Отличие в строении эукариот и прокариот. Кто такие эукариоты и прокариоты: сравнительная характеристика клеток разных царств

  • 1.4.3. Решение целевых обучающих задач
  • Морфология клетки. Структурные компоненты цитоплазмы и ядра
  • 1.3. Конкретные цели занятия:
  • Основные теоретические сведения
  • Различия между прокариотическими и эукариотическими клетками
  • Органеллы общего значения
  • Органеллы специального значения
  • 1.4. Организационная структура практического занятия
  • 1.4.1. Теоретические вопросы, которые необходимо усвоить для достижения целей занятия
  • 1.4.2. Проверка исходного уровня знаний студентов
  • 1.4.3. Проверка исходного уровня по тестам
  • 1. Элементарной структурной единицей живой материи является:
  • 1.4.3. Самостоятельная работа студентов
  • 1.4.4. Проведение заключительного тестового контроля
  • Клеточные мембраны. Транспорт веществ через плазМоЛему
  • 1.3. Конкретные цели занятия:
  • Основные теоретические сведения Клеточная мембрана
  • Эндоцитоз и экзоцитоз
  • Типы обменных процессов
  • 1.4. Организационная структура практического занятия
  • 1.4.1. Проверка иСхОдного уровня знаний студентов
  • 1.4.2. Проверка исходного уровня знаний по тестам
  • 1.4.3. Проведение заключительного тестового контроля крок 1
  • Занятие 4 Морфология хромосом. Кариотип человека
  • Основные теоретические сведения
  • 1.4. Организационная структура практического занятия
  • 1.4.1. Проверка исходного уровня знаний по тестам исходного контроля
  • 1.4.2. Теоретические вопросы, которые необходимо усвоить для достижения целей занятия
  • 1.4.3. Самостоятельная работа студентов:
  • 1.4.4. Решение целевых обучающих задач:
  • 1.4.5. Проведение заключительного тестового контроля:
  • 1.5. Подведение итогов занятия преподавателем и проверка правильности выполнения работы каждым студентом
  • 1.8. Литература основная (I) и дополнительная (II):
  • Занятие 5 характеристика нуклеиновых кислот
  • 1.3. Конкретные цели. Уметь:
  • Основные теоретические сведения
  • 1.4. Организационная структура практического занятия
  • 1.4.1. Проверка исходного уровня знаний по тестам исходного контроля
  • 1.4.2. Теоретические вопросы, которые необходимо усвоить для достижения целей занятия:
  • 1.4.3. Самостоятельная работа студентов
  • 1. Решить задачи:
  • 2. Заполнить таблицу: сравнительная характеристика днк и рнк
  • 1.4.5. Проведение заключительного тестового контроля
  • Крок 1
  • 1.5. Подведение итогов занятия преподавателем и проверка правильности выполнения работы каждым студентом
  • Занятие 6 строение гена про – и эукариот. Гены структурные, регуляторные. Процессы реализации генетической информации
  • 1.3. Конкретные цели. Уметь:
  • Основные теоретические сведения
  • Генетический код и-рнк
  • 1.4. Организационная структура практического занятия
  • 1.4.1. Проверка исходного уровня знаний по тестам исходного контроля
  • 1.4.2. Теоретические вопросы, которые необходимо усвоить для достижения целей занятия:
  • 1.4.3. Самостоятельная работа студентов
  • 1.4.5. Проведение заключительного тестового контроля
  • Крок 1
  • 1.5. Подведение итогов занятия преподавателем и проверка правильности выполнения работы каждым студентом
  • Занятие 7 регуляция экспрессии генов
  • 1.3. Конкретные цели. Уметь:
  • Основные теоретические сведения
  • 1.4. Организационная структура практического занятия
  • 1.4.1. Проверка исходного уровня знаний по тестам исходного контроля
  • 1.4.2. Теоретические вопросы, которые необходимо усвоить для достижения целей занятия:
  • 1.4.3. Самостоятельная работа студентов Заполните таблицу: Биосинтез белка
  • 1.4.5. Проведение заключительного тестового контроля
  • Крок 1
  • 1.5. Подведение итогов занятия преподавателем и проверка правильности выполнения работы каждым студентом
  • Занятие 8 жизненный цикл клетки. Деление клеток
  • 1.3. Конкретные цели занятия:
  • Основные теоретические сведения
  • 1. Образуются гаметы с гаплоидным набором хромосом. Это обеспечивает постоянство хромосом.
  • 1.4.3. Самостоятельная работа студентов
  • 1.4.4. Проведение заключительнлго тестового контроля
  • Итоговое занятие 9
  • Список микропрепаратов
  • IV. Подведение итогов:
  • V. Организационная структура занятия:
  • VI. Заключительная часть:
  • К задачам и тестам
  • Различия между прокариотическими и эукариотическими клетками

    Основные параметры

    Прокариоты

    Эукариоты

    В среднем 0,5-5,0 мкм.

    В среднем 40-60 мкм.

    Круглые, вытянутые, нитчатые.

    Разнообразная, могут иметь отростки.

    Генетический материал

    Нуклеоид. Кольцевая ДНК в цитоплазме. Нет ядра и хромосом.

    Линейная ДНК, связанная с белками и РНК. Хроматин и хромосомы в ядре.

    Синтез белка

    70S– рибосомы и мельче. ЭП ретикулума нет. Рибосомы - в цитоплазме.

    80S– рибосомы и крупнее. Рибосомы в цитоплазме и в ЭП ретикулуме.

    Органеллы

    Органелл мало и они не имеют мембран (рибосомы).

    Органелл много, есть мембранные (митохондрии, пластиды, лизосомы).

    Клеточные стенки

    Жесткие, состоят из полисахаридов. Компонент прочности – муреин.

    Жесткие стенки у клеток растений и грибов (компонент прочности – целлюлоза). Клетки животных имеют плазмалемму покрытую гликокаликсом.

    Фотосинтез

    Хлоропласты отсутствуют. Происходит в мембранах,не имеющих специфической упаковки.

    Хлоропласты есть в растительных клетках. В них идут процессы фотосинтеза.

    Фиксация азота

    Некоторые клетки фиксируют.

    Клетки не способны к фиксации.

    Простое (прямое)

    Митоз (непрямое).

    Рис. 2. Современная схема строения клетки по данным электронной микроскопии:

    1 - цитоплазматический матрикс; 2 - комплекс Гольджи; 3 - клеточный центр; 4 - эндоплазматическая сеть; 5 - митохондрия; 6 - ядро; 7 - ядрышко; 8 - кариоплазма; 9 - хроматин; 10 – лизосома; 11 –экзоцитоз через цитоплазматическую мембрану, 12 – микроворсинки

    Основными структур­ными компонентами эукариотических клеток являются клеточные мембраны, ядро, цитоплаз­ма с цитоскелетом, органеллы и включения (рис. 2).

    1. Клеточная мембрана или плазмалемма ,представляет тонкую биологическую пленку, которая ограничивает клетку. все известные биологические мембраны образуют замкнутые пространства -компартменты . Таким образом, главная функция клеточной мембраны - обес­печить поступление в клетку веществ и сохранить постоянство ее состава, то есть клеточный гомеостаз.

    Основу плазмалеммы составляет двойной слой липидов , располо­женных перпендикулярно поверхности (рис. 3). Липидный бислой плазмалеммы содержит белки, которые подразделяются на два класса. Первый класс - транс­мембранные белки . Определенная часть их молекулы встроена в двой­ной липидный слой и пронизывает его на­сквозь. Второй класс – периферические белки-рецепторы , расположенные снаружи клеточной мембраны. Они покрыты слоем углеводов, образующих тонкое покрытие клетки – гликокаликс .

    Мембранный транспорт различных оформленных частиц в клетке происходит путемэндоцитоза и экзоцитоза .

    При эндоцитозе клетки поглощают макромолекулы и час­тицы, окружая их не­большим участком клеточной мембраны. Последняя впячивает­ся внутрь клетки, образуя везикулы (пузырьки). Если везикулы мел­кие и содержат внеклеточную жидкость, процесс называется пиноцитоз .

