Компенсаторные механизмы при сердечной недостаточности. Основные экстракардиальные механизмы компенсации нарушений сократительной активности сердца

Здоровый организм обладает многообразными механизмами, обеспечивающими своевременную разгрузку сосудистого русла от избытка жидкости. При сердечной недостаточности «включаются» компенсаторные механизмы, направленные на сохранение нормальной гемодинамики. Эти механизмы в условиях острой и хронической недостаточности кровообращения имеют много общего, вместе с тем между ними отмечаются существенные различия.

интракардиальные: экстракардиальные:

Реализацию его можно представить следующим образом. Нарушение сократительной функции сердца влечет за собой уменьшение ударного объема крови и гипоперфузию почек. Это способствует активации РААС, вызывающей задержку воды в организме и увеличение объема циркулирующей крови. В условиях возникшей гиперволемии происходит усиленный приток венозной крови к сердцу, увеличение диастолического кровенаполнения желудочков, растяжение миофибрилл миокарда и компенсаторное повышение силы сокращения сердечной мышцы, которое обеспечивает прирост ударного объема. Однако если конечное диастолическое давление повышается более чем на 18-22 мм рт.ст., возникает чрезмерное перерастяжение миофибрилл. В этом случае компенсаторный механизм Франка-Старлинга перестает действовать, а дальнейшее увеличение конечного диастолического объема или давления вызывает уже не подъем, а снижение ударного объема.

экстракардиальные Этот рефлекс реализуется при раздражении механорецепторов, локализованных в устье полых и легочных вен. Их раздражение передается на центральные симпатические ядра продолговатого мозга, в результате чего происходит повышение тонической активности симпатического звена вегетативной нервной системы , и развивается рефлекторная тахикардия. Рефлекс Бейнбриджа направлен на увеличение минутного объема крови.

n. vagus.

β

Все сказанное о механизмах компенсации сердечной деятельности в одинаковой степени относится как к лево-, так и к правожелудочковой недостаточности. Исключением является рефлекс Парина, действие которого реализуется только при перегрузке правого желудочка, наблюдаемой при эмболии легочной артерии .

Рефлекс Ларина - это падение артериального давления , вызванное расширением артерий большого круга кровообращения, снижением минутного объема крови в результате возникающей брадикардии и уменьшением объема циркулирующей крови из-за депонирования крови в печени и селезенке. Кроме того, для рефлекса Парина характерно появление одышки, связанной с наступающей гипоксией мозга. Полагают, что рефлекс Парина реализуется за счет усиления тонического влияния n.vagus

К ним относятся компенсаторная гиперфункция и гипертрофия сердца. Эти механизмы являются неотъемлемыми компонентами большинства приспособительных реакций сердечно-сосудистой системы здорового организма, но в условиях патологии могут превратиться в звено патогенеза хронической сердечной недостаточности.

выступает как важный фактор компенсации при пороках сердца, артериальной гипертензии , анемии, гипертонии малого круга и других заболеваниях. В отличие от физиологической гиперфункции она является длительной и, что существенно, непрерывной. Несмотря на непрерывность, компенсаторная гиперфункция сердца может сохраняться в течение многих лет без явных признаков декомпенсации насосной функции сердца.

Иными словами, для осуществления работы в условиях нагрузки давлением мышца сердца использует гораздо больше энергии, чем для выполнения той же работы, связанной с нагрузкой объемом, а следовательно, при стойкой артериальной гипертензии гипертрофия сердца развивается быстрее, чем при увеличении объема циркулирующей крови. Например, при физической работе, высотной гипоксии, всех видах клапанной недостаточности, артериовенозных фистулах, анемии гиперфункция миокарда обеспечивается за счет увеличения минутного объема сердца. При этом систолическое напряжение миокарда и давление в желудочках возрастают незначительно, и гипертрофия развивается медленно. В то же время при гипертонической болезни , гипертензии малого круга, стено-

Гипертрофия миокарда -

Первая, аварийная, стадия

Вторая стадия -

Третья стадия

1. Процесс гипертрофии не распространяется на коронарные сосуды , поэтому число капилляров на единицу объема миокарда в гипертрофированном сердце уменьшается (рис. 15-11). Следовательно, кровоснабжение гипертрофированной сердечной мышцы оказывается недостаточным для выполнения механической работы.

Рис. 5-11.

рефлексе Бейнбриджа,

Особое место среди «разгрузочных» экстракардиальных рефлексов занимает рефлекс Китаева, который «запускается» при митральном стенозе. Дело в том, что в большинстве случаев проявления правожелудочковой недостаточности связаны с застойными явлениями в большом круге кровообращения, а левожелудочковой - в малом. Исключение составляет стеноз митрального клапана , при котором застойные явления в легочных сосудах вызваны не декомпенсацией левого желудочка, а препятствием току крови через

Рефлекс Китаева - это рефлекторный спазм легочных артериол в ответ на повышение давления в левом предсердии. В результате возникает «второй (функциональный) барьер», который первоначально играет защитную роль, предохраняя легочные капилляры от чрезмерного переполнения кровью. Однако затем этот рефлекс приводит к выраженному повышению давления в легочной артерии - развивается острая легочная гипертензия. Афферентное звено этого рефлекса представлено n. vagus,

нейрогуморальные механизмы,

Возрастание давления в левом предсердии (ЛП) и легочных венах при митральном пороке, как известно, приводит к раздражению заложенного в их стенках специфического рецепторного аппарата, что вызывает рефлекторное сужение легочных артериол, описанное как рефлекс Китаева. Это ведет, с одной стороны, к уменьшению застоя в капиллярах и венозном русле малого круга, а с другой - к повышению легочного сосудистого сопротивления и формированию легочной гипертензии (ЛГ) .

Рефлекс Китаева по мере прогрессирования порока из эпизодического при нагрузке, становится постоянным, приводя к формированию артериальной ЛГ. Спазм артериол снижает кровоток в системе малого круга и, следовательно, уменьшает застой в его венозной части, предотвращая отек легких. Поэтому формирование функционального барьера в легких у больных митральным пороком рассматривают как один из компенсаторных механизмов, регулирующих давление в легочных капиллярах в покое и, особенно, при нагрузках.

Среди нарушений ритма, сопровождающих пороки митрального клапана, особое место занимает мерцательная аритмия (МА) ввиду ее распространенности, выраженного отрицательного влияния на гемодинамику и физическую работоспособность. Причиной ее возникновения при митральных пороках является растяжение миокарда предсердий с дистрофическими изменениями и хронической перегрузкой. Гемодинамический аспект МА состоит в утрате предсердной составляющей (от 15 до 50%) сердечного выброса («гемодинамическая остановка предсердий») и неритмичности сокращений желудочков сердца, частота которых нередко бывает повышена в покое.

Целью нашего исследования было изучение взаимосвязи нарушений легочной гемодинамики и возникновения мерцательной аритмии у больных митральными пороками.

МАТЕРИАЛ И МЕТОДЫ

Обследовано 49 пациентов, страдавших митральными пороками, из них 31 женщина и 18 мужчин в возрасте от 27 до 52 лет (средний возраст 42,18±7,39 лет). Из общего числа 45 пациентов страдали сложным митральным пороком с преобладанием стеноза, 3 больных - с преобладанием недостаточности митрального клапана и один - без преобладания. Мерцательная аритмия была у 23 пациентов, у остальных ритм был синусовым (СР). Основной жалобой пациентов была одышка, при этом у 26 человек она проявлялась и в покое. У подавляющего числа больных - 45 человек этиологической причиной развития порока был ревматизм. Почти половина обследованных - 22 пациента относились к IIА стадии недостаточности кровообращения по классификации Стражеско-Василенко, остальные больные - к IIБ. Средний функциональный класс NYHA составил 3,5±0,2. Всем пациентам в отделе сердечно-сосудистой хирургии нашего института проведена хирургическая коррекция порока митрального клапана в условиях искусственного кровообращения: 35 пациентам установлен протез митрального клапана и 14 выполнена открытая митральная комиссуротомия.

До операции, а также через 1, 6 и 12 мес после оперативной коррекции порока проводили эхокардиографическое исследование на аппарате «Ultramark-9HDI» (ATL, США) в одно-, двухмерном, допплеровском и цветном допплеровском режимах с синхронной записью ЭКГ. Для расчета гемодинамических показателей использовали 5-7 комплексов с определением средних значений, что было особенно актуальным в случаях наличия у больного МА.

В нашем исследовании использовались следующие стандартные эхокардиографические показатели: частота сердечных сокращений (ЧСС, мин -1 .); конечный диастолический размер левого желудочка (КДР ЛЖ, см); конечный систолический размер левого желудочка (КСР ЛЖ, см); фракция выброса левого желудочка (ФВ, %); передне-задний размер левого предсердия (ЛП, см); передне-задний размер правого желудочка (ПЖ, см); ударный объем правого желудочка (УО ПЖ, мл/мин); минутный объем правого желудочка (МО ПЖ, л/мин); период предизгнания правого желудочка (ППИ ПЖ, мсек); период изгнания правого желудочка (ПИ ПЖ, мсек); отношение периода предизгнания к периоду изгнания правого желудочка (ППИ/ПИ, у.е.); гемодинамически эффективная площадь митрального отверстия (Sмо, см 2); систолическое давление в легочной артерии (СДЛА, мм. рт. ст.).

Статистическую обработку данных проводили с использованием программы STATISTICA версии 5.0 (StatSoft, Inc., США). Применяли t-критерий Стьюдента, используя двухвыборочный t-критерий для проверки гипотезы о равенстве двух генеральных средних двух независимых выборок и парный t-критерий при оценке количественных динамических изменений внутри одной группы пациентов (оценка связанных выборок). Для проверки гипотезы о нормальности распределения использовали c 2 - критерий Пирсона. При оценке гипотезы о равенстве двух генеральных дисперсий нормально распределенных совокупностей применяли F-критерий Фишера.

Данные представлены в виде среднего значения и его стандартного отклонения (M±d), р - достоверность межгрупповых отличий.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

До операции пациенты с СР имели достоверно более низкие ЧСС, диаметр ЛП, передне-задний размер ПЖ в сравнении с больными, имевшими МА (табл. 1). У этих больных до операции достоверно выше были УО и сократимость ПЖ в виде более низкого отношения периодов предизгнания и изгнания ПЖ. Однако МО ПЖ значимо не различался из-за нивелирующих друг друга соотношений УО и ЧСС в группах больных с СР и МА. Показатель СДЛА в подгруппе больных с МА было недостоверно выше. Эти данные не отличаются от результатов предшествующих исследований.

Таблица 1.

Состояние центральной гемодинамики у пациентов с СР и МА в дооперационном периоде

Показатель Группа СР (n=26) Группа МА (n=23) р
ЧСС, мин -1 62,4±6,1 75,1±16,6
КДР, см 4,80±1,28 4,94±0,70
КСР, см 3,52±0,76 3,68±0,65
ФВ, % 60,8±11,0 49,9±9,9
ЛП, см 4,44±0,78 5,39±1,03
Sмо, см 2 1,30±0,40 1,08±0,35
ПЖ, см 2,42±0,42 2,77±0,45
УО ПЖ, мл 61,5±19,96 41,7±7,8
МО ПЖ, л/мин 3,62±1,33 3,25±1,31
ППИ, мсек 149±15 156±19
ПИ, мсек 258±46 214±58
ППИ/ПИ, у.е. 0,58±0,13 0,74±0,24
СДЛА, мм рт. ст. 44,8±6,2 49,0±9,8

В послеоперационном периоде мы наблюдали определенную межгрупповую закономерность динамики изученных показателей: СДЛА в подгруппе МА достоверно снижалось уже через 1 мес после хирургической коррекции порока в сравнении с дооперационным периодом и продолжало снижаться на протяжении всего срока наблюдения, в то время как у больных с СР этот показатель достоверно снижался только к 12 мес после операции (рис. 1).

