звука - та, которая измеряет звуковое давление, воспринимаемое барабанной перепонкой.

В основу этой шкалы положена наименьшая энергия колебания звука, которая способна трансформироваться в нервный импульс, и вызвать звуковое ощущение. Это - порог слухового восприятия. Чем порог восприятия ниже, чем чувствительность выше, и наоборот. Специалисты различают интенсивность звука, которая является физическим параметром, и громкость, который является субъективной величиной. Известно, что звук строго одной и той же интенсивности здоровый человек, и человек с тугоухостью воспримут как два разных звука, громче и тише.

Всем известно, как в кабинете ЛОР — врача пациент становится в угол, отворачивается, а врач из соседнего угла проверяет восприятие пациентом шепотной речи, произнося отдельные цифры. Это наиболее простой пример первичной диагностики тугоухости.

Известно, что еле уловимое дыхание другого человека составляет 10 децибел (дБ) интенсивности звукового давления, обычный разговор в домашней обстановке соответствует 50 дБ, вой пожарной сирены – 100 дБ, а взлетающий вблизи реактивный самолет, вблизи болевого порога — 120 децибел.

Может вызвать удивление, что вся огромная интенсивность звуковых колебаний укладывается на такой малой шкале, но это впечатление обманчиво. Это — логарифмическая шкала, и каждая последующая ступень в 10 раз интенсивнее, чем предыдущая. По такому же принципу построена шкала оценки интенсивности землетрясений, где всего 12 баллов.

Похожие статьи