    Если же они содержат крупные оформленные частицы, то форми­руются фагосомы, а явление известно, как фагоцитоз .

    Э
    кзоцитоз
    - это выход веществ из клетки в виде гранул секрета или вакуолей с клеточной жидкостью .

    2. Ядро -центральный аппарат клетки, с которым связано хранение и передача генетической информации, обмен веществ, движение и размножение .

    Ф

    Рис. 3. Химическая модель плазмалеммы:

    1 - двойной слой липидов; 2 - трансмембранные белки; 3, 4 - периферические белки; 5 – полисахариды гликокаликса.

    орма ядра чаще округлая или вытянутая, реже дольча­тая. От цитоплазмы его отделяет ядерная оболочка. Она состоит из наружной и внутренней ядерных мембран, разделенных бесструктур­ным веществом. Мембраны имеют многочисленные поры, обеспечи­вающие избирательную связь с цитоплазмой. Каждая пора встроена в крупную дисковидную структуру, называемуюпоровый комплекс ядерной оболочки . Заполнено ядро гомогенной массой - нуклеоплазмой. В ее состав входят нуклеиновые кислоты и белки.

    Комплекс ядерной ДНК со структурными белками гистонами и негистоновыми белками, содержащимися в больших количествах, называют хромати­ном . На цитологических препаратах хроматин имеет вид глыбок различной величины и формы. В период деления клетки в ядре выявля­ютсямитотические хромосомы. Они выглядят как короткие палочковидные тельца, обладающие особой индивидуальностью и функци­ей.

    Важным компонентом ядра является одно или несколькоядры­шек. Это мелкие круглые тельца с высоким содержанием РНК и бел­ка. Ядрышковая РНК участвует в регуляции синтетических процессов в цитоплазме клетки.

    3. Цитоплазма объединяет все живое вещество клетки, за исключе­нием ядра и ограничивающих клетку мембран. Гомогенная бесструктурная масса цитоплазмы получила название гиалоплазмы . В ней во взвешенном состоянии находятсяорганеллы и включения . Агрегатное состояние цитоплазмы бывает жидкое - золь и вязкое - гель. Основу цитоплазмы формирует цитоскелет клетки.

    Цитоскелет - слож­ная сеть микротрубочек и белковых филаментов (нитей). Микротру­бочки играют роль направляющих. Это своеобразные рельсы, по ко­торым передвигаются органеллы. Филаменты выполняют сократи­тельную функцию.

    Цитоплазма и некоторые структуры, расположен­ные в ней, могут перемещаться. Данное явление известно какток цитоплазмы . Он особенно интенсивен в растительных клетках по причине их крупных размеров и жесткости стенок.

    4. Органеллы и включения находятся в цитоплазме.Органеллы -это постоянные высокодифференцированные внутриклеточные обра­зования, выполняющие определенные функции . Внутреннее простран­ство любой внутриклеточной органеллы, ее компартмент, ограничено специализированными мембранами. Выделяют две большие группы органелл.

    1. Органеллы общего значения - обязательны для жизнедеятельности всех клеток.

    2. Специальные орга­неллы - выполняют направленные функции в клетках с узкой спе­циализацией (реснички и жгутики, миофибриллы и нейрофибриллы).

    По принципу организации внутриклеточные компоненты подразделяются на одномембранные и двумембранные.

    Одномембранные компоненты имеют вид каналов, цистерн, пузырьков ограниченных одной мембраной и тесно взаимосвязанных. Сюда можно отнести: а) эндоплазматический ретикулум; б) комплекс Гольджи; в) лизосомы; г) вакуоли у растительных клеток и некоторых простейших.

    Двумем­бранные компоненты - это митохондрии и пластиды. Наружная мем­брана их всегда гладкая, внутренняя образует выросты, имеющие важ­ное функциональное значение. Систему двойных мембран имеет так­же ядро - центральный аппарат клетки. Ядерные мембраны содержат поры.

    Немембранные структуры клетки немногочисленны и в той или иной мере связаны с системой мембран. В число их входят: а) рибосомы, состоящие из двух субъединиц; б) центросома, локализованная вблизи ядра; в) органеллы движения клеток – жгутики, реснички и миофибриллы; г) разнообразные клеточные включения.

    2.4. Строение про– и эукариотной клеток. Взаимосвязь строения и функций частей и органоидов клетки – основа ее целостности

    Основные термины и понятия, проверяемые в экзаменационной работе: аппарат

    Голъджи, вакуоль, клеточная мембрана, клеточная теория, лейкопласты, митохондрии, органоиды клетки, пластиды, прокариоты, рибосомы, хлоропласты, хромопласты, хромосомы, эукариоты, ядро.

    Любая клетка представляет собой систему. Это означает, что все ее компоненты взаимосвязаны, взаимозависимы и взаимодействуют друг с другом. Это также означает, что нарушение деятельности одного из элементов данной системы ведет к изменениям и нарушениям работы всей системы. Совокупность клеток образует ткани, различные ткани образуют органы, а органы, взаимодействуя и выполняя общую функцию, образуют системы органов. Эту цепочку можно продолжить дальше, и вы можете сделать это самостоятельно. Главное, что нужно понять, – любая система обладает определенной структурой, уровнем сложности и основана на взаимодействии элементов, которые ее составляют. Ниже даются справочные таблицы, в которых сравнивается строение и функции прокариотических и эукариотических клеток, а также разбирается их строение и функции. Внимательно проанализируйте эти таблицы, ибо в экзаменационных работах достаточно часто задаются вопросы, требующие знания этого материала.

    2.4.1. Особенности строения эукариотических и прокариотических клеток. Сравнительные данные

    Сравнительная характеристика эукариотических и прокариотических клеток.

    Строение эукариотичеких клеток.

    Функции эукариотических клеток . Клетки одноклеточных организмов осуществляют все функции, характерные для живых организмов – обмен веществ, рост, развитие, размножение; способны к адаптации.

    Клетки многоклеточных организмов дифференцированы по строению, в зависимости от выполняемых ими функций. Эпителиальные, мышечные, нервные, соединительные ткани формируются из специализированных клеток.

    ПРИМЕРЫ ЗАДАНИЙ Часть А

    А1. К прокариотическим организмам относится 1) бацилла 2) гидра 3) амеба 4) вольвокс

    А2. Клеточная мембрана выполняет функцию

    1) синтеза белка

    2) передачи наследственной информации

    3) фотосинтеза

    4) фагоцитоза и пиноцитоза

    А3. Укажите пункт, в котором строение названной клетки совпадает с ее функцией

    1) нейрон – сокращение

    2) лейкоцит – проведение импульса

    3) эритроцит – транспорт газов

    4) остеоцит – фагоцитоз

    А4. Клеточная энергия вырабатывается в

    1) рибосомах 3) ядре

    2) митохондриях 4) аппарате Гольджи

    А5. Исключите из предложенного списка лишнее понятие

    1) лямблия 3) инфузория

    2) плазмодий 4) хламидомонада

    А6. Исключите из предложенного списка лишнее понятие

    1) рибосомы 3) хлоропласты

    2) митохондрии 4) крахмальные зерна

    А7. Хромосомы клетки выполняют функцию

    1) биосинтеза белка

    2) хранения наследственной информации

    3) формирования лизосом

    4) регуляции обмена веществ

    В1. Выберите из предложенного списка функции хлоропластов

    1) образование лизосом 4) синтез АТФ

    2) синтез глюкозы 5) выделение кислорода

    3) синтез РНК 6) клеточное дыхание

    В2. Выберите особенности строения митохондрий

    1) окружены двойной мембраной

    2) содержат хлорофилл

    3) есть кристы

    4) наружная мембрана складчатая

    5) окружены одинарной мембраной

    6) внутренняя мембрана богата ферментами ВЗ. Соотнесите органоид с его функцией

    В4. Заполните таблицу, отметив знаками «+ » или «- » наличие указанных структур в про– и эукариотических клетках

    С1. Докажите, что клетка является целостной биологической, открытой системой.