Кроме того, следует указать, что у больных с МА достоверно увеличивались УО и МО ПЖ при недостоверном улучшении сократимости ПЖ к 6 мес. после хирургической коррекции порока, тогда как в подгруппе с СР сократительная и насосная функция ПЖ достоверно увеличились только к сроку 12 мес. (рис. 2), что заставило нас искать объяснение обнаруженным явлениям.

Развивающиеся изменения системы легочного кровообращения, обусловленные митральным пороком, вызывают у части больных раннее компенсаторное возникновение легочного барьера путем включения рефлекса Китаева. Активная ЛГ и рефлекс Парина снижают МО ПЖ, ограничивая наполнение перегруженного ЛП давлением при стенозе или объемом при недостаточности митрального клапана.

Снижение притока крови в ЛП, вероятно, предотвращает или замедляет дальнейшую дилатацию предсердия и связанные с этим дегенеративные изменения в его миокарде. Как следствие, сохраняется СР (рис. 3). Такая концепция, как нам представляется, может объяснить дооперационное состояние сердечно-легочного аппарата у больных с МА и СР и направления изменений гемодинамики в результате хирургической коррекции порока.

Рис. 3. Гипотетическая схема возможных механизмов сохранения синусового ритма и развития мерцательной аритмии при митральном пороке.

Полученные нами данные о более раннем увеличении выброса ПЖ у больных с МА, очевидно объясняются исходно меньшей перегрузкой ПЖ давлением и снижением этой перегрузки непосредственно после коррекции порока и раннего уменьшения СДЛА. В то время как у больных с синусовым ритмом ЛГ, имеющая активный характер, уменьшается только к 12 мес. после операции.

Включение «второго барьера» лишь у части больных, вероятно, объясняется индивидуальными механизмами развития ЛГ в процессе формирования митрального порока.Таким образом, рефлекс Китаева не только предотвращает отек легких, но и способствует сохранению СР у больных митральными пороками за счет уменьшения перегрузки ЛП посредством снижения МО при увеличении давления в легочной артерии.

Мы полагаем, что наличие СР у больных митральными пороками, относящихся к III-IV функциональному классу по классификации NYHA, свидетельствует о включении «второго барьера» и может использоваться как дополнительный диагностический критерий в дооперационной оценке состояния системы кровообращения и прогнозировании результатов хирургической коррекции порока.

ЛИТЕРАТУРА

1. Амбарцумян Р.А., Гусакова Н.Ф. Аглинцян Т.С. и др. Микроциркуляторное кровоснабжение, обмен и структура миокарда предсердий при мерцательной аритмии у больных с митральным пороком // Кровоснабжение, метаболизм и функция органов при реконструктивных операциях. - Тезисы III Всесоюзной научной конференции. - Ереван, 1984. - С. 12-15.

2. Амосов Н.М., Бендет Я.А. Терапевтические аспекты кардиохирургии. - Киев: Здоров"я, 1990. - 288 с.

3. Булынин В.И. Клинические формы митрального стеноза. - Воронеж. - 1977. - 119 с.

4. Горенцвит И.Э. Возникновение стойкого мерцания предсердий при приобретенных пороках сердца // Кардиология. - 1980. - N 6. - С.53-56.

5. Дзяк В.Н. Мерцательная аритмия. - Киев: Здоров"я, 1979. - 190 с.

6. Кассирский Г.И., Петрунина Л.В., Зотова Л.М. Реабилитация больных после протезирования митрального клапана // Тер. архив. - 1984. - N 1. - С.91-95.

7. Китаев Ф.Я. О компенсации митральных пороков // Сов. мед. - 1931. - N 15. - С. 295-302.

8. Константинов Б.А. Физиологические и клинические основы хирургической кардиологии. - Л.: Наука, 1981. - 262с.

9. Королев Б.А., Добротин С.С., Кочедыкова Л.В. и др. Вопросы медицинской реабилитации больных, перенесших протезирование митрального клапана // Реабилитация при ишемической болезни сердца и пороках сердца. Тез. конф. - Горький, 1980. - С.120-121.

10. Маколкин В.И. Приобретенные пороки сердца. - М.: Медицина, 1986. -254 с.

11. Мухарлямов Н.М., Беленков Ю.Н., Атьков О.Ю., Соболь Ю.С. Ультразвуковая диагностика в кардиологии // Клиническая ультразвуковая диагностика: Руководство для врачей. / Под ред. Н.М.Мухарлямова. - М.: Медицина, 1987. - Т.1. - С. 7-179.

12. Рашмер Р.Ф. Динамика сердечно-сосудистой системы: Пер. с англ. - М.: Медицина, 1981. - 600с.

13. Рыбакова М.К. Стандартные эокардиографические позиции и измерения // Клиническое руководство по ультразвуковой диагностике / Под ред. В.В.Митькова, В.А.Сандрикова. - М.: Видар, 1998. - Т.5. - С. 46-68.

14. Шердукалова Л.Ф. Механизмы регуляции сердечного выброса и работы сердца при нарушении оттока крови из малого круга кровообращения // Кровообращение, 1980. - N 4. - С. 3-10.

15. Шиллер Н., Осипов М.А. Клиническая эхокардиография. - М.: Практика, 1993. - 347 с.

16. Brent B., Berger H., Matthay R., Mahler D., Pytlik L., Zaret B. Physiologic correlates of right ventricular ejection fraction in chronic obstructive pulmonary disease: a combined radionuclide and hemodynamic study // Amer. J. Cardiol. - 1982. - Vol. 50. - P. 255-262.

17. Cutaia M., Rounds S. Hypoxic pulmonary vasoconstriction. Physiologic significianse, mechanism and clinical relevance // Chest. 1990. - Vol. 97. - P. 706-718.

18. Edmands R., Greenspan K. Hemodynamic consequence of atrial fibrillation // Geriatrics. - 1971. - Vol. 1. - P. 99-107.

19. Feigenbaum H. Echocardiography. 5th ed. Malvern, PA, Lea and Febiger, 1994. - 495 p.

20. Onudarson P., Thorgeirsson G., Jonmundsson E. et al. Chronic atrial fibrillation - epidemiologic features and 14-years follow-up. A case control study // Europ. Heart J. - 1987. - Vol. 8. - P. 521-527.

21. Zatuchni J. Atrial fibrillation and left atrial size // Amer. Heart J. - 1988. - Vol. 115. - P. 1336-1348.

КИТАЕВА РЕФЛЕКС (Ф. Я Китаев, советский физиолог, 1875- 1935) - сужение артериол легких в ответ на повышение давления в левом предсердии и легочных венах. Рефлекс описан автором в 1931 г., Богарт (A. Bogaert) с сотр. в 1953 г. доказали его в эксперименте. Возникает при различной патологии, сопровождающейся повышением давления, в первую очередь в левом предсердии и легочных венах, но чаще всего при сужении левого предсердно-желудочкового отверстия, или, как принято называть в клин, практике, митральном стенозе (см. Пороки сердца приобретенные). Механизм возникновения рефлекса при митральном стенозе Ф. Я. Китаев объяснял раздражением барорецепторов стенки левого предсердия при ее растяжении, к-рое ведет к сосудосуживающим реакциям легочных артериол. Некоторые авторы рассматривают К. р. как защитный механизм, предохраняющий капилляры легкого от чрезмерного повышения давления в них, в связи с переполнением кровью. В начальных стадиях митрального стеноза К. р. носит преимущественно функц, характер, но может сопровождаться кровохарканьем и даже преходящим отеком легких (см.), чаще при физ. нагрузках или отрицательных эмоциях.

Однако длительное существование функц, сужения легочных артериол может переходить в морфол, изменения сосудистого русла легких, что приводит к различным гемодинамическим сдвигам. Данные катетеризации сердца (см.) подтвердили теоретические предпосылки механизма К. р.

Основные морфол, изменения легочных артериол характеризуются пролиферацией гладких мышц и гипертрофией средней оболочки их стенок, сужением просвета. На поздних стадиях митрального стеноза подобные изменения развиваются уже в ветвях легочной артерии. Замечена прямая связь между степенью повышения среднего давления в легочной артерии и уровнем морфологического поражения сосудистого русла. Так, при повышении среднелегочного давления до 50 мм рт. ст. (норма ок. 15 мм рт. ст.) морфол, изменения развиваются лишь в артериолах, при достижении давления до 100 мм рт. ст. - в артериальных ветвях.

Рентгенол, исследование легких при К. р. позволяет обнаружить увеличение тени их корней, понижение прозрачности легких, усиление легочного рисунка, иногда с появлением так наз. линий Керли, свидетельствующих об интерстициальном лимфостазе.

Существует точка зрения, что возникновение К. р. является пусковым механизмом в развитии клин, гемодинамических, морфол, и рентгенол. сдвигов при митральном стенозе, которые объединяются понятием так наз. второго барьера (первый барьер - сужение предсердно-желудочкового отверстия). Наличие второго барьера, его всесторонняя оценка всегда учитывается при установлении показаний к операции у больных, страдающих митральным стенозом.

М. А. Корендясев.

этим ухудшаются условия для поступления в клетки питательных веществ и выделения из кардиомиоцитов продуктов метаболизма.

3. В гипертрофированном сердце нарушается соотношение между объемами внутриклеточных структур. Так, увеличение массы митохондрий и саркоплазматического ретикулума (СПР) отстает от увеличения размеров миофибрилл, что способствует

ухудшению энергоснабжения кардиомиоцитов и сопровождается нарушением аккумуляции Са2 + в СПР. Возникает Са2 +-перегрузка кардиомиоцитов, что обеспечивает

формирование контрактуры сердца и способствует уменьшению ударного объема. Кроме того, Са2 +-перегрузка клеток миокарда повышает вероятность возникновения аритмий.

4. Проводящая система сердца и вегетативные нервные волокна, иннервирующие миокард, не подвергаются гипертрофии, что также способствует возникновению дисфункции гипертрофированного сердца.

5. Активируется апоптоз отдельных кардиомиоцитов, что способствует постепенному замещению мышечных волокон соединительной тканью (кардиосклероз).

В конечном итоге гипертрофия утрачивает приспособительное значение и перестает быть полезной для организма. Ослабление сократительной способности гипертрофированного сердца происходит тем скорее, чем сильнее выражены гипертрофия и морфологические изменения в миокарде.

Экстракардиальные механизмы компенсации функции сердца. В отличие от острой сердечной недостаточности роль рефлекторных механизмов экстренной регуляции насосной функции сердца при хронической сердечной недостаточности сравнительно невелика, поскольку нарушения гемодинамики развиваются постепенно на протяжении нескольких лет. Более или менее определенно можно говорить о рефлексе Бейнбриджа, который «включается» уже на стадии достаточно выраженной гиперволемии.

левое атриовентрикулярное отверстие - так называемым «первым (анатомическим) барьером». При этом застой крови в легких способствует развитию правожелудочковой недостаточности, в генезе которой рефлекс Китаева играет важную роль.

Рефлекс Китаева - это рефлекторный спазм легочных артериол в ответ на повышение давления в левом предсердии. В результате возникает «второй

(функциональный) барьер», который первоначально играет защитную роль, предохраняя легочные капилляры от чрезмерного переполнения кровью. Однако затем этот рефлекс приводит к выраженному повышению давления в легочной артерии - развивается острая легочная гипертензия. Афферентное звено этого рефлекса представлено n. vagus, a эфферентное - симпатическим звеном вегетативной нервной системы. Негативной стороной данной приспособительной реакции является подъем давления в легочной артерии, приводящий к увеличению нагрузки на правое сердце.

Однако ведущую роль в генезе долговременной компенсации и декомпенсации нарушенной сердечной функции играют не рефлекторные, а нейрогуморальные механизмы, важнейшим из которых является активация симпатоадреналовой системы и РААС. Говоря об активации симпатоадреналовой системы у пациентов с хронической сердечной недостаточностью, нельзя не указать, что у большинства из них уровень катехоламинов в крови и моче находится в пределах нормы. Этим хроническая сердечная недостаточность отличается от острой сердечной недостаточности.