    2.5. Метаболизм: энергетический и пластический обмен, их взаимосвязь. Ферменты, их химическая природа, роль в метаболизме. Стадии энергетического обмена. Брожение и дыхание. Фотосинтез, его значение, космическая роль. Фазы фотосинтеза. Световые и темновые реакции фотосинтеза, их взаимосвязь. Хемосинтез. Роль хемосинтезирующих бактерий на Земле

    Термины, проверяемые в экзаменационной работе: автотрофные организмы,

    анаболизм, анаэробный гликолиз, ассимиляция, аэробный гликолиз, биологическое окисление, брожение, диссимиляция, биосинтез, гетеротрофные организмы, дыхание, катаболизм, кислородный этап, метаболизм, пластический обмен, подготовительный этап, световая фаза фотосинтеза, темновая фаза фотосинтеза, фотолиз воды, фотосинтез, энергетический обмен.

    2.5.1. Энергетический и пластический обмен, их взаимосвязь

    Обмен веществ (метаболизм) – это совокупность взаимосвязанных процессов синтеза и расщепления химических веществ, происходящих в организме. Биологи разделяют его на пластический (анаболизм ) и энергетический обмены (катаболизм ), которые связаны между собой. Все синтетические процессы нуждаются в веществах и энергии, поставляемых процессами расщепления. Процессы расщепления катализируются ферментами, синтезирующимися в ходе пластического обмена, с использованием продуктов и энергии энергетического обмена.

    Для отдельных процессов, происходящих в организмах, используются следующие термины:

    Анаболизм (ассимиляция ) – синтез более сложных мономеров из более простых с поглощением и накоплением энергии в виде химических связей в синтезированных веществах.

    Катаболизм (диссимиляция ) – распад более сложных мономеров на более простые с освобождением энергии и ее запасанием в виде макроэргических связей АТФ.

    Живые существа для своей жизнедеятельности используют световую и химическую энергию. Зеленые растения – автотрофы , – синтезируют органические соединения в процессе фотосинтеза, используя энергию солнечного света. Источником углерода для них является углекислый газ. Многие автотрофные прокариоты добывают энергию в процессехемосинтеза – окисления неорганических соединений. Для них источником энергии могут быть соединения серы, азота, углерода.Гетеротрофы используют органические источники углерода, т.е. питаются готовыми органическими веществами. Среди растений могут встречаться те, которые питаются смешанным способом (миксотрофно ) – росянка, венерина мухоловка или даже гетеротроф– но – раффлезия. Из представителей одноклеточных животных миксотрофами считаются эвглены зеленые.

    Ферменты, их химическая природа, роль в метаболизме . Ферменты – это всегда специфические белки – катализаторы. Термин «специфические» означает, что объект, по отношению к которому этот термин употребляется, имеет неповторимые особенности, свойства, характеристики. Каждый фермент обладает такими особенностями, потому что, как правило, катализирует определенный вид реакций. Ни одна биохимическая реакция в организме не происходит без участия ферментов. Особенности специфичности молекулы фермента объясняются ее строением и свойствами. В молекуле фермента есть активный центр, пространственная конфигурация которого соответствует пространственной конфигурации веществ, с которыми фермент взаимодействует. Узнав свой субстрат, фермент взаимодействует с ним и ускоряет его превращение.

    Ферментами катализируются все биохимические реакции. Без их участия скорость этих реакций уменьшилась бы в сотни тысяч раз. В качестве примеров можно привести такие реакции, как участие РНК – полимеразы в синтезе – и-РНК на ДНК, действие уреазы на мочевину, роль АТФ – синтетазы в синтезе АТФ и другие. Обратите внимание на то, что названия многих ферментов оканчиваются на «аза».

    Активность ферментов зависит от температуры, кислотности среды, количества субстрата, с которым он взаимодействует. При повышении температуры активность ферментов увеличивается. Однако происходит это до определенных пределов, т.к. при достаточно высоких температурах белок денатурируется. Среда, в которой могут функционировать ферменты, для каждой группы различна. Есть ферменты, которые активны в кислой или слабокислой среде или в щелочной или слабощелочной среде. В кислой среде активны ферменты желудочного сока у млекопитающих. В слабощелочной среде активны ферменты кишечного сока. Пищеварительный фермент поджелудочной железы активен в щелочной среде. Большинство же ферментов активны в нейтральной среде.

    2.5.2. Энергетический обмен в клетке (диссимиляция)

    Энергетический обмен – это совокупность химических реакций постепенного распада органических соединений, сопровождающихся высвобождением энергии, часть которой расходуется на синтез АТФ. Процессы расщепления органических соединений уаэробных организмов происходят в три этапа, каждый из которых сопровождается

    многоклеточных организмов он осуществляется пищеварительными ферментами. У одноклеточных – ферментами лизосом. На первом этапе происходит расщепление белков

    до аминокислот, жиров до глицерина и жирных кислот, полисахаридов до моносахаридов,

    нуклеиновых кислот до нуклеотидов. Этот процесс называется пищеварением.

    Второй этап –бескислородный (гликолиз ). Его биологический смысл заключается в начале постепенного расщепления и окисления глюкозы с накоплением энергии в виде 2 молекул АТФ. Гликолиз происходит в цитоплазме клеток. Он состоит из нескольких последовательных реакций превращения молекулы глюкозы в две молекулы пировиноградной кислоты (пирувата) и две молекулы АТФ, в виде которой запасается часть энергии, выделившейся при гликолизе: С6Н12O6 + 2АДФ + 2Ф → 2С3Н4O3 + 2АТФ. Остальная энергия рассеивается в виде тепла.

    В клетках дрожжей и растений (при недостатке кислорода ) пируват распадается на этиловый спирт и углекислый газ. Этот процесс называетсяспиртовым брожением .

    Энергии, накопленной при гликолизе, слишком мало для организмов, использующих кислород для своего дыхания. Вот почему в мышцах животных, в том числе и у человека, при больших нагрузках и нехватке кислорода образуется молочная кислота (С3Н6O3), которая накапливается в виде лактата. Появляется боль в мышцах. У нетренированных людей это происходит быстрее, чем у людей тренированных.

    Третий этап –кислородный , состоящий из двух последовательных процессов – цикла Кребса, названного по имени Нобелевского лауреата Ганса Кребса, и окислительного фосфорилирования. Его смысл заключается в том, что при кислородном дыхании пируват окисляется до окончательных продуктов – углекислого газа и воды, а энергия, выделяющаяся при окислении, запасается в виде 36 молекул АТФ. (34 молекулы в цикле Кребса и 2 молекулы в ходе окислительного фосфорилирования). Эта энергия распада органических соединений обеспечивает реакции их синтеза в пластическом обмене. Кислородный этап возник после накопления в атмосфере достаточного количества молекулярного кислорода и появления аэробных организмов.

    Окислительное фосфорилирование или клеточное дыханиепроисходит, на

    внутренних мембранах митохондрий, в которые встроены молекулы-переносчики электронов. В ходе этой стадии освобождается большая часть метаболической энергии. Молекулы-переносчики транспортируют электроны к молекулярному кислороду. Часть энергии рассеивается в виде тепла, а часть расходуется на образование АТФ.

    Суммарная реакция энергетического обмена:

    С6Н12O6 + 6O2 → 6СO2 + 6Н2O + 38АТФ.

    ПРИМЕРЫ ЗАДАНИЙ Часть А

    А1. Способ питания хищных животных называется

    1) автотрофным 3) гетеротрофным

    2) миксотрофным 4) хемотрофным

    А2. Совокупность реакций обмена веществ называется:

    1) анаболизм 3) диссимиляция

    2) ассимиляция 4) метаболизм

    А3. На подготовительном этапе энергетического обмена происходит образование:

    1) 2 молекул АТФ и глюкозы

    2) 36 молекул АТФ и молочной кислоты

    3) аминокислот, глюкозы, жирных кислот

    4) уксусной кислоты и спирта

    А4. Вещества, катализирующие биохимические реакции в организме, – это:

    1) белки 3) липиды

    2) нуклеиновые кислоты 4) углеводы

    А5. Процесс синтеза АТФ в ходе окислительного фосфорилирования происходит в:

    1) цитоплазме 3) митохондриях

    2) рибосомах 4) аппарате Гольджи

    А6. Энергия АТФ, запасенная в процессе энергетического обмена, частично используется для реакций:

    1) подготовительного этапа

    2) гликолиза

    3) кислородного этапа

    4) синтеза органических соединений А7. Продуктами гликолиза являются:

    1) глюкоза и АТФ

    2) углекислый газ и вода

    3) пировиноградная кислота и АТФ

    4) белки, жиры, углеводы

    В1. Выберите события, происходящие на подготовительном этапе энергетического обмена у человека

    1) белки распадаются до аминокислот

    2) глюкоза расщепляется до углекислого газа и воды

    3) синтезируются 2 молекулы АТФ

    4) гликоген расщепляется до глюкозы

    5) образуется молочная кислота

    6) липиды расщепляются до глицерина и жирных кислот

    В2. Соотнесите процессы, происходящие при энергетическом обмене с этапами, на которых они происходят

    ВЗ. Определите последовательность превращений куска сырого картофеля в процессе энергетического обмена в организме свиньи:

    А) образование пирувата Б) образование глюкозы

    В) всасывание глюкозы в кровь Г) образование углекислого газа и воды

    Д) окислительное фосфорилирование и образование Н2О Е) цикл Кребса и образование СО2

    С1. Объясните причины утомляемости спортсменов-марафонцев на дистанциях, и как она преодолевается?

    2.5.3. Фотосинтез и хемосинтез

    Все живые существа нуждаются в пище и питательных веществах. Питаясь, они используют энергию, запасенную, прежде всего, в органических соединениях – белках, жирах, углеводах. Гетеротрофные организмы, как уже говорилось, используют пищу растительного и животного происхождения, уже содержащую органические соединения. Растения же создают органические вещества в процессе фотосинтеза. Исследования в области фотосинтеза начались в 1630 г. экспериментами голландца ван Гельмонта. Он доказал, что растения получают органические вещества не из почвы, а создают их самостоятельно. Джозеф Пристли в 1771 г. доказал «исправление» воздуха растениями. Помещенные под стеклянный колпак они поглощали углекислый газ, выделяемый тлеющей лучиной. Исследования продолжались, и в настоящее время установлено, что фотосинтез – это процесс образования органических соединений из диоксида углерода (СО2) и воды с использованием энергии света и проходящий в хлоропластах зеленых растений и зеленых пигментах некоторых фотосинтезирующих бактерий.

    Хлоропласты и складки цитоплазматической мембраны прокариот содержат зеленый пигмент – хлорофилл . Молекула хлорофилла способна возбуждаться под действием солнечного света и отдавать свои электроны и перемещать их на более высокие энергетические уровни. Этот процесс можно сравнить с подброшенным вверх мячом. Поднимаясь, мяч запасается потенциальной энергией; падая, он теряет ее. Электроны не падают обратно, а подхватываются переносчиками электронов (НАДФ+ –никотинамиддифосфат ). При этом энергия, накопленная ими ранее, частично расходуется на образование АТФ. Продолжая сравнение с подброшенным мячом, можно сказать, что мяч, падая, нагревает окружающее пространство, а часть энергии падающих электронов запасается в виде АТФ. Процесс фотосинтеза подразделяется на реакции, вызываемые светом, и реакции, связанные с фиксацией углерода. Их называютсветовой

    и темновой фазами.

    На Земле существует всего два типа организмов: эукариоты и прокариоты. Они сильно различаются по своему строению, происхождению и эволюционному развитию, что будет подробно рассмотрено далее.

    Вконтакте

    Признаки прокариотической клетки

    Прокариоты по-другому называют доядерными. У прокариотической клетки нет и других органоидов, имеющих мембранную оболочку ( , эндоплазматического ретикулума, комплекса Гольджи).

    Также характерными чертами для них являются следующее:

    1. без оболочки и не образует связей с белками. Информация передаётся и считывается непрерывно.
    2. Все прокариоты – гаплоидные организмы.
    3. Ферменты располагаются в свободном состоянии (диффузно).
    4. Обладают способностью к спорообразованию при неблагоприятных условиях.
    5. Наличие плазмид – мелких внехромосомных молекул ДНК. Их функция — передача генетической информации, повышение устойчивости ко многим агрессивным факторам.
    6. Наличие жгутиков и пилей – внешних белковых образований необходимых для передвижения.
    7. Газовые вакуоли – полости. За счёт них организм способен передвигаться в толще воды.
    8. Клеточная стенка у прокариот (именно бактерий) состоит из муреина.
    9. Основными способами получения энергии у прокариот являются хемо- и фотосинтез.

    К ним относятся бактерии и археи. Примеры прокариотов: спирохеты, протеобактерии, цианобактерии, кренархеоты.

    Внимание! Несмотря на то, что у прокариот отсутствует ядро, они имеют его эквивалент – нуклеоид (кольцевую молекулу ДНК, лишённую оболочек), и свободные ДНК в виде плазмид.

    Строение прокариотической клетки

    Бактерии

    Представители этого царства являются одними из самых древних жителей Земли и обладают высокой выживаемостью в экстремальных условия.

    Различают грамположительные и грамотрицательные бактерии. Их главное отличие заключается в строении мембраны клеток. Грамположительные имеют более толстую оболочку, до 80% состоит из муреиновой основы, а также полисахаридов и полипептидов. При окрашивании по Граму они дают фиолетовый цвет. Большинство этих бактерий являются возбудителями заболеваний. Грамотрицательные же имеют более тонкую стенку, которая отделена от мембраны периплазматическим пространством. Однако такая оболочка обладает повышенной прочностью и гораздо сильнее противостоит воздействию антител.

    Бактерии в природе играют очень большую роль:

    1. Цианобактерии (сине-зелёные водоросли) помогают поддерживать необходимый уровень кислорода в атмосфере. Они образуют больше половины всего О2 на Земле.
    2. Способствуют разложению органических останков, тем самым принимая участие в круговороте всех веществ, участвуют в образовании почвы.
    3. Фиксаторы азота на корнях бобовых.
    4. Очищают воды от отходов, к примеру, металлургической промышленности.
    5. Являются частью микрофлоры живых организмов, помогая максимально усваивать питательные вещества.
    6. Используются в пищевой промышленности для сбраживания Так получают сыры, творог, алкоголь, тесто.

    Внимание! Помимо положительного значения бактерии играют и отрицательную роль. Многие из них вызывают смертельно опасные заболевания, такие как холера, брюшной тиф, сифилис, туберкулёз.

    Бактерии

    Археи

    Ранее их объединяли с бактериями в единое царство Дробянок. Однако со временем выяснилось, что археи имеют свой индивидуальный путь эволюции и сильно отличаются от остальных микроорганизмов своим биохимическим составом и метаболизмом. Выделяют до 5 типов, самыми изученными считаются эвриархеоты и кренархеоты. Особенности архей таковы:

    • большинство из них являются хемоавтотрофами – синтезируют органические вещества из углекислого газа, сахара, аммиака, ионов металлов и водорода;
    • играют ключевую роль в круговороте азота и углерода;
    • участвуют в пищеварении в организмах человека и многих жвачных;
    • обладают более стабильной и прочной мембранной оболочкой за счёт наличия эфирных связей в глицерин-эфирных липидах. Это позволяет археям жить в сильнощелочных или кислых средах, а также при условии высоких температур;
    • клеточная стенка, в отличие от бактерий, не содержит пептидогликана и состоит из псевдомуреина.

    Строение эукариотов

    Эукариоты представляют собой надцарство организмов, в клетках которых содержится ядро. Кроме архей и бактерий все живые существа на Земле являются эукариотами (к примеру, растения, простейшие, животные). Клетки могут сильно отличаться по своей форме, строению, размерам и выполняемым функциям. Несмотря на это они сходны по основам жизнедеятельности, метаболизму, росту, развитию, способности к раздражению и изменчивости.

    Эукариотические клетки могут превышать в размерах прокариотические в сотни и тысячи раз. Они включают в себя ядро и цитоплазму с многочисленными мембранными и немембранными органоидами. К мембранным относятся: эндоплазматический ретикулум, лизосомы, комплекс Гольджи, митохондрии, . Немембранные: рибосомы, клеточный центр, микротрубочки, микрофиламенты.