Механизмы декомпенсации сердечной недостаточности

Параллельно с интра- и экстракардиальными компенсаторными изменениями, которые развиваются при сердечной недостаточности, появляются и постепенно прогрессируют повреждения сердечной мышцы, приводящие к снижению ее сократительной способности. На определенной стадии процесса такие явления могут быть обратимыми. При продолжении или усилении действия причинного фактора, вызвавшего сердечную недостаточность, а также при срыве механизмов компенсации развиваются необратимые диффузные изменения миокарда с характерной клинической картиной декомпенсированной сердечной недостаточности.

Патогенез сердечной недостаточности представляется следующим образом. Многочисленный ряд примеров патологии сер-

дечной деятельности (кардиомиопатии, нарушения коронарной перфузии и др.) индуцирует кислородное голодание миокарда. Известно, что в условиях нормального кровоснабжения важным энергетическим субстратом для сердечной мышцы являются свободные жирные кислоты, глюкоза и молочная кислота. Гипоксия приводит к нарушению процессов аэробного окисления субстратов в цикле Кребса, к угнетению окисления НАДН в дыхательной цепи митохондрий. Все это способствует накоплению недоокисленных продуктов метаболизма свободных жирных кислот и глюкозы (ацилКоА, лактат). Усиленное образование ацил-КоА в кардиомиоцитах негативно сказывается на энергетическом метаболизме клетки. Дело в том, что ацил-КоА является ингибитором аденилаттранслоказы - фермента, который осуществляет транспорт АТФ из митохондрий в саркоплазму. Аккумуляция ацил-КоА приводит к нарушению этого транспорта, усугубляя энергетический дефицит в клетке.

Единственным источником энергии для кардиомиоцитов становится анаэробный гликолиз, интенсивность которого в условиях гипоксии резко возрастает. Однако «коэффициент полезного действия» анаэробного гликолиза по сравнению с эффективностью энергопродукции в цикле Кребса намного ниже. В силу этого анаэробный гликолиз не в состоянии полностью возместить энергетические потребности клетки. Так, при анаэробном расщеплении одной молекулы глюкозы образуются всего две молекулы АТФ, в то время как при окислении глюкозы до углекислого газа и воды - 32 молекулы АТФ. Нехватка высокоэнергетических фосфатов (АТФ и креатинфосфата) приводит к нарушению энергозависимого процесса удаления ионов кальция из саркоплазмы кардиомиоцитов и возникновению кальциевой перегрузки миокарда.

В норме увеличение концентрации Ca2 + в кардиомиоцитах вызывает образование мостиков между цепочками актина и миозина, что является основой сокращения клеток. Вслед за этим происходит удаление избытка ионов кальция из саркоплазмы и развитие диастолы. Кальциевая перегрузка клеток миокарда при его ишемии ведет к остановке

процесса сокращения - расслабления в стадии систолы, формируется контрактура миокарда - состояние, при котором кардиомиоциты перестают расслабляться. Возникшая зона асистолии характеризуется повышенным тканевым напряжением, что ведет к сдавлению коронарных сосудов и связанному с этим усугублению дефицита коронарного кровотока.

Ионы Са активируют фосфолипазу А2 , которая катализирует расщепление фосфолипидов. В результате этого образуются одна молекула свободной жирной кислоты и одна молекула лизофосфатида. Свободные жирные кислоты обладают детергентоподобным действием и в случае избыточного их накопления в миокарде могут повреждать мембраны кардиомиоцитов. Еще более выраженный кардиотоксический эффект оказывают лизофосфатиды. Особенно токсичен лизофосфатидилхолин, который может провоцировать аритмии. В настоящее время роль свободных жирных кислот и лизофосфатидов в патогенезе ишемического повреждения сердца никем не оспаривается, однако молекулярная природа необратимого повреждения кардиомиоцитов не сводится только к накоплению этих веществ в клетках сердечной мышцы. Кардиотоксическими свойствами могут обладать и другие продукты метаболизма, например активные формы кислорода (АФК).

К АФК относятся супероксидный радикал (O2 *-) и гидроксильный радикал O2 *- , которые обладают высокой окислительной активностью. Источником АФК в кардиомиоцитах является дыхательная цепь митохондрий и прежде всего цитохромы, которые в условиях гипоксии переходят в восстановленное состояние и могут быть донорами электронов, «передавая» их молекулам кислорода с образованием не молекулы воды, как это происходит в норме, а супероксидного радикала (O2 *-). Кроме того, образование свободных радикалов катализируется ионами металлов с переменной валентностью (прежде всего ионами железа), которые всегда присутствуют в клетке. АФК взаимодействуют с молекулами белков и полиненасыщенных жирных кислот, превращая их в свободные радикалы. Вновь образованные радикалы могут, в свою очередь, взаимодействовать с другими молекулами белков и жирных кислот, индуцируя дальнейшее образование свободных радикалов. Таким образом, реакция может принимать цепной и разветвленный характер. Если пероксидации подвергаются белки ионных каналов, то происходит нарушение процессов ионного транспорта. Если гидроперекиси образуются из молекул ферментов, последние теряют свою каталитическую активность.

Образование гидроперекисей полиненасыщенных жирных кислот, входящих в молекулярную структуру мембранных фосфолипидов, способствует изменению биологических свойств мембран. В отличие от жирных кислот гидроперекиси являются водорастворимыми веществами, и появление их в структуре гидрофобного

фосфолипидного матрикса клеточных мембран приводит к формированию пор, пропускающих ионы и молекулы воды. Кроме того, изменяется активность мембраносвязанных ферментов.

Процесс возникновения гидроперекисей жирных кислот является одним из звеньев перекисного окисления липидов (ПОЛ), которое включает в себя свободнорадикальное образование альдегидов и кетонов - продуктов ПОЛ. Согласно концепции Ф.З. Меерсона, продукты ПОЛ обладают кардиотоксическими свойствами, их накопление в клетке приводит к повреждению сарколеммы, а также лизосомальных и митохондриальных мембран. На заключительном этапе повреждения, предшествующем гибели клеток, особая роль отводится активации протеолитических ферментов. Обычно эти энзимы находятся в

цитоплазме кардиомиоцитов в неактивном состоянии или локализованы внутри лизосом, мембраны которых изолируют их от структурных элементов клетки. В связи с этим в норме протеазы не оказывают цитотоксического действия. В условиях ишемии перегрузка кардиомиоцитов ионами кальция и закисление цитоплазмы за счет накопления лактата приводят к активации внутриклеточных протеаз. Кроме того, повышение проницаемости лизосомальных мембран под действием фосфолипаз и продуктов ПОЛ способствует выходу активных протеолитических ферментов в саркоплазму. Конечным звеном этой патогенетической цепочки является некроз кардиомиоцитов в зоне ишемии и их аутолиз.

Важно отметить, что первыми погибают только те кардиомиоциты, которые отличаются высокой интенсивностью энергетического метаболизма и соответственно повышенной потребностью в кислороде. В то же время фибробласты и клетки проводящей системы менее зависимы от доставки кислорода и сохраняют свою жизнеспособность. Функциональная активность фибробластов обеспечивает процессы рубцевания.

Клетки проводящей системы, сохраняя жизнеспособность в условиях кислородного голодания, существенно изменяют свои электрофизиологические характеристики, что может способствовать возникновению аритмий. В результате повреждения мембран и снижения образования АТФ изменяется активность К+ / Na+ -АТФазы, что сопровождается усиленным поступлением натрия в кардиомиоциты и выходом из них калия. Это увеличивает электрическую нестабильность миокарда и способствует развитию аритмий.

Гипоксическая сократительная дисфункция сердца усугубляется нарушением процессов нейрогуморальной регуляции функционального состояния миокарда. Сердечные боли, приступы аритмии и другие нарушения являются для организма стрессором, т.е. воздействием чрезмерной силы, на которое организм, как и на любое стрессорное воздействие, реагирует активацией симпатоадреналовой системы. При этом происходит выброс катехоламинов из надпочечников и симпатических нервных терминалей. Однако, как и любой другой компенсаторный процесс, активация симпатоадреналовой системы в конце концов приобретает негативную окраску. Наступает период декомпенсации. Схематично последовательность событий представлена на рисунке 15-12.

В настоящее время установлено, что при хронической активации симпатоадреналовой системы происходят постепенная Са2 +- перегрузка кардиомиоцитов и их контрактура, нарушается целостность сарколеммы. При гиперактивации адренергической системы формируется электрическая нестабильность миокарда. Последняя способствует возникновению фибрилляции желудочков сердца,

Роль симпатоадреналовой и ренин-ангиотензин-альдостероновой систем в патогенезе хронической сердечной недостаточности: ХСН - хроническая сердечная недостаточность; ЧСС - частота сердечных сокращений

поэтому каждый третий пациент при хронической сердечной недостаточности погибает внезапно, иногда сердечная смерть наступает на фоне внешнего благополучия и положительной клинической динамики.

Адренергическая тахикардия сопровождается повышением потребности миокарда в кислороде, что наряду с Са2 +-перегрузкой еще больше усугубляет энергетический дефицит в клетках миокарда. Включается защитно-приспособительный механизм, получивший название гибернации (спячки) кардиомиоцитов. Часть клеток перестает сокращаться и отвечать на внешние стимулы, потребляя при этом минимум энергии и экономя кислород для активно сокращающихся кардиомиоцитов. Таким образом, количество обеспечивающих насосную функцию сердца клеток миокарда может существенно уменьшиться, способствуя усугублению сердечной недостаточности.

Кроме того, гиперактивация симпатоадреналовой системы усиливает секрецию ренина почками, выступая в роли стимулятора РААС. Образующийся ангиотензин-II оказывает ряд негативных эффектов на сердечно-сосудистую систему. Он способствует увеличению адренореактивности сердца и сосудов, усиливая тем самым кардиотоксическое действие катехоламинов. Одновременно этот пептид увеличивает периферическое сопротивление кровеносных сосудов, что, безусловно, способствует увеличению постнагрузки на сердце и весьма негативно сказывается на гемодинамике. Кроме того, ангиотензин-II может самостоятельно или через активацию образования цитокинов (биологически активные вещества белковой природы, образующиеся в миокарде и других тканях) стимулировать программируемую гибель кардиомиоцитов («апоптоз»).

Наряду с отмеченным, повышение уровня ангиотензина-II негативно сказывается на состоянии водно-солевого гомеостаза, поскольку этот пептид активирует секрецию

альдостерона. В результате в организме задерживается избыточное количество воды и натрия. Задержка натрия повышает осмолярность крови, в ответ на которую происходит активация секреции антидиуретического гормона, что приводит к уменьшению диуреза и еще большей гидратации организма. В итоге повышается объем циркулирующей крови и увеличивается преднагрузка на сердце. Гиперволемия ведет к раздражению механорецепторов, локализованных в устье полых и легочных вен, «включается» рефлекс Бейнбриджа, возникает

рефлекторная тахикардия, что еще больше увеличивает нагрузку на миокард и потребность сердечной мышцы в кислороде.

Создается «порочный круг», разорвать который можно только с помощью определенных фармакологических воздействий. Ко всему этому присоединяется повышение гидростатического давления в микрососудистом русле, что способствует выходу жидкой части крови в ткани и формированию отеков. Последние сдавливают ткани, что усугубляет нарушение микроциркуляции и еще больше усиливает тканевую гипоксию. При дальнейшем прогрессировании недостаточности кровообращения нарушаются и другие виды обмена, в том числе и белковый, что приводит к дистрофическим изменениям в органах и тканях, нарушению их функции. В конечной стадии хронической сердечной недостаточности развиваются кахексия, маскируемая отеками, гипопротеинемия, появляются признаки почечной и печеночной декомпенсации.

15.3.3. Некоронарогенная патология сердца

Некоронарогенная патология сердечной мышцы неревматической этиологии

Миокардиодистрофии - это группа некоронарогенных заболеваний миокарда, возникающих под влиянием экстракардиальных факторов, основными проявлениями которых служат нарушения метаболизма и сократительной функции сердечной мышцы. Понятие миокардиодистрофии было введено в клиническую практику в 1936 г. академиком Г.Ф. Лангом. В качестве причин миокардиодистрофии рассматриваются анемия, недостаточное питание, авитаминоз, поражения печени и почек, нарушения отдельных видов обмена веществ, заболевания эндокринной системы, системные заболевания, интоксикации, физическое перенапряжение, инфекции.

В развитии миокардиодистрофии выделяют три стадии. I стадия - стадия адаптивной гиперфункции миокарда. Для нее характерен гиперкинетический вариант кровообращения, возникающий вследствие повышения тонуса симпатического и подавления парасимпатического звеньев вегетативной нервной системы. ВоII стадии формируются обменно-структурные изменения, приводящие к нарушению функции сердца и появлению клинических признаков недостаточности кровообращения. ВIII стадии развиваются тяжелые нарушения обмена веществ, структуры и функции сердечной мышцы, проявляющиеся стойкой недостаточностью кровообращения.

Миокардиты (неревматической этиологии) - это воспалительные поражения

сердечной мышцы, возникающие вследствие прямого или опосредованного аллергическими реакциями повреждающего действия инфекционных или неинфекционных агентов. Миокардиты развиваются при бактериальных, риккетсиозных, спирохетозных, грибковых, вирусных и других инфекциях. К

неинфекционным факторам, вызывающим миокардиты, относят некоторые лекарственные препараты - антибиотики и сульфаниламиды, лечебные сыворотки и вакцины.

Особое место среди различных видов воспалительных поражений миокарда занимает

идиопатический миокардит Абрамова-Финдлена. Данная форма заболевания характеризуется тяжелым течением с развитием кардиомегалии и выраженной сердечной недостаточности. Причина возникновения этого заболевания невыяснена. Обсуждается возможная роль вирусной инфекции и аллергических реакций, возникающих как после перенесенной инфекции, так и после приема лекарственных препаратов. Прогноз при идиопатическом миокардите неблагоприятен. Больные погибают быстро, в сроки от 2-3 месяцев до года. Причиной смерти обычно бывают нарушения сердечного ритма или сердечная недостаточность.

Основные проявления миокардиодистрофии и миокардитов, несмотря на их различную этиологию, имеют много общего и определяются выраженностью структурнофункциональных изменений сердца. Обе группы заболеваний характеризуются кардиалгией, симптомами сердечной недостаточности (тахикардия, одышка, акроцианоз, отеки), а также нарушениями сердечного ритма и проводимости. При миокардитах, поскольку это воспалительный процесс, выявляются лейкоцитоз, эозинофилия, увеличение СОЭ, а при миокардиодистрофии подобные изменения не обнаруживаются.

Кардиомиопатии. Термин «кардиомиопатия» введен W. Brigden в 1957 г. для обозначения некоронарогенных заболеваний миокарда неизвестной этиологии. В 1968 г. рабочая группа ВОЗ определила кардиомиопатии какзаболевания, характеризующиеся кардиомегалией и недостаточностью кровообращения. Кардиомиопатии подразделяются на дилатационные, гипертрофические и рестриктивные.

Дилатационная кардиомиопатия характеризуется значительным увеличением всех камер сердца и нарушением его систолической функции. Возможно, дилатационная кардиомиопатия является наследственно-детерминированным заболеванием. Так, ретро-

спективный анализ историй болезней 169 пациентов с дилатационной кардиомиопатией, проведенный в США, позволил установить положительный семейный анамнез в 7% случаев. Кроме того, были описаны случаи аутосомно-доминантного и аутосомнорецессивного наследования.

При патолого-анатомическом исследовании сердца выявляется значительная дилатация полостей. Масса сердца намного увеличена по сравнению с нормальной и может достигать 800-1000 г. Единственно возможное радикальное лечение дилатационной кардиомиопатии заключается в проведении трансплантации сердца. Симптоматическая терапия направлена на лечение сердечной недостаточности.

Гипертрофическая кардиомиопатия характеризуется выраженной гипертрофией миокарда с преимущественным нарушением его диастолической функции.

Гипертрофическая кардиомиопатия относится к генетически обусловленным заболеваниям с аутосомнодоминантным характером наследования и высокой степенью пенетрантности. Течение заболевания может напоминать клапанные пороки сердца, гипертрофию миокарда при артериальной гипертензии или ишемической болезни сердца. Часто истинный диагноз устанавливается только во время патологоанатомического исследования, когда выявляются асимметричная гипертрофия межжелудочковой перегородки и уменьшение полости левого желудочка.

Патогенез гемодинамических изменений при гипертрофической кардиомиопатии обусловлен нарушениями диастолической функции левого желудочка, движения стенок которого становятся некоординированными и неравномерными. Гипертрофия миокарда в сочетании с гипоксией сердечной мышцы становится причиной электрофизиологической гетерогенности сердца и создает условия для возникновения аритмий. Именно поэтому у пациентов с гипертрофической кардиомиопатией чаще, чем при других видах кардиомиопатии, наступает фибрилляция и внезапная смерть.

Рестриктивная кардиомиопатия объединяет два заболевания, которые ранее описывались самостоятельно: эндомиокардиальный фиброз и фибропластический париетальный эндокардит Леффлера. Основным звеном патогенеза нарушений гемодинамики при рестриктивной кардиомиопатии, как и при гипертрофической кардиомиопатии, является нарушение диастолической функции миокарда. Однако при гипертрофической кардиомиопатии это проис-

ходит в результате перегрузки кардиомиоцитов ионами кальция, а при рестриктивной кардиомиопатии связано с утолщением эндокарда и фиброзным перерождением миокарда. Для рестриктивной кардиомиопатии характерны образование тромбов в полостях желудочков и поражение митрального клапана в виде прорастания створок фиброзной тканью с последующей кальцификацией.

Патогенетически обоснованное лечение рестриктивной кардиомиопатии должно быть направлено на борьбу с сердечной недостаточностью. Хирургическое лечение заключается в иссечении плотной фиброзной ткани и протезировании клапанов по показаниям.

Стрессорная кардиомиопатия - особая форма поражения миокарда. Характеризуется диффузными изменениями, которые возникают после длительного, многочасового экстремального воздействия на организм. В 1974 г. шведский физиолог Johansson для обозначения стрессорного повреждения сердца предложил использовать термин«стрессорная кардиомиопатия». Это заболевание характеризуется появлением дистрофических изменений в клетках миокарда вплоть до некроза отдельных кардиомиоцитов. В начале 1970-х гг. американским физиологом Бернардом Лауном было установлено, что стрессорная кардиомиопатия сопровождается снижением электрической стабильности сердца. Возникающая в результате стресса электрическая нестабильность сердца способствует возникновению тяжелых желудочковых аритмий, которые могут закончиться внезапной сердечной смертью (Б. Лаун). На вскрытии у таких пациентов при макроскопическом исследовании сердца очень часто не удается идентифицировать никаких патоморфологических изменений. Причиной стрессорной электрической нестабильности сердца является гиперактивация симпатоадреналовой системы. Патогенез стрессорного повреждения сердца очень сходен с патогенезом его ишемического повреждения.

Инфекционный эндокардит - заболевание, возникающее в результате инфекционного поражения эндокарда. Термин «инфекционный эндокардит» применяется с 1966 г. вместо ранее употреблявшихся терминов «бактериальный» и «затяжной септический эндокардит».

Основными возбудителями заболевания считаются зеленящий стрептококк и золотистый стафилококк. На долю этих микроорганизмов приходится около 80% случаев инфекционного эндокардита. Всего выявлено 119 микроорганизмов, способных привести

к развитию этого заболевания, которое начинается с сепсиса. При этом происходит бактериальное поражение клапанов сердца, чаще аортального и реже - митрального, трикуспидального и клапана легочной артерии. После внедрения микроорганизмов в ткань эндокарда происходит дополнительное отложение тромбоцитов и фибрина в этой зоне, что в определенной мере ограничивает контакт возбудителя с внутренней средой организма.

Формирование локальных очагов инфекции считается пусковым механизмом ряда патогенетически значимых процессов в организме, для которых характерны: 1) постоянное поступление инфекционного агента в кровеносное русло с развитием эпизодов бактериемии, вирусемии, проявляющееся усталостью, снижением массы тела, потерей аппетита, лихорадкой, развитием анемии, спленомегалией; 2) местное развитие микробных вегетаций, вызывающее нарушение функции сердца, абсцессы фиброзного клапанного кольца, перикардиты, аневризмы синуса Вальсальвы, перфорацию клапана; 3) отрыв фрагментов микробных вегетаций, попадание их в системный кровоток с развитием бактериальных эмболий.

Заболевания перикарда

Перикардиты - воспалительное поражение серозных оболочек, ограничивающих перикардиальную полость. По этиологии перикардиты подразделяют на инфекционные (туберкулезный, бактериальный, вирусный) и асептические (постинфарктный перикардит Дресслера, уремический и др.). Все перикардиты принято подразделять на экссудативные и сухие (слипчивые), патогенез которых имеет существенные различия.

Экссудативный перикардит обычно протекает остро и начинается с повышения температуры, развития лейкоцитоза и увеличения СОЭ. К этим симптомам воспаления присоединяются патологические проявления, связанные с накоплением экссудата в плевральной полости. В нормальных условиях в полости перикарда находится 2-5 мл жидкости. При выраженной экссудации и быстром увеличении количества жидкости в полости перикарда ее объем может составить 250-400 мл. Известны случаи, когда у хронических больных во время однократной пункции удаляли до 10 л экссудата. Если экссудат накапливается очень быстро, возникает опасность резкого нарушения гемодинамики -тампонады серд-

ца, которая развивается в результате сдавления сердца выпотом, с последующим падением сердечного выброса и формированием острой сердечной недостаточности. Она проявляется выраженной нарастающей одышкой до 40-60 дыханий в минуту, частым нитевидным пульсом, снижением систолического артериального давления.

Слипчивый перикардит часто называют констриктивным перикардитом,поскольку он характеризуется сдавлением миокарда патологически измененной околосердечной сумкой. Сухой перикардит может развиться после экссудативного (часто недиагностированного) перикардита, однако бывает и первичным. По мере развития заболевания в полости перикарда образуются вначале нежные спайки, которые не влияют на работу сердца и общую гемодинамику, но могут провоцировать болевой синдром. Изменение гемодинамики связано в первую очередь с нарушением заполнения сердца

кровью в период диастолы. Это происходит вследствие сдавления фиброзной тканью верхней и нижней полых вен. Мощные спайки могут сдавливать и миокард, затрудняя его полное расслабление в фазу диастолы. Позже спайки, достигающие толщины 1 см и более, могут полностью облитерировать полость перикарда. На заключительных этапах заболевания в рубцовой ткани откладываются соли извести, возникает кальциноз, формируется «панцирное сердце».

Заболевания ревматической природы

Ревматизм - это системное заболевание соединительной ткани.

Происхождение этого заболевания продолжает вызывать споры и дискуссии, поскольку оно поражает всю соединительнотканную систему, органные проявления его могут быть самыми различными (артриты, васкулиты, ревмокардит и др.). Тем не менее наиболее часто болезнь поражает сердце и суставы. По образному выражению французского врача XIX столетия Лассега, «ревматизм лижет суставы и кусает сердце».