    Строение эукариотов

    Проведем сравнение клеток эукариотов разных царств.

    К надцарству эукариот относятся царства:

    • простейшие. Гетеротрофы, некоторые способны к фотосинтезу (водоросли). Размножаются бесполым, половым путём и простым способом на две части. У большинства клеточная стенка отсутствует;
    • растения. Являются продуцентами, основной способ получения энергии – фотосинтез. Большая часть растений неподвижны, размножаются бесполым, половым и вегетативным путём. Клеточная стенка состоит из целлюлозы;
    • грибы. Многоклеточные. Различают низшие и высшие. Являются гетеротрофными организмами, не могут самостоятельно передвигаться. Размножаются бесполым, половым и вегетативным путём. Запасают гликоген и имеют прочную клеточную стенку из хитина;
    • животные. Различают 10 типов: губки, черви, членистоногие, иглокожие, хордовые и другие. Являются гетеротрофными организмами. Способны к самостоятельному передвижению. Основное запасающее вещество – гликоген. Оболочка клеток состоит из хитина, также как у грибов. Главный способ размножения – половой.

    Таблица: Сравнительная характеристика растительной и животной клетки

    Строение Клетка растения Клетка животного
    Клеточная стенка Целлюлоза Состоит из гликокаликса — тонкого слоя белков, углеводов и липидов.
    Местоположение ядра Расположено ближе к стенке Расположено в центральной части
    Клеточный центр Исключительно у низших водорослей Присутствует
    Вакуоли Содержат клеточный сок Сократительные и пищеварительные.
    Запасное вещество Крахмал Гликоген
    Пластиды Три вида: хлоропласты, хромопласты, лейкопласты Отсутствуют
    Питание Автотрофное Гетеротрофное

    Сравнение прокариот и эукариот

    Особенности строения прокариотической и эукариотической клеток значительны, однако одно из главных различий касается хранения генетического материала и способа получения энергии.

    Прокариоты и эукариоты фотосинтезируют по-разному. У прокариот этот процесс проходит на выростах мембраны (хроматофорах), уложенных в отдельные стопки. Бактерии не имеют фторой фотосистемы, поэтому не выделяют кислород, в отличие от сине-зелёных водорослей, которые образуют его при фотолизе. Источниками водорода у прокариот служат сероводород, Н2, разные органические вещества и вода. Основными пигментами являются бактериохлорофилл (у бактерий), хлорофилл и фикобилины (у цианобактерий).

    К фотосинтезу из всех эукариот способны только растения. У них имеются специальные образования – хлоропласты, содержащие мембраны, уложенные в граны или ламеллы. Наличие фотосистемы II позволяет выделять кислород в атмосферу при процессе фотолиза воды. Источником молекул водорода служит только вода. Главным пигментов является хлорофилл, а фикобилины присутствуют лишь у красных водорослей.

    Основные различия и характерные признаки прокариотов и эукариотов представлены в таблице ниже.

    Таблица: Сходства и различия прокариотов и эукариотов

    Сравнение Прокариоты Эукариоты
    Время появления Более 3,5 млрд. лет Около 1,2 млрд. лет
    Размеры клеток До 10 мкм От 10 до 100 мкм
    Капсула Есть. Выполняет защитную функцию. Связана с клеточной стенкой Отсутствует
    Плазматическая мембрана Есть Есть
    Клеточная стенка Состоит из пектина или муреина Есть, кроме животных
    Хромосомы Вместо них кольцевая ДНК. Трансляция и транскрипция проходят в цитоплазме. Линейные молекулы ДНК. Трансляция проходит в цитоплазме, а транскрипция в ядре.
    Рибосомы Мелкие 70S-типа. Расположены в цитоплазме. Крупные 80S-типа, могут прикрепляться к эндоплазматической сети, находиться в пластидах и митохондриях.
    Органоид с мембранной оболочкой Отсутствуют. Есть выросты мембраны — мезосомы Есть: митохондрии, комплекс Гольджи, клеточный центр, ЭПС
    Цитоплазма Есть Есть
    Отсутствуют Есть
    Вакуоли Газовые (аэросомы) Есть
    Хлоропласты Отсутствуют. Фотосинтез проходит в бактериохлорофиллах Присутствуют только у растений
    Плазмиды Есть Отсутствуют
    Ядро Отсутствует Есть
    Микрофиламенты и микротрубочки. Отсутствуют Есть
    Способы деления Перетяжка, почкование, коньюгация Митоз, мейоз
    Взаимодействие или контакты Отсутствуют Плазмодесмы, десмосомы или септы
    Типы питания клеток Фотоавтотрофный, фотогетеротрофный, хемоавтотрофный, хемогетеротрофный Фототрофный (у растений) эндоцитоз и фагоцитоз (у остальных)

    Строение эукариотической клетки

    Клетки, образующие ткани животных и растений, значительно различаются по форме, размерам и внутреннему строению. Однако все они обнаруживают сходство в главных чертах процессов жизнедеятельности, обмена веществ, в раздражимости, росте, развитии, способности к изменчивости. Клетки всех типов содержат два основных компонента, тесно связанных между собой, - цитоплазму и ядро. Ядро отделено от цитоплазмы пористой мембраной и содержит ядерный сок, хроматин и ядрышко. Полужидкая цитоплазма заполняет всю клетку и пронизана многочисленными канальцами. Снаружи она покрыта цитоплазматической мембраной. В ней имеются специализированные структуры-органоиды, присутствующие в клетке постоянно, и временные образования - включения. Мембранные органоиды: наружная цитоплазматическая мембрана (HЦM), эндоплазматическая сеть (ЭПС), аппарат Гольджи, лизосомы, митохондрии и пластиды.

    Рис. 1. Комбинированная схема строения эукариотической клетки: а - клетка животного происхождения; б - растительная клетка


    1 - ядро с хроматином и ядрышком; 2 - плазматическая мембрана; 3 - клеточная стенка; 4 - плазмодесма; 5 - гранулярный цитоплазматический ретикулум; 6 - гладкий ретикулум; 7 - пиноцитозная вакуоль; 8 - аппарат Гольджи; 9 - лизосома; 10 - жировые включения в гладком ретикулуме; 11 - центриоль и микротрубочки центросферы; 12 - митохондрии; 13 - полирибосомы гиалоплазмы; 14 - центральная вакуоль; 15 - хлоропласт

    В основе строения всех мембранных органоидов лежит биологическая мембрана. Все мембраны имеют принципиально единый план строения и состоят из двойного слоя фосфолипидов, в который с различных сторон ива разную глубину погружены белковые молекулы. Мембраны органоидов отличаются друг от друга лишь наборами входящих в них белков. Цитоплазматическая мембрана. У всех клеток растений, многоклеточных животных, у простейших и бактерий клеточная мембрана трехслойна: наружный и внутренний слои состоят из молекул белков, средний - из молекул липидов. Она ограничивает цитоплазму от внешней среды, окружает все органоиды клетки и представляет собой универсальную биологическую структуру. В некоторых клетках наружная оболочка образована несколькими мембранами, плотно прилегающими друг к другу. В таких случаях клеточная оболочка становится плотной и упругой и позволяет сохранить форму клетки, как, например, у эвглены и инфузории туфельки.

    У большинства растительных клеток, помимо мембраны, снаружи имеется еще толстая целлюлозная оболочка - клеточная стенка. Она хорошо различима в обычном световом микроскопе и выполняет опорную функцию за счет жесткого наружного слоя, придающего клеткам четкую форму. На поверхности клеток мембрана образует удлиненные выросты - микроворсинки, складки, впячивания и выпячивания, что во много раз увеличивает всасывающую или выделительную поверхность. С помощью мембранных выростов клетки соединяются друг с другом в тканях и органах многоклеточных организмов, на складках мембран располагаются разнообразные ферменты, участвующие в обмене веществ. Отграничивая клетку от окружающей среды, мембрана регулирует направление диффузии веществ и одновременно осуществляет активный перенос их внутрь клетки (накопление) или наружу (выделение). За счет этих свойств мембраны концентрация ионов калия, кальция, магния, фосфора в цитоплазме выше, а концентрация натрия и хлора ниже, чем в окружающей среде. Через поры наружной мембраны из внешней среды внутрь клетки проникают ионы, вода и мелкие молекулы других веществ. Проникновение в клетку относительно крупных твердых частиц осуществляется путем фагоцитоза (от греч. "фаго” - пожираю, "питое” - клетка).

    При этом наружная мембрана в месте контакта с частицей прогибается внутрь клетки, увлекая частицу в глубь цитоплазмы, где она подвергается ферментативному расщеплению. Аналогичным путем в клетку попадают и капли жидких веществ; их поглощение называется пиноцитозом (от греч. "пино” - пью, "цитос” - клетка). Наружная клеточная мембрана выполняет и другие важные биологические функции. Цитоплазма на 85 % состоит из воды, на 10 % - из белков, остальной объем приходится на долю липидов, углеводов, нуклеиновых кислот и минеральных соединений; все эти вещества образуют коллоидный раствор, близкий по консистенции глицерину. Коллоидное вещество клетки в зависимости от ее физиологического состояния и характера воздействия внешней среды имеет свойства и жидкости, и упругого, более плотного тела. Цитоплазма пронизана каналами различной формы и величины, которые получили название эндоплазматической сети. Их стенки представляют собой мембраны, тесно контактирующие со всеми органоидами клетки и составляющие вместе с ними единую функционально-структурную систему для осуществления обмена веществ и энергии и перемещения веществ внутри клетки. В стенках канальцев располагаются мельчайшие зернышки-гранулы, называемые рибосомами. Такая сеть канальцев называется гранулярной.

    Рибосомы могут располагаться на поверхности канальцев разрозненно или образуют комплексы из пяти-семи и более рибосом, называемые полисомами. Другие канальцы гранул не содержат, они составляют гладкую эндоплазматическую сеть. На стенках располагаются ферменты, участвующие в синтезе жиров и углеводов. Внутренняя полость канальцев заполнена продуктами жизнедеятельности клетки. Внутриклеточные канальцы, образуя сложную ветвящуюся систему, регулируют перемещение и концентрацию веществ, разделяют различные молекулы органических веществ и этапы их, синтеза. На внутренней и внешней поверхности мембран, богатых ферментами, осуществляется синтез белков, жиров и углеводов, которые либо используются в обмене веществ, либо накапливаются в цитоплазме в качестве включений, либо выводятся наружу. Рибосомы встречаются во всех типах клеток - от бактерий до клеток многоклеточных организмов. Это округлые тельца, состоящие из рибонуклеиновой кислоты (РНК) и белков почти в равном соотношении. В их состав непременно входит магний, присутствие которого поддерживает структуру рибосом. Рибосомы могут быть связаны с мембранами эндоплазматической сети, с наружной клеточной мембраной или свободно лежать в цитоплазме. В них осуществляется синтез белков. Рибосомы кроме цитоплазмы встречаются в ядре клетки. Они образуются в ядрышке и затем поступают в цитоплазму.

    Комплекс Гольджи в растительных клетках имеет вид отдельных телец, окруженных мембранами. В животных клетках этот органоид представлен цистернами, канальцами и пузырьками. В мембранные трубки комплекса Гольджи из канальцев эндоплазматической сети поступают продукты секреции клетки, где они химически перестраиваются, уплотняются, а затем переходят в цитоплазму и либо используются самой клеткой, либо выводятся из нее. В цистернах комплекса Гольджи происходит синтез полисахаридов и их объединение с белками, в результате чего образуются гликопротеиды. Митохондрии - небольшие тельца палочковидной формы, ограниченные двумя мембранами. От внутренней мембраны митохондрии отходят многочисленные складки - кристы, на их стенках располагаются разнообразные ферменты, с помощью которых осуществляется синтез высокоэнергетического вещества - аденозинтрифосфорной кислоты (АТФ). В зависимости от активности клетки и внешних воздействий митохондрии могут перемещаться, изменять свои размеры, форму. В митохондриях найдены рибосомы, фосфолипиды, РНК и ДНК. С присутствием ДНК в митохондриях связывают способность этих органоидов к размножению путем образования перетяжки или почкованием в период деления клетки, а также синтез части митохондриальных белков.

    Лизосомы - мелкие овальные образования, ограниченные мембраной и рассеянные по всей цитоплазме. Встречаются во всех клетках животных и растений. Они возникают в расширениях эндоплазматической сети и в комплексе Гольджи, здесь заполняются гидролитическими ферментами, а затем обособляются и поступают в цитоплазму. В обычных" условиях лизосомы переваривают частицы, попадающие в клетку путем фагоцитоза, и органоиды отмирающих клеток. Продукты лизиса выводятся через мембрану лизосомы в цитоплазму, где они включаются в состав новых молекул. При разрыве лизоеомной мембраны ферменты поступают в цитоплазму и переваривают ее содержимое, вызывая гибель клетки. Пластиды есть только в растительных клетках и встречаются, у большинства зеленых растений. В пластидах синтезируются и накапливаются органические вещества. Различают пластиды трех видов: хлоропласты, хромопласты и лейкопласты.

    Хлоропласты - зеленые пластиды, содержащие зеленый пигмент хлорофилл. Они находятся в листьях, молодых стеблях, незрелых плодах. Хлоропласты окружены двойной мембраной. У высших растений внутренняя часть хлоропластов заполнена полужидким веществом, в котором параллельно друг другу уложены пластинки. Парные мембраны пластинок, сливаясь, образуют стопки, содержащие хлорофилл. В каждой стопке хлоропластов высших растений чередуются слои молекул белка и молекул липидов, а между ними располагаются молекулы хлорофилла. Такая слоистая структура обеспечивает максимум свободных поверхностей и облегчает захват и перенос энергии в процессе фотосинтеза. Хромопласты - пластиды, в которых содержатся растительные пигменты (красный или бурый, желтый, оранжевый). Они сосредоточены в цитоплазме клеток цветков, стеблей, плодов, листьев растений и придают им соответствующую окраску.

    Хромопласты образуются из лейкопластов или хлоропластов в результате накопления пигментов каротиноидов. Лейкопласты-бесцветные пластиды, располагающиеся в неокрашенных частях растений: в стеблях, корнях, луковицах и др. В лейкопластах одних клеток накапливаются зерна крахмала, в лейкопластах других клеток - масла, белки. Все пластиды возникают из своих предшественников - пропластид. В них выявлена ДНК, которая контролирует размножение этих органоидов. Клеточный центр, или центросома, играет важную роль при делении, клетки и состоит из двух центриолей. Он встречается у всех клеток животных и растений, кроме цветковых, низших грибов и некоторых, простейших. Центриоли в делящихся клетках принимают участие в формировании веретена деления и располагаются на его полюсах. В делящейся клетке первым делится клеточный центр, одновременно образуется ахроматиновое веретено, ориентирующее хромосомы при расхождении их к полюсам. В дочерние клетки отходит по одной центриоле. У многих растительных и животных клеток имеются органоиды специального назначения: реснички, выполняющие функцию движения (инфузории, клетки дыхательных путей), жгутики (простейшие одноклеточные, мужские половые клетки у животных и растений и др.).

    Включения - временные элемеаты, возникающие в клетке на определенной стадии ее жизнедеятельности в результате синтетической функции. Они либо используются, либо выводятся из клетки. Включениями являются также запасные питательные вещества: в растительных клетках-крахмал, капельки жира, блки, эфирные масла, многие органические кислоты, соли органических и неорганических кислот; в животных клетках - гликоген (в клетках печени и мышцах), капли жира (в подкожной клетчатке); Некоторые включения накапливаются в клетках как отбросы - в виде кристаллов, пигментов и др. Вакуоли - это полости, ограниченные мембраной; хорошо выражены в клетках растений и имеются у простейших. Возникают в разных участках расширений эндоплазматической сети. И постепенно отделяются от нее. Вакуоли поддерживают тургорное давление, в них сосредоточен клеточный или вакуолярный сок, молекулы которого определяют его осмотическую концентрацию. Считается, что первоначальные продукты синтеза - растворимые углеводы, белки, пектины и др. - накапливаются в цистернах эндоплазматической сети. Эти скопления и представляют собой зачатки будущих вакуолей.

    Цитоскелет. Одной из отличительных особенностей эукариотической клетки является развитие в ее цитоплазме скелетных образований в виде микротрубочек и пучков белковых волокон. Элементы цитоскелета тесно связаны с наружной цитоплазматической мембраной и ядерной оболочкой, образуют сложные переплетения в цитоплазме. Опорные элементы цитоплазмы определяют форму клетки, обеспечивают движение внутриклеточных структур и перемещение всей клетки. Ядро клетки играет основную роль в ее жизнедеятельности, с его удалением клетка прекращает свои функции и гибнет. В большинстве животных клеток одно ядро, но встречаются и многоядерные клетки (печень и мышцы человека, грибы, инфузории, зеленые водоросли). Эритроциты млекопитающих развиваются из клеток-предшественников, содержащих ядро, но зрелые эритроциты утрачивают его и живут недолго.

    Ядро окружено двойной мембраной, пронизанной порами, посредством которых оно тесно связано с каналами эндоплазматической сети и цитоплазмой. Внутри ядра находится хроматин - спирализованные участки хромосом. В период деления клетки они превращаются в палочковидные структуры, хорошо различимые в световой микроскоп. Хромосомы - это сложный комплекс белков с ДНК, называемый нуклеопротеидом. Функции ядра состоят в регуляции всех жизненных отправлений клетки, которую оно осуществляет при помощи ДНК и РНК-материальных носителей наследственной информации. В ходе подготовки к делению клетки ДНК удваивается, в процессе митоза хромосомы расходятся и передаются дочерним клеткам, обеспечивая преемственность наследственной информации у каждого вида организмов. Кариоплазма - жидкая фаза ядра, в которой в растворенном виде находятся продукты жизнедеятельности ядерных структур.

    Ядрышко - обособленная, наиболее плотная часть ядра. В состав ядрышка входят сложные белки и РНК, свободные или связанные фосфаты калия, магния, кальция, железа, цинка, а также рибосомы. Ядрышко исчезает перед началом деления клетки и вновь формируется в последней фазе деления. Таким образом, клетка обладает тонкой и весьма сложной организацией. Обширная сеть цитоплазматических мембран и мембранный принцип строения органоидов позволяют разграничить множество одновременно протекающих в клетке химических реакций. Каждое из внутриклеточных образований имеет свою структуру и специфическую функцию, но только при их взаимодействии возможна гармоничная жизнедеятельность клетки.На основе такого взаимодействия вещества из окружающей среды поступают в клетку, а отработанные продукты выводятся из нее во внешнюю среду - так совершается обмен веществ. Совершенство структурной организации клетки могло возникнуть только в результате длительной биологической эволюции, в процессе которой выполняемые ею функции постепенно усложнялись. Простейшие одноклеточные формы представляют собой и клетку, и организм со всеми его жизненными проявлениями. В многоклеточных организмах клетки образуют однородные группы - ткани. В свою очередь ткани формируют органы, системы, и их функции определяются общей жизнедеятельностью целостного организма.

    Прокариотическая клетка


    Рис.2. Строение прокариотической клетки

    1 - фимбрии; 2 - нуклеоид; 3 - жгутики; 4 - рибосомы; 5 - клеточная стенка; 6 - мембрана

    Наследственный аппарат прокариот представлен одной кольцевой молекулой ДНК, не образующей связей с белками и содержащей по одной копии каждого гена - гаплоидные организмы. В цитоплазме имеется большое количество мелких рибосом; отсутствуют или слабо выражены внутренние мембраны. Ферменты пластического обмена расположены диффузно. Аппарат Гольджи представлен отдельными пузырьками. Ферментные системы энергетического обмена упорядоченно расположены на внутренней поверхности наружной цитоплазматической мембраны. Снаружи клетка окружена толстой клеточной стенкой. Многие прокариоты способны к спорообразованию в неблагоприятных условиях существования; при этом выделяется небольшой участок цитоплазмы содержащий ДНК, и окружается толстой многослойной капсулой. Процессы метаболизма внутри споры практически прекращаются. Попадая в благоприятные условия, спора преобразуется в активную клеточную форму.

    Размножение прокариот происходит простым делением надвое. Средняя величина прокариотических клеток 5 мкм. У них нет никаких внутренних мембран, кроме впячиваний плазматической мембраны. Пласты отсутствуют. Вместо клеточного ядра имеется его эквивалент (нуклеоид), лишенный оболочки и состоящий из одной-единственной молекулы ДНК. Кроме того бактерии могут содержать ДНК в форме крошечных плазмид, сходных с внеядерными ДНК эукариот. В прокариотических клетках, способных к фотосинтезу (сине-зеленые водоросли, зеленые и пурпурные бактерии) имеются различно структурированные крупные впячивания мембраны – тилакоиды, по своей функции соответствующие пластидам эукариот. Эти же тилакоиды или – в бесцветных клетках – более мелкие впячивания мембраны (а иногда даже сама плазматическая мембрана) в функциональном отношении заменяют митохондрии. Другие, сложно дифференцированные впячивания мембраны называют мезасомами; их функция не ясна. Только некоторые органеллы прокариотической клетки гомологичны соответствующим органеллам эукариот. Для прокариот характерно наличие муреинового мешка – механически прочного элемента клеточной стенки.

    Характеристика схожести и отличия прокариотических и эукариотических клеток

    Обоснование того, что прокариотный и эукариотный типы клеточной организации являются наиболее существенной границей, разделяющей все клеточные формы жизни, связано с работами Р. Стейниера и К. ван Ниля, относящимися к 60-м гг. Поясним разницу между прокариотами и эукариотами. Клетка - это кусочек цитоплазмы, отграниченный мембраной. Последняя под электронным микроскопом имеет характерную ультраструктуру: два электронно-плотных слоя каждый толщиной 2,5-3,0 нм, разделенных электронно-прозрачным промежутком. Такие мембраны получили название элементарных. Обязательными химическими компонентами каждой клетки являются два вида нуклеиновых кислот (ДНК и РНК), белки, липиды, углеводы. Цитоплазма и элементарная мембрана, окружающая ее, - непременные и обязательные структурные элементы клетки. Это то, что лежит в основе строения всех без исключения клеток. Изучение тонкой структуры выявило существенные различия в строении клеток прокариот (бактерий и цианобактерий) и эукариот (остальные макро- и микроорганизмы).

    Прокариотная клетка отличается тем, что имеет одну внутреннюю полость, образуемую элементарной мембраной, называемой клеточной, или цитоплазматической (ЦПМ). У подавляющего большинства прокариот ЦПМ - единственная мембрана, обнаруживаемая в клетке. В эукариотных клетках в отличие от прокариотных есть вторичные полости. Ядерная мембрана, отграничивающая ДНК от остальной цитоплазмы, формирует вторичную полость. Наружные мембраны хлоропластов и митохондрий, окружающие заключенные в них функционально специализированные мембраны, играют аналогичную роль. Клеточные структуры, ограниченные элементарными мембранами и выполняющие в клетке определенные функции, получили название органелл. Ядро, митохондрий, хлоропласты - это клеточные органеллы. В эукариотных клетках помимо перечисленных выше есть и другие органеллы.

    В клетках прокариот органеллы, типичные для эукариот, отсутствуют. Ядерная ДНК у них не отделена от цитоплазмы мембраной. В цитоплазме находятся функционально специализированные структуры, но они не изолированы от цитоплазмы с помощью мембран и, следовательно, не образуют замкнутых полостей. Эти структуры могут быть сформированы и мембранами, но последние не замкнуты и, как правило, обнаруживают тесную связь с ЦПМ, являясь результатом ее локального внутриклеточного разрастания. В клетках прокариот есть также образования, окруженные особой мембраной, имеющей иное по сравнению с элементарной строение и химический состав.

    Таким образом, основное различие между двумя типами клеток - существование в эукариотной клетке вторичных полостей, сформированных с участием элементарных мембран. Сопоставление некоторых черт клеточной организации прокариотных и эукариотных организмов представлено на рис.1.


    Рис.3. Сопоставление некоторых черт прокариотной и эукариотной клеточной организации

    В связи с тем что прокариотная и эукариотная организация клеток принципиально различна, было предложено только на основании этого признака выделить все прокариоты в особое царство. Р. Меррей (R. Murray) в 1968 г. предложил все клеточные организмы разделить на две группы по ТИПУ их клеточной организации: царство Prokaryotae, куда вошли все организмы с прокариотным строением клетки, н царство Eukaryotae, куда включены все высшие протисты, растения и животные.

    Р. Виттэкер (R. Whittaker) предложил схему, по которой все живые организмы, имеющие клеточное строение, представлены разделенными на пять царств. Такая система классификации живого мира отражает три основных уровня его клеточной организации: Monera включает прокариотные организмы, находящиеся на самом примитивном уровне клеточной организации; Protista - микроскопические, в большинстве своем одноклеточные, недифференцированные формы жизни, сформировавшиеся в результате качественного скачка в процессе эволюции, приведшего к возникновению эукариотных клеток; многоклеточные эукариоты представлены в свою очередь тремя царствами Plantae, Fungi и Animalia.

    Три последние таксономические группы различаются по способу питания: фототрофный тип питания за счет процесса фотосинтеза характерен для растений (Plantae): грибы (Fungi) в основном характеризуются осмотрофным типом питания, т. е. питанием растворенными органическими веществами; животные (Animalia) осуществляют голозойное питание, заключающееся в захватывании и переваривании твердой пищи. Способы питания, специфические для растений и грибов, возникли в процессе эволюции на уровне Monera. На уровне Protista они получили свое дальнейшее развитие; здесь же сформировался третий тип питания - голозойный.

    Не берясь судить о целесообразности деления живой природы на пять или шесть царств, можно с определенностью утверждать, что обособление прокариотных микроорганизмов в отдельное царство Prokaryotae правомерно, поскольку основано на принципиальных различиях в структуре прокариотных и эукариотных клеток, т. е. тех единиц, из которых построены все клеточные формы жизни.

    

    Самое очевидное отличие прокариот от эукариот заключается в наличии у последних ядра , что отражено в названии этих групп: «карио» с древнегреческого переводится как ядро, «про» - до, «эу» - хорошо. Отсюда прокариоты - это доядерные организмы, эукариоты - ядерные.

    Однако это далеко не единственное и возможно не главное отличие прокариотических организмов от эукариот . В клетках прокариот вообще нет мембранных органоидов (за редким исключением) - митохондрий, хлоропластов, комплекса Гольджи, эндоплазматической сети, лизосом. Их функции выполняют выросты (впячивания) клеточной мембраны, на которых располагаются различные пигменты и ферменты, обеспечивающие процессы жизнедеятельности.

    У прокариот нет характерных для эукариот хромосом. Их основной генетический материал - это нуклеоид , обычно имеющий форму кольца. В эукариотических клетках хромосомы представляют собой комплексы ДНК и белков-гистонов (играют важную роль в упаковке ДНК). Эти химические комплексы называются хроматином . Нуклеоид прокариот не содержит гистонов, а форму ему придают связанные с ним молекулы РНК.

    Хромосомы эукариот находятся в ядре. У прокариот нуклеоид находится в цитоплазме и обычно крепится в одном месте к мембране клетки.

    Кроме нуклеоида в прокариотических клетках бывает разное количество плазмид - нуклеоидов существенно меньшего размера, чем основной.

    Количество генов в нуклеоиде прокариот на порядок меньше, чем в хромосомах. У эукариот есть множество генов, выполняющих регуляторную функцию по отношению к другим генам. Это дает возможность эукариотическим клеткам многоклеточного организма, содержащим одну и ту же генетическую информацию, специализироваться; изменяя свой метаболизм, более гибко реагировать на изменения внешней и внутренней среды. Отличается и структура генов. У прокариот гены в ДНК располагаются группами - оперонами. Каждый оперон транскрибируется как единое целое.

    Отличия прокариот от эукариот есть и в процессах транскрипции и трансляции. Самое главное заключается в том, что в прокариотических клетках эти процессы могут протекать одновременно на одной молекуле матричной (информационной) РНК: в то время как она еще синтезируется на ДНК, на готовом ее конце уже «сидят» рибосомы и синтезируют белок. В эукариотических клетках мРНК после транскрипции претерпевает так называемое созревание. И только после этого на ней может синтезироваться белок.

    Рибосомы прокариот меньше (коэффициент седиментации 70S), чем у эукариот (80S). Отличается количество белков и молекул РНК в составе субъединиц рибосом. Следует отметить, что рибосомы (а также генетический материал) митохондрий и хлоропластов схожи с прокариотами, что может говорить об их происхождении от древних прокариотических организмов, оказавшихся внутри клетки-хозяина.

    Прокариоты отличаются обычно более сложным строением своих оболочек. Кроме цитоплазматической мембраны и клеточной стенки у них также имеется капсула и другие образования, в зависимости от типа прокариотического организма. Клеточная стенка выполняет опорную функцию и препятствует проникновению вредных веществ. В состав клеточной стенки бактерий входит муреин (гликопептид). Среди эукариот клеточная стенка есть у растений (ее основной компонент - целлюлоза), у грибов - хитин.

    Прокариотические клетки делятся бинарным делением. У них нет сложных процессов клеточного деления (митоза и мейоза) , характерных для эукариот. Хотя перед делением нуклеоид удваивается, так же как хроматин в хромосомах. В жизненном цикле эукариот наблюдается чередование диплоидной и гаплоидной фаз. При этом обычно преобладает диплоидная фаза. В отличие от них у прокариот такого нет.

    Клетки эукариот различны по размерам, но в любом случае существенно крупнее прокариотических (в десятки раз).

    Питательные вещества в клетки прокариот поступают только с помощью осмоса. У эукариотических клеток кроме этого может также наблюдаться фаго- и пиноцитоз («захват» пищи и жидкости с помощью цитоплазматической мембраны).

    В целом отличие прокариот от эукариот заключается в однозначно более сложном строении последних. Считается, что клетки прокариотического типа возникли путем абиогенеза (длительной химической эволюции в условиях ранней Земли). Эукариоты появились позже от прокариотов, путем их объединения (симбиотическая, а также химерная гипотезы) или эволюции отдельно взятых представителей (инвагинационная гипотеза). Сложность клеток эукариот позволила им организовать многоклеточный организм, в процессе эволюции обеспечить все основное разнообразие жизни на Земле.

    Таблица отличий прокариот от эукариот

    Признак Прокариоты Эукариоты
    Клеточное ядро Нет Есть
    Мембранные органоиды Нет. Их функции выполняют впячивания клеточной мембраны, на которых располагаются пигменты и ферменты. Митохондрии, пластиды, лизосомы, ЭПС, комплекс Гольджи
    Оболочки клетки Более сложные, бывают различные капсулы. Клеточная стенка состоит из муреина. Основной компонент клеточной стенки целлюлоза (у растений) или хитин (у грибов). У клеток животных клеточной стенки нет.
    Генетический материал Существенно меньше. Представлен нуклеоидом и плазмидами, которые меют кольцевую форму и находятся в цитоплазме. Объем наследственной информации значительный. Хромосомы (состоят из ДНК и белков). Характерна диплоидность.
    Деление Бинарное деление клетки. Есть митоз и мейоз.
    Многоклеточность Для прокариот не характерна. Представлены как одноклеточными, так и многоклеточными формами.
    Рибосомы Мельче Крупнее
    Обмен веществ Более разнообразный (гетеротрофы, фотосинтезирующие и хемосинтезирующие различными способами автотрофы; анаэробное и аэробное дыхание). Автотрофность только у растений за счет фотосинтеза. Почти все эукариоты аэробы.
    Происхождение Из неживой природы в процессе химической и предбиологической эволюции. От прокариот в процессе их биологической эволюции.

    Похожие статьи