В этиологии ревматизма решающее значение придается β-гемолитическому стрептококку группы А. Это заболевание развивается в организме, особо реагирующем на стрептококковую инфекцию. Оно возникает у лиц с генетической недостаточностью иммунитета к стрептококку (наследственная предрасположенность), что привело к возникновению понятия «семейный ревматизм». Хотя стрептококк и рассматривается в качестве основного

этиологического фактора ревматизма, тем не менее с точки зрения классической инфекционной патологии его нельзя считать возбудителем данного заболевания. Более распространенными являются представления об инфекционно-аллергической природе ревматизма. У лиц с генетически детерминированной недостаточностью иммунитета к стрептококку обострение хронической инфекции приводит к накоплению высокого титра иммунных комплексов (стрептококковый антиген + антитело + комплемент). Циркулируя в кровеносной системе, они фиксируются в стенке сосудов микроциркуляторного русла и повреждают их. В результате облегчается поступление антигенов возбудителя и белков в соединительную ткань, что способствует ее деструкции (аллергические реакции немедленного типа). Из-за общности антигенного строения стрептококка и соединительной ткани сердца иммунные реакции в оболочках последнего повреждают их с образованием аутоантигенов и антикардиальных аутоантител. Ткани сердца связывают как противокардиальные, так и противострептококковые антитела. Одни аутоантитела при ревматизме реагируют с сердечным антигеном, другие перекрестно - с мембраной стрептококка. Образование иммунных комплексов при этом приводит к развитию хронического воспаления в сердце(ревмокардиту).

Кроме гуморального иммунитета, при ревматизме страдает и клеточный иммунитет. В результате образуется клон сенсибилизированных лимфоцитов-киллеров, несущих на себе фиксированные антитела к сердечной мышце и эндокарду. Эти лимфоциты способны повреждать ткани сердца по типу аллергической реакции IV или клеточноопосредованного типа, т.е. гиперчувствительности замедленного типа.

Течение ревматизма имеет хронический характер, периоды ремиссии чередуются с периодами обострения. С каждой новой атакой ревматизма экстракардиальные проявления становятся менее яркими, а ведущее значение приобретают изменения,

Здоровый организм обладает многообразными механизмами, обеспечивающими своевременную разгрузку сосудистого русла от избытка жидкости. При сердечной недостаточности «включаются» компенсаторные механизмы, направленные на сохранение нормальной гемодинамики. Эти механизмы в условиях острой и хронической недостаточности кровообращения имеют много общего, вместе с тем между ними отмечаются существенные различия.

Как и при острой, так и при хронической сердечной недостаточности все эндогенные механизмы компенсации гемодинамических нарушений можно подразделить на интракардиальные: компенсаторная гиперфункция сердца (механизм Франка-Старлинга, гомеометрическая гиперфункция), гипертрофия миокарда и экстракардиальные: разгрузочные рефлексы Бейнбриджа, Парина, Китаева, активация выделительной функции почек, депонирование крови в печени и селезенке, потоотделение, испарение воды со стенок легочных альвеол, активация эритропоэза и др. Такое деление в некоторой степени условно, поскольку реализация как интра-, так и экстракардиальных механизмов находится под контролем нейрогуморальных регуляторных систем.

Механизмы компенсации гемодинамических нарушений при острой сердечной недостаточности. На начальной стадии систолической дисфункции желудочков сердца включаются интракардиальные факторы компенсации сердечной недостаточности, важнейшим из которых является механизм Франка-Старлинга (гетерометрический механизм компенсации, гетерометрическая гиперфункция сердца). Реализацию его можно представить следующим образом. Нарушение сократительной функции сердца влечет за собой уменьшение ударного объема крови и гипоперфузию почек. Это способствует активации РААС, вызывающей задержку воды в организме и увеличение объема циркулирующей крови. В условиях возникшей гиперволемии происходит усиленный приток венозной крови к сердцу, увеличение диастолического кровенаполнения желудочков, растяжение миофибрилл миокарда и компенсаторное повышение силы сокращения сердечной мышцы, которое обеспечивает прирост ударного объема. Однако если конечное диастолическое давление повышается более чем на 18-22 мм рт.ст. возникает чрезмерное перерастяжение миофибрилл. В этом случае компенсаторный механизм Франка-Старлинга перестает действовать, а дальнейшее увеличение конечного диастолического объема или давления вызывает уже не подъем, а снижение ударного объема.

Наряду с внутрисердечными механизмами компенсации при острой левожелудочковой недостаточности запускаются разгрузочные экстракардиальные рефлексы, способствующие возникновению тахикардии и увеличению минутного объема крови (МОК). Одним из наиболее важных сердечно-сосудистых рефлексов, обеспечивающих увеличение МОК, является рефлекс Бейнбриджа увеличение частоты сердечных сокращений в ответ на увеличение объема циркулирующей крови. Этот рефлекс реализуется при раздражении механорецепторов, локализованных в устье полых и легочных вен. Их раздражение передается на центральные симпатические ядра продолговатого мозга, в результате чего происходит повышение тонической активности симпатического звена вегетативной нервной системы, и развивается рефлекторная тахикардия. Рефлекс Бейнбриджа направлен на увеличение минутного объема крови.

Рефлекс Бецольда-Яриша - это рефлекторное расширение артериол большого круга кровообращения в ответ на разражение механо- и хеморецепторов, локализованных в желудочках и предсердиях.

В результате возникает гипотония, которая сопровождается бра-

дикардией и временной остановкой дыхания. В реализации этого рефлекса принимают участие афферентные и эфферентные волокна n. vagus. Этот рефлекс направлен на разгрузку левого желудочка.

К числу компенсаторных механизмов при острой сердечной недостаточности относится и повышение активности симпатоадреналовой системы, одним из звеньев которого является высвобождение норадреналина из окончаний симпатических нервов, иннервирующих сердце и почки. Наблюдаемое при этом возбуждение β -адренорецепторов миокарда ведет к развитию тахикардии, а стимуляция подобных рецепторов в клетках ЮГА вызывает усиленную секрецию ренина. Другим стимулом секреции ренина является снижение почечного кровотока в результате вызванной катехоламинами констрикции артериол почечных клубочков. Компенсаторное по своей природе усиление адренергического влияния на миокард в условиях острой сердечной недостаточности направлено на увеличение ударного и минутного объемов крови. Положительный инотропный эффект оказывает также ангиотензин-II. Однако эти компенсаторные механизмы могут усугубить сердечную недостаточность, если повышенная активность адренергической системы и РААС сохраняется достаточно продолжительное время (более 24 ч).

Все сказанное о механизмах компенсации сердечной деятельности в одинаковой степени относится как к лево-, так и к правожелудочковой недостаточности. Исключением является рефлекс Парина, действие которого реализуется только при перегрузке правого желудочка, наблюдаемой при эмболии легочной артерии.

Рефлекс Ларина - это падение артериального давления, вызванное расширением артерий большого круга кровообращения, снижением минутного объема крови в результате возникающей брадикардии и уменьшением объема циркулирующей крови из-за депонирования крови в печени и селезенке. Кроме того, для рефлекса Парина характерно появление одышки, связанной с наступающей гипоксией мозга. Полагают, что рефлекс Парина реализуется за счет усиления тонического влияния n.vagus на сердечно-сосудистую систему при эмболии легочных артерий.

Механизмы компенсации гемодинамических нарушений при хронической сердечной недостаточности. Основным звеном патогенеза хронической сердечной недостаточности является, как известно, постепенно нарастающее снижение сократительной функции ми-

окарда и падение сердечного выброса. Происходящее при этом уменьшение притока крови к органам и тканям вызывает гипоксию последних, которая первоначально может компенсироваться усиленной тканевой утилизацией кислорода, стимуляцией эритропоэза и т.д. Однако этого оказывается недостаточно для нормального кислородного обеспечения органов и тканей, и нарастающая гипоксия становится пусковым механизмом компенсаторных изменений гемодинамики.

Интракардиальные механизмы компенсации функции сердца. К ним относятся компенсаторная гиперфункция и гипертрофия сердца. Эти механизмы являются неотъемлемыми компонентами большинства приспособительных реакций сердечно-сосудистой системы здорового организма, но в условиях патологии могут превратиться в звено патогенеза хронической сердечной недостаточности.

Компенсаторная гиперфункция сердца выступает как важный фактор компенсации при пороках сердца, артериальной гипертензии, анемии, гипертонии малого круга и других заболеваниях. В отличие от физиологической гиперфункции она является длительной и, что существенно, непрерывной. Несмотря на непрерывность, компенсаторная гиперфункция сердца может сохраняться в течение многих лет без явных признаков декомпенсации насосной функции сердца.

Увеличение внешней работы сердца, связанное с подъемом давления в аорте (гомеометрическая гиперфункция), приводит к более выраженному возрастанию потребности миокарда в кислороде, чем перегрузка миокарда, вызванная повышением объема циркулирующей крови (гетерометрическая гиперфункция). Иными словами, для осуществления работы в условиях нагрузки давлением мышца сердца использует гораздо больше энергии, чем для выполнения той же работы, связанной с нагрузкой объемом, а следовательно, при стойкой артериальной гипертензии гипертрофия сердца развивается быстрее, чем при увеличении объема циркулирующей крови. Например, при физической работе, высотной гипоксии, всех видах клапанной недостаточности, артериовенозных фистулах, анемии гиперфункция миокарда обеспечивается за счет увеличения минутного объема сердца. При этом систолическое напряжение миокарда и давление в желудочках возрастают незначительно, и гипертрофия развивается медленно. В то же время при гипертонической болезни, гипертензии малого круга, стено-

зах клапанных отверстий развитие гиперфункции связано с повышением напряжения миокарда при незначительно измененной амплитуде сокращений. В этом случае гипертрофия прогрессирует достаточно быстро.

Гипертрофия миокарда - это увеличение массы сердца за счет увеличения размеров кардиомиоцитов. Существуют три стадии компенсаторной гипертрофии сердца.

Первая, аварийная, стадия характеризуется, прежде всего, увеличением интенсивности функционирования структур миокарда и, по сути, представляет собой компенсаторную гиперфункцию еще не гипертрофированного сердца. Интенсивность функционирования структур - это механическая работа, приходящаяся на единицу массы миокарда. Увеличение интенсивности функционирования структур закономерно влечет за собой одновременную активацию энергообразования, синтеза нуклеиновых кислот и белка. Указанная активация синтеза белка происходит таким образом, что вначале увеличивается масса энергообразующих структур (митохондрий), а затем - масса функционирующих структур (миофибрилл). В целом увеличение массы миокарда приводит к тому, что интенсивность функционирования структур постепенно возвращается к нормальному уровню.

Вторая стадия - стадия завершившейся гипертрофии - характеризуется нормальной интенсивностью функционирования структур миокарда и соответственно нормальным уровнем энергообразования и синтеза нуклеиновых кислот и белков в ткани сердечной мышцы. При этом потребление кислорода на единицу массы миокарда остается в границах нормы, а потребление кислорода сердечной мышцей в целом увеличено пропорционально возрастанию массы сердца. Увеличение массы миокарда в условиях хронической сердечной недостаточности происходит за счет активации синтеза нуклеиновых кислот и белков. Пусковой механизм этой активации изучен недостаточно. Считается, что определяющую роль здесь играет усиление трофического влияния симпатоадреналовой системы. Эта стадия процесса совпадает с длительным периодом клинической компенсации. Содержание АТФ и гликогена в кардиомиоцитах также находится при этом в пределах нормы. Подобные обстоятельства придают относительную устойчивость гиперфункции, но вместе с тем не предотвращают исподволь развивающихся в данной стадии нарушений обмена и структуры миокарда. Наиболее ранними признаками таких нарушений являются

значительное увеличение концентрации лактата в миокарде, а также умеренно выраженный кардиосклероз.

Третья стадия прогрессирующего кардиосклероза и декомпенсации характеризуется нарушением синтеза белков и нуклеиновых кислот в миокарде. В результате нарушения синтеза РНК, ДНК и белка в кардиомиоцитах наблюдается относительное уменьшение массы митохондрий, что ведет к торможению синтеза АТФ на единицу массы ткани, снижению насосной функции сердца и прогрессированию хронической сердечной недостаточности. Ситуация усугубляется развитием дистрофических и склеротических процессов, что способствует появлению признаков декомпенсации и тотальной сердечной недостаточности, завершающейся гибелью пациента. Компенсаторная гиперфункция, гипертрофия и последующая декомпенсация сердца - это звенья единого процесса.

Механизм декомпенсации гипертрофированного миокарда включает следующие звенья:

1. Процесс гипертрофии не распространяется на коронарные сосуды, поэтому число капилляров на единицу объема миокарда в гипертрофированном сердце уменьшается (рис. 15-11). Следовательно, кровоснабжение гипертрофированной сердечной мышцы оказывается недостаточным для выполнения механической работы.

2. Вследствие увеличения объема гипертрофированных мышечных волокон уменьшается удельная поверхность клеток, в связи с

Рис. 5-11. Гипертрофия миокарда: 1 - миокард здорового взрослого; 2 - гипертрофированный миокард взрослого (масса 540 г); 3 - гипертрофированный миокард взрослого (масса 960 г)

этим ухудшаются условия для поступления в клетки питательных веществ и выделения из кардиомиоцитов продуктов метаболизма.

3. В гипертрофированном сердце нарушается соотношение между объемами внутриклеточных структур. Так, увеличение массы митохондрий и саркоплазматического ретикулума (СПР) отстает от увеличения размеров миофибрилл, что способствует ухудшению энергоснабжения кардиомиоцитов и сопровождается нарушением аккумуляции Са 2 + в СПР. Возникает Са 2 +-перегрузка кардиомиоцитов, что обеспечивает формирование контрактуры сердца и способствует уменьшению ударного объема. Кроме того, Са 2 +-перегрузка клеток миокарда повышает вероятность возникновения аритмий.

4. Проводящая система сердца и вегетативные нервные волокна, иннервирующие миокард, не подвергаются гипертрофии, что также способствует возникновению дисфункции гипертрофированного сердца.

5. Активируется апоптоз отдельных кардиомиоцитов, что способствует постепенному замещению мышечных волокон соединительной тканью (кардиосклероз).

В конечном итоге гипертрофия утрачивает приспособительное значение и перестает быть полезной для организма. Ослабление сократительной способности гипертрофированного сердца происходит тем скорее, чем сильнее выражены гипертрофия и морфологические изменения в миокарде.

Экстракардиальные механизмы компенсации функции сердца. В отличие от острой сердечной недостаточности роль рефлекторных механизмов экстренной регуляции насосной функции сердца при хронической сердечной недостаточности сравнительно невелика, поскольку нарушения гемодинамики развиваются постепенно на протяжении нескольких лет. Более или менее определенно можно говорить о рефлексе Бейнбриджа, который «включается» уже на стадии достаточно выраженной гиперволемии.

Особое место среди «разгрузочных» экстракардиальных рефлексов занимает рефлекс Китаева, который «запускается» при митральном стенозе. Дело в том, что в большинстве случаев проявления правожелудочковой недостаточности связаны с застойными явлениями в большом круге кровообращения, а левожелудочковой - в малом. Исключение составляет стеноз митрального клапана, при котором застойные явления в легочных сосудах вызваны не декомпенсацией левого желудочка, а препятствием току крови через

левое атриовентрикулярное отверстие - так называемым «первым (анатомическим) барьером». При этом застой крови в легких способствует развитию правожелудочковой недостаточности, в генезе которой рефлекс Китаева играет важную роль.

Рефлекс Китаева - это рефлекторный спазм легочных артериол в ответ на повышение давления в левом предсердии. В результате возникает «второй (функциональный) барьер», который первоначально играет защитную роль, предохраняя легочные капилляры от чрезмерного переполнения кровью. Однако затем этот рефлекс приводит к выраженному повышению давления в легочной артерии - развивается острая легочная гипертензия. Афферентное звено этого рефлекса представлено n. vagus, a эфферентное - симпатическим звеном вегетативной нервной системы. Негативной стороной данной приспособительной реакции является подъем давления в легочной артерии, приводящий к увеличению нагрузки на правое сердце.

Однако ведущую роль в генезе долговременной компенсации и декомпенсации нарушенной сердечной функции играют не рефлекторные, а нейрогуморальные механизмы, важнейшим из которых является активация симпатоадреналовой системы и РААС. Говоря об активации симпатоадреналовой системы у пациентов с хронической сердечной недостаточностью, нельзя не указать, что у большинства из них уровень катехоламинов в крови и моче находится в пределах нормы. Этим хроническая сердечная недостаточность отличается от острой сердечной недостаточности.

Компенсаторные механизмы

Информация, релевантная «Компенсаторные механизмы»

При любой эндокринной патологии, как и при всех заболеваниях, наряду с нарушением функций развиваются компенсаторно-приспособительные механизмы. Например, при гемикастрации – компенсаторная гипертрофия яичника или семенника; гипертрофия и гиперплазия секреторных клеток коркового вещества надпочечника при удалении части паренхимы железы; при гиперсекреции глюкокортикоидов – уменьшение их

Размер почки уменьшен за счет гибели нефронов. Компенсаторные механизмы велики: при 50% гибели нефронов ХПН еще не развивается. Запустевают клубочки, гибнут канальцы, идут фибропластические процессы: гиалиноз, склероз оставшихся клубочков. Относительно сохранившихся клубочков существуют 2 точки зрения: 1) Они берут на себя функцию тех нефронов, которые погибли (1:4) - клетки увеличиваются в

Физиологическая реакция организма в ответ на изменения во времени подразделяется на три фазы: 1) немедленная химическая реакция буферных систем; 2) дыхательная компенсация (при метаболических нарушениях кислотно-основного состояния); 3) более медленная, но более эффективная компенсаторная реакция почек, способная ТАБЛИЦА 30-1. Диагностика нарушений кислотно-основного состояния Нарушение

Следует выделить три основные группы механизмов выздоровления: 1) срочные (неустойчивые, «аварийные») защитно-компенсаторные реакции, возникающие в первые секунды и минуты после воздействия и представляющие собой главным образом защитные рефлексы, с помощью которых организм освобождается от вредных веществ и удаляет их (рвота; кашель, чиханье и т.д.). К этому типу реакций следует отнести

При описании нарушений кислотно-основного состояния и компенсаторных механизмов необходимо использовать точную терминологию (табл. 30-1). Суффикс «оз» отражает патологический процесс, приводящий к изменению рН артериальной крови. Нарушения, которые приводят к снижению рН, называют ацидозом, тогда как состояния, которые вызывают увеличение рН,- алкалозом. Если первопричиной нарушений является

Терминальные состояния - это своеобразный патологический симптомокомплекс, проявляющийся тяжелейшими нарушениями функций органов и систем, с которыми организм без помощи извне справиться не может. Другими словами это состояния пограничные между жизнью и смертью. К ним относятся все стадии умирания и ранние этапы постреанимационного периода. Умирание может быть следствием развития любого тяжелого

Недостаточность внешнего дыхания (НВД) – это патологическое состояние, развивающееся вследствие нарушения внешнего дыхания, при котором не обеспечивается нормальный газовый состав артериальной крови или он достигается в результате включения компенсаторных механизмов, приводящих к ограничению резервных возможностей организма. Формы недостаточности внешнего дыхания

Повышение рН артериальной крови угнетает дыхательный центр. Снижение альвеолярной вентиляции приводит к увеличению PaCO2 и сдвигу рН артериальной крови в сторону нормы. Компенсаторная реакция дыхания при метаболическом алкалозе менее предсказуема, чем при метаболическом ацидозе. Гипоксемия, развивающаяся в результате прогрессирующей гиповентиляции, в конечном счете активирует чувствительные к

Первый ЭКГ признак Поскольку экстрасистола - это внеочередное возбуждение, то на ЭКГ ленте месторасположение ее будет раньше предполагаемого очередного синусового импульса. Поэтому пред экстрасистолический интервал, т.е. интервал R(синусовый) - R(экстрасистолический) будет меньше интервала R(синусовый) - R(синусовый). Рис. 68. Предсердная экстрасистола. В отведении III

Активный экстрасистолический очаг находится в желудочках. Первый ЭКГ признак Этот признак характеризует экстрасистолу как таковую, вне зависимости от места расположения эктопического очага. Краткая запись - интервал R(с)-R(э)

Компенсаторные механизмы сердечной недостаточности. Сердечные гликозиды - дигоксин

Компенсаторные механизмы . активируемые во время ЗСН, проявляются в виде положительной инотропии. Повышение силы сокращения мышц ([+dP/dt]max) носит название положительной инотропии. Она возникает как следствие усиленной симпатической стимуляции сердца и активации (З1-адренорецепторов желудочков и ведет к повышению эффективности систолического выброса. Но благоприятный эффект этого компенсаторного механизма не может поддерживаться долго. Развивается недостаточность в результате перегрузки желудочков, возникающей вследствие повышения давления в желудочках при их наполнении, систолического стресса стенки и повышенной потребности миокарда в энергии.

Лечение застойной сердечной недостаточности . Существует две фазы ЗСН: острая и хроническая. Лекарственная терапия должна не только облегчить симптомы заболевания, но и снизить смертность. Эффект лекарственной терапии наиболее благоприятен в тех случаях, когда ЗСН возникла вследствие кардиомиопатии или артериальной гипертензии. Цель лечения состоит в том, чтобы:

Уменьшить застой (отеки);

Улучшить систолическую и диастолическую функции сердца. Для достижения этой цели используют различные лекарственные средства.

Сердечные гликозиды используют для лечения сердечной недостаточности более 200 лет. Дигоксин - прототипичный сердечный гликозид, экстрагируемый из листьев пурпурной и белой наперстянки (Digitalis purpurea и D. lanata соответственно). Дигоксин - наиболее распространенный препарат из группы сердечных гликозидов, применяемых в США.


Все сердечные гликозиды обладают сходной химической структурой. Дигоксин, дигиталис и оубаин содержат агликоновое стероидное ядро, имеющее значение для фармакологической активности, а также ненасыщенное, связанное с С17 лактоновое кольцо, обладающее кардиотоническим действием, и связанный с С3 углеводный компонент (сахар), влияющий на активность и фармакокинетические свойства гликозидов.

Сердечные гликозиды ингибируют мембраносвязанную Nа+/К+-АТФазу, улучшая симптоматику ЗСН. Эффекты сердечных гликозидов на молекулярном уровне обусловлены ингибированием мембраносвя-занной Nа+/К+-АТФазы. Этот фермент участвует в создании мембранного потенциала покоя большинства возбудимых клеток посредством выведения трех ионов Na+ из клетки в обмен на поступление двух ионов К+ в клетку против градиента концентрации, тем самым создавая высокую концентрацию К+ (140 мМ) и низкую концентрацию Na+ (25 мМ). Энергию для этого насосного эффекта дает гидролиз АТФ. Ингибирование насоса приводит к повышению внутриклеточной цитоплазматической концентрации Na+.

Повышение концентрации Na+ ведет к ингибированию мембраносвязанного Ка+/Са2+-обменника и как следствие - к повышению концентрации цито-плазматического Са2+. Обменник представляет собой АТФ-независимый антипортер, вызывающий в обычных условиях вытеснение Са2+ из клеток. Повышение концентрации Na+ в цитоплазме пассивно снижает обменную функцию, и из клетки вытесняется меньше Са2+. Затем Са2+ в повышенной концентрации активно нагнетается в саркоплазматический ретикулум (СР) и становится доступным для высвобождения в течение последующей клеточной деполяризации, тем самым усиливая связь возбуждение-сокращение. Результатом является более высокая сократимость, известная как положительная инотропия.

При сердечной недостаточности положительное инотропное действие сердечных гликозидов изменяет кривую Франка-Старлинга желудочковой функции.

Несмотря на широкое применение дигиталиса, отсутствуют убедительные доказательства того, что он благоприятно влияет на отдаленный прогноз при ЗСН. У многих пациентов дигиталис улучшает симптоматику, однако не снижает смертность от ЗСН.

Механизмы компенсации гемодинамики при сердечной недостаточности

Здоровый организм обладает многообразными механизмами, обеспечивающими своевременную разгрузку сосудистого русла от избытка жидкости. При сердечной недостаточности «включаются» компенсаторные механизмы, направленные на сохранение нормальной гемодинамики. Эти механизмы в условиях острой и хронической недостаточности кровообращения имеют много общего, вместе с тем между ними отмечаются существенные различия.

Как и при острой, так и при хронической сердечной недостаточности все эндогенные механизмы компенсации гемодинамических нарушений можно подразделить на интракардиальные: компенсаторная гиперфункция сердца (механизм Франка-Старлинга, гомеометрическая гиперфункция), гипертрофия миокарда и экстракардиальные: разгрузочные рефлексы Бейнбриджа, Парина, Китаева, активация выделительной функции почек, депонирование крови в печени и селезенке, потоотделение, испарение воды со стенок легочных альвеол, активация эритропоэза и др. Такое деление в некоторой степени условно, поскольку реализация как интра-, так и экстракардиальных механизмов находится под контролем нейрогуморальных регуляторных систем.

Механизмы компенсации гемодинамических нарушений при острой сердечной недостаточности. На начальной стадии систолической дисфункции желудочков сердца включаются интракардиальные факторы компенсации сердечной недостаточности, важнейшим из которых является механизм Франка-Старлинга (гетерометрический механизм компенсации, гетерометрическая гиперфункция сердца). Реализацию его можно представить следующим образом. Нарушение сократительной функции сердца влечет за собой уменьшение ударного объема крови и гипоперфузию почек. Это способствует активации РААС, вызывающей задержку воды в организме и увеличение объема циркулирующей крови. В условиях возникшей гиперволемии происходит усиленный приток венозной крови к сердцу, увеличение диастолического кровенаполнения желудочков, растяжение миофибрилл миокарда и компенсаторное повышение силы сокращения сердечной мышцы, которое обеспечивает прирост ударного объема. Однако если конечное диастолическое давление повышается более чем на 18-22 мм рт.ст., возникает чрезмерное перерастяжение миофибрилл. В этом случае компенсаторный механизм Франка-Старлинга перестает действовать, а дальнейшее увеличение конечного диастолического объема или давления вызывает уже не подъем, а снижение ударного объема.

Наряду с внутрисердечными механизмами компенсации при острой левожелудочковой недостаточности запускаются разгрузочные экстракардиальные рефлексы, способствующие возникновению тахикардии и увеличению минутного объема крови (МОК). Одним из наиболее важных сердечно-сосудистых рефлексов, обеспечивающих увеличение МОК, является рефлекс Бейнбриджа увеличение частоты сердечных сокращений в ответ на увеличение объема циркулирующей крови. Этот рефлекс реализуется при раздражении механорецепторов, локализованных в устье полых и легочных вен. Их раздражение передается на центральные симпатические ядра продолговатого мозга, в результате чего происходит повышение тонической активности симпатического звена вегетативной нервной системы, и развивается рефлекторная тахикардия. Рефлекс Бейнбриджа направлен на увеличение минутного объема крови.

Рефлекс Бецольда-Яриша - это рефлекторное расширение артериол большого круга кровообращения в ответ на разражение механо- и хеморецепторов, локализованных в желудочках и предсердиях.

В результате возникает гипотония, которая сопровождается бра-

дикардией и временной остановкой дыхания. В реализации этого рефлекса принимают участие афферентные и эфферентные волокна n. vagus. Этот рефлекс направлен на разгрузку левого желудочка.

К числу компенсаторных механизмов при острой сердечной недостаточности относится и повышение активности симпатоадреналовой системы, одним из звеньев которого является высвобождение норадреналина из окончаний симпатических нервов, иннервирующих сердце и почки. Наблюдаемое при этом возбуждение β -адренорецепторов миокарда ведет к развитию тахикардии, а стимуляция подобных рецепторов в клетках ЮГА вызывает усиленную секрецию ренина. Другим стимулом секреции ренина является снижение почечного кровотока в результате вызванной катехоламинами констрикции артериол почечных клубочков. Компенсаторное по своей природе усиление адренергического влияния на миокард в условиях острой сердечной недостаточности направлено на увеличение ударного и минутного объемов крови. Положительный инотропный эффект оказывает также ангиотензин-II. Однако эти компенсаторные механизмы могут усугубить сердечную недостаточность, если повышенная активность адренергической системы и РААС сохраняется достаточно продолжительное время (более 24 ч).

Все сказанное о механизмах компенсации сердечной деятельности в одинаковой степени относится как к лево-, так и к правожелудочковой недостаточности. Исключением является рефлекс Парина, действие которого реализуется только при перегрузке правого желудочка, наблюдаемой при эмболии легочной артерии.

Рефлекс Ларина - это падение артериального давления, вызванное расширением артерий большого круга кровообращения, снижением минутного объема крови в результате возникающей брадикардии и уменьшением объема циркулирующей крови из-за депонирования крови в печени и селезенке. Кроме того, для рефлекса Парина характерно появление одышки, связанной с наступающей гипоксией мозга. Полагают, что рефлекс Парина реализуется за счет усиления тонического влияния n.vagus на сердечно-сосудистую систему при эмболии легочных артерий.

Механизмы компенсации гемодинамических нарушений при хронической сердечной недостаточности. Основным звеном патогенеза хронической сердечной недостаточности является, как известно, постепенно нарастающее снижение сократительной функции ми-

окарда и падение сердечного выброса. Происходящее при этом уменьшение притока крови к органам и тканям вызывает гипоксию последних, которая первоначально может компенсироваться усиленной тканевой утилизацией кислорода, стимуляцией эритропоэза и т.д. Однако этого оказывается недостаточно для нормального кислородного обеспечения органов и тканей, и нарастающая гипоксия становится пусковым механизмом компенсаторных изменений гемодинамики.

Интракардиальные механизмы компенсации функции сердца. К ним относятся компенсаторная гиперфункция и гипертрофия сердца. Эти механизмы являются неотъемлемыми компонентами большинства приспособительных реакций сердечно-сосудистой системы здорового организма, но в условиях патологии могут превратиться в звено патогенеза хронической сердечной недостаточности.



Компенсаторная гиперфункция сердца выступает как важный фактор компенсации при пороках сердца, артериальной гипертензии, анемии, гипертонии малого круга и других заболеваниях. В отличие от физиологической гиперфункции она является длительной и, что существенно, непрерывной. Несмотря на непрерывность, компенсаторная гиперфункция сердца может сохраняться в течение многих лет без явных признаков декомпенсации насосной функции сердца.

Увеличение внешней работы сердца, связанное с подъемом давления в аорте (гомеометрическая гиперфункция), приводит к более выраженному возрастанию потребности миокарда в кислороде, чем перегрузка миокарда, вызванная повышением объема циркулирующей крови (гетерометрическая гиперфункция). Иными словами, для осуществления работы в условиях нагрузки давлением мышца сердца использует гораздо больше энергии, чем для выполнения той же работы, связанной с нагрузкой объемом, а следовательно, при стойкой артериальной гипертензии гипертрофия сердца развивается быстрее, чем при увеличении объема циркулирующей крови. Например, при физической работе, высотной гипоксии, всех видах клапанной недостаточности, артериовенозных фистулах, анемии гиперфункция миокарда обеспечивается за счет увеличения минутного объема сердца. При этом систолическое напряжение миокарда и давление в желудочках возрастают незначительно, и гипертрофия развивается медленно. В то же время при гипертонической болезни, гипертензии малого круга, стено-

зах клапанных отверстий развитие гиперфункции связано с повышением напряжения миокарда при незначительно измененной амплитуде сокращений. В этом случае гипертрофия прогрессирует достаточно быстро.

Гипертрофия миокарда - это увеличение массы сердца за счет увеличения размеров кардиомиоцитов. Существуют три стадии компенсаторной гипертрофии сердца.

Первая, аварийная, стадия характеризуется, прежде всего, увеличением интенсивности функционирования структур миокарда и, по сути, представляет собой компенсаторную гиперфункцию еще не гипертрофированного сердца. Интенсивность функционирования структур - это механическая работа, приходящаяся на единицу массы миокарда. Увеличение интенсивности функционирования структур закономерно влечет за собой одновременную активацию энергообразования, синтеза нуклеиновых кислот и белка. Указанная активация синтеза белка происходит таким образом, что вначале увеличивается масса энергообразующих структур (митохондрий), а затем - масса функционирующих структур (миофибрилл). В целом увеличение массы миокарда приводит к тому, что интенсивность функционирования структур постепенно возвращается к нормальному уровню.

Вторая стадия - стадия завершившейся гипертрофии - характеризуется нормальной интенсивностью функционирования структур миокарда и соответственно нормальным уровнем энергообразования и синтеза нуклеиновых кислот и белков в ткани сердечной мышцы. При этом потребление кислорода на единицу массы миокарда остается в границах нормы, а потребление кислорода сердечной мышцей в целом увеличено пропорционально возрастанию массы сердца. Увеличение массы миокарда в условиях хронической сердечной недостаточности происходит за счет активации синтеза нуклеиновых кислот и белков. Пусковой механизм этой активации изучен недостаточно. Считается, что определяющую роль здесь играет усиление трофического влияния симпатоадреналовой системы. Эта стадия процесса совпадает с длительным периодом клинической компенсации. Содержание АТФ и гликогена в кардиомиоцитах также находится при этом в пределах нормы. Подобные обстоятельства придают относительную устойчивость гиперфункции, но вместе с тем не предотвращают исподволь развивающихся в данной стадии нарушений обмена и структуры миокарда. Наиболее ранними признаками таких нарушений являются

значительное увеличение концентрации лактата в миокарде, а также умеренно выраженный кардиосклероз.

Третья стадия прогрессирующего кардиосклероза и декомпенсации характеризуется нарушением синтеза белков и нуклеиновых кислот в миокарде. В результате нарушения синтеза РНК, ДНК и белка в кардиомиоцитах наблюдается относительное уменьшение массы митохондрий, что ведет к торможению синтеза АТФ на единицу массы ткани, снижению насосной функции сердца и прогрессированию хронической сердечной недостаточности. Ситуация усугубляется развитием дистрофических и склеротических процессов, что способствует появлению признаков декомпенсации и тотальной сердечной недостаточности, завершающейся гибелью пациента. Компенсаторная гиперфункция, гипертрофия и последующая декомпенсация сердца - это звенья единого процесса.

Механизм декомпенсации гипертрофированного миокарда включает следующие звенья:

1. Процесс гипертрофии не распространяется на коронарные сосуды, поэтому число капилляров на единицу объема миокарда в гипертрофированном сердце уменьшается (рис. 15-11). Следовательно, кровоснабжение гипертрофированной сердечной мышцы оказывается недостаточным для выполнения механической работы.

2. Вследствие увеличения объема гипертрофированных мышечных волокон уменьшается удельная поверхность клеток, в связи с

Рис. 5-11. Гипертрофия миокарда: 1 - миокард здорового взрослого; 2 - гипертрофированный миокард взрослого (масса 540 г); 3 - гипертрофированный миокард взрослого (масса 960 г)

этим ухудшаются условия для поступления в клетки питательных веществ и выделения из кардиомиоцитов продуктов метаболизма.

3. В гипертрофированном сердце нарушается соотношение между объемами внутриклеточных структур. Так, увеличение массы митохондрий и саркоплазматического ретикулума (СПР) отстает от увеличения размеров миофибрилл, что способствует ухудшению энергоснабжения кардиомиоцитов и сопровождается нарушением аккумуляции Са 2 + в СПР. Возникает Са 2 +-перегрузка кардиомиоцитов, что обеспечивает формирование контрактуры сердца и способствует уменьшению ударного объема. Кроме того, Са 2 +-перегрузка клеток миокарда повышает вероятность возникновения аритмий.

4. Проводящая система сердца и вегетативные нервные волокна, иннервирующие миокард, не подвергаются гипертрофии, что также способствует возникновению дисфункции гипертрофированного сердца.

5. Активируется апоптоз отдельных кардиомиоцитов, что способствует постепенному замещению мышечных волокон соединительной тканью (кардиосклероз).

В конечном итоге гипертрофия утрачивает приспособительное значение и перестает быть полезной для организма. Ослабление сократительной способности гипертрофированного сердца происходит тем скорее, чем сильнее выражены гипертрофия и морфологические изменения в миокарде.

Экстракардиальные механизмы компенсации функции сердца. В отличие от острой сердечной недостаточности роль рефлекторных механизмов экстренной регуляции насосной функции сердца при хронической сердечной недостаточности сравнительно невелика, поскольку нарушения гемодинамики развиваются постепенно на протяжении нескольких лет. Более или менее определенно можно говорить о рефлексе Бейнбриджа, который «включается» уже на стадии достаточно выраженной гиперволемии.

Особое место среди «разгрузочных» экстракардиальных рефлексов занимает рефлекс Китаева, который «запускается» при митральном стенозе. Дело в том, что в большинстве случаев проявления правожелудочковой недостаточности связаны с застойными явлениями в большом круге кровообращения, а левожелудочковой - в малом. Исключение составляет стеноз митрального клапана, при котором застойные явления в легочных сосудах вызваны не декомпенсацией левого желудочка, а препятствием току крови через

левое атриовентрикулярное отверстие - так называемым «первым (анатомическим) барьером». При этом застой крови в легких способствует развитию правожелудочковой недостаточности, в генезе которой рефлекс Китаева играет важную роль.

Рефлекс Китаева - это рефлекторный спазм легочных артериол в ответ на повышение давления в левом предсердии. В результате возникает «второй (функциональный) барьер», который первоначально играет защитную роль, предохраняя легочные капилляры от чрезмерного переполнения кровью. Однако затем этот рефлекс приводит к выраженному повышению давления в легочной артерии - развивается острая легочная гипертензия. Афферентное звено этого рефлекса представлено n. vagus, a эфферентное - симпатическим звеном вегетативной нервной системы. Негативной стороной данной приспособительной реакции является подъем давления в легочной артерии, приводящий к увеличению нагрузки на правое сердце.

Однако ведущую роль в генезе долговременной компенсации и декомпенсации нарушенной сердечной функции играют не рефлекторные, а нейрогуморальные механизмы, важнейшим из которых является активация симпатоадреналовой системы и РААС. Говоря об активации симпатоадреналовой системы у пациентов с хронической сердечной недостаточностью, нельзя не указать, что у большинства из них уровень катехоламинов в крови и моче находится в пределах нормы. Этим хроническая сердечная недостаточность отличается от острой сердечной недостаточности.

Сердечная недостаточность кровообращения - типовая форма патологии сердца, при которой нагрузка, падающая на сердце, превышает его способность совершать адекватную потребностям организма работу.

По характеру течения различают острую и хроническую сердечную недостаточность. По локализации сердечная недостаточность может быть левожелудочковой, правожелудочковой и тотальной, когда имеются признаки нарушения работы обоих желудочков. По механизму развития различают первичную (кардиальную) сердечную недостаточность, когда понижается насосная функция сердца и вторичную (некардиальную) гиподиастолическую, когда снижается диастолическое наполнение полостей сердца (например, при скоплении жидкости полости перикарда).

Различают три патофизиологических варианта развития кардиальной сердечной недостаточности (СН):

2. Сердечная недостаточность, вызванная перегрузкой миокарда увеличенным объемом крови или давлением.

3. Смешанная сердечная недостаточность, когда поражение миокарда и повышенная нагрузка на сердце действуют одновременно (пример эндомиокардит).

Патогенез развития сердечной недостаточности. Механизмы компенсации сердечной недостаточности.

К снижению сократительной способности миокарда и развитию СН приводят :

1. Нарушение энергообеспечения миокарда из-за дефицита кислорода и субстратов окисления

2. Повреждение мембран и ферментных систем кардиомиоцитов: детергентное действие накапливающихся НЭСК (неэстерифицированные жирные кислоты), разрушение кардиомиоцитов гидролазами лизосом, повреждение мембран и ферментов свободными радикалами и продуктами перекисного окисления липидов.

3. Нарушение трансмембранного распределения и транспорта ионов и воды - дисиония и гипергидратация.

Снижение сократительной способности миокарда и развитие СН приводит к включению кардиальных и экстракардиальных механизмов компенсации.

Кардиальные механизмы компенсации сердечной недостаточности:

1. Гетерометрический механизм Франка - Старлинга - усиление сердечных сокращений в ответ на увеличение диастолического наполнения полостей сердца и увеличения длины мышечных волокон (тоногенная дилятация миокарда).

2. Гомеометрический механизм - усиление сердечных сокращений в ответ на повышенное сопротивление сердечному выбросу крови, возникающему при стенозе отверстий или повышении артериального давления.

3. Увеличение частоты сердечных сокращений - тахикардия.

4. Усиление симпатоадреналовых влияний на сердце - увеличение концентрации катехоламинов в миокарде и усиление их захвата кардиомиоцитами.

Все это экстренные механизмы компенсации СН. Далее включается долговременный механизм компенсации СН - гипертрофия миокарда - увеличение массы миокарда за счет увеличения каждого отдельного мышечного волокна, но не их числа.

Различают три стадии гипертрофии:

1. Аварийная стадия. Увеличение нагрузки на сердце вызывает увеличения функционирования каждого отдельного мышечного волокна. Увеличивается отношение работы к массе миокарда — увеличение интенсивности функционирования структур (ИФС). ИФС вызывает обменные нарушения - распад АТФ увеличении концентрации АДФ и неорганического фосфора (НФ) усиление гликолиза, ацидоз, усиление биосинтетических процессов (увеличения числа митохондрий, миофибрил) и постепенное увеличение массы миокарда.

2. Стадия завершившейся гипертрофии и устойчивой гиперфункции. Постепенное увеличение массы миокарда приводит к нормализации соотношения работы к массе, к нормализации ИФС и восстановлению обмена веществ в миокарде.

3. Длительная гипертрофия приводит к развитию третьей стадии — прогрессирующего кардиосклероза. Развитие этой стадии обусловлено постепенным ухудшением питания, гибелью кардиомиоцитов и замещением их соединительной тканью, так как гипертрофия сосудов и нервов отстает от гипертрофии мышечных волокон.

Постепенно прогрессирующий кардиосклероз приводит к развитию СН.

Гипертрофия сердца, возникающая у спортсменов, называется физиологической в отличие от патологической гипертрофии у больных.

Отличие физиологической гипертрофии от патологической:

1. При физиологической гипертрофии у спортсмена периоды интенсивной нагрузки сменяется периодами отдыха. В периоды отдыха сердце полностью восстанавливает свои энергетические пластические и регуляторные ресурсы. У больного нагрузка носит, как правило, постоянный характер, и сердце не восстанавливается.

2. Физиологическая гипертрофия гармонична - наблюдается равномерная гипертрофия всех отделов сердца. При патологической гипертрофии увеличивается один из отделов сердца, а другие либо не изменяются, либо могут даже атрофироваться. Так, при стенозе митрального отверстия, вся нагрузка падает на левое предсердие, а в левый желудочек поступает меньшее, чем в норме количество крови.

3. При физиологической гипертрофии миокарда увеличивается функциональная приспособляемость сердца. Функциональная приспособляемость сердца - это способность сердца менять объем своей работы от максимума до минимума в соответствии с потребностями организма. У спортсменов минимум уменьшается (брадикардия) максимум увеличивается. При патологической гипертрофии минимум увеличивается, а максимум уменьшается, и функциональные возможности тоже уменьшаются.

4. У спортсменов наблюдается увеличение массы скелетной мускулатуры и массы сердечной мышцы. При работе скелетных мышц вырабатывается молочная кислота, которая может использоваться сердечной мышцей. При патологической гипертрофии сердца масса сердечной мышцы растет, а скелетная мускулатура атрофируется.

При недостаточности сердца в организме развивается кислородное голодание тканей (гипоксия). В ответ на гипоксию возникают экстракардиальные механизмы компенсации сердечной недостаточности:

Спазм периферических сосудов, выброс крови из кровяных депо и увеличение массы циркулирующей крови; эритроцитоз, увеличение содержания гемоглобина в крови и увеличение кислородной емкости крови; усиление работы системы дыхания; усиление гликолиза в тканях.

Наряду с развитием механизмов компенсации у больных наблюдаются гемодинамические и клинические признаки декомпенсации сердечной недостаточности.

Гемодинамические признаки сердечной недостаточности:

1. Падение минутного объема сердца - уменьшение количества крови выбрасываемой сердцем в аорту за 1 минуту.

2. Неполное опорожнение желудочков приводит к увеличению остаточного систолического объема - увеличение количества крови оставшейся в полостях сердца после его систолы.

3. Повышение кровенаполнения полостей сердца ведет к повышению диастолического давления и к миогенной дилятяции (расширение полостей сердца) миокарда.

4. Повышение давления на путях притока и снижение давления на путях оттока крови - повышение венозного и снижение артериального давления крови.

Основными клиническими проявлениями сердечной недостаточности являются одышка, цианоз, отеки.

Сердечная недостаточность кровообращения развивается в результате ослабления сократительной функции миокарда. Причинами его являются:

  • 1) переутомление миокарда, вызванное рабочей перегрузкой сердца (при пороках сердца, повышении периферического сопротивления сосудов - гипертонии большого и малого круга кровообращения, тиреотоксикозе, эмфиземе легких, физическом перенапряжении);
  • 2) непосредственное поражение миокарда (инфекции, бактериальные и небактериальные интоксикации, недостаток субстратов метаболизма, энергетических ресурсов и пр.).
  • 3) нарушения коронарного кровообращения;
  • 4) расстройства функции перикарда.

Компенсаторные механизмы при сердечной недостаточности

При любой форме поражения сердца с момента его возникновения в организме развиваются компенсаторные реакции, направленные на предупреждение развития общей недостаточности кровообращения. Наряду с общими «внесердечными» механизмами компенсации при недостаточности сердца включаются компенсаторные реакции, осуществляющиеся в самом сердце. К ним относятся:

  • а) расширение полостей сердца с увеличением их объема (тоногенная дилятация) и увеличение ударного объема сердца;
  • б) учащение сердечных сокращений (тахикардия);
  • в) миогенная дилятация полостей сердца и гипертрофия миокарда.

Два первых фактора компенсации включаются сразу же, как только возникает повреждение; гипертрофия сердечной мышцы развивается постепенно. Однако сам процесс компенсации, вызывающий значительное и постоянное напряжение работы сердца, уменьшает функциональные возможности сердечно-сосудистой системы. Резервные возможности сердца снижаются (рис. 84). Прогрессирующее падение резервов сердца в сочетании с нарушением обмена веществ в миокарде и приводит к состоянию недостаточности кровообращения.



Тоногенное расширение полостей поврежденного сердца и увеличение ударного (систолического) объема является результатом:

  • а) возврата крови в полости сердца через неполностью замкнутые клапаны или врожденные дефекты в перегородке сердца;
  • б) неполного опорожнения полостей сердца при стенозах отверстий.

Диастолическое переполнение полостей сердца и соответствующее увеличение растяжения волокон миокарда по закону Франка - Стерлинга обычно вызывает усиление сердечных сокращений и обеспечивает компенсацию недостаточности кровообращения. Однако продолжающееся диастолическое перерастяжение сердца приводит к нарушению коронарного кровотока и ухудшению питания миокарда, к уменьшению образования энергии и ослаблению сократимости актомиозина - возникает миогенное расширение полостей сердца, когда по мере диастолического растяжения адиокарда нарастает потребление кислорода, а сокращение мышечных волокон и механическая работа сердца уменьшаются (рис. 85).

Учащение сердечных сокращений в поврежденном сердце возникает рефлекторно в ответ на повышение давления в полых венах. При этом уменьшается ударный объем сердца, но минутный объем может поддерживаться на уровне, близком к норме. Однако энергетический обмен миокарда при тахикардии нарушается таким образом, что увеличивается время перехода химической энергии АТФ в тепло и, следовательно, уменьшается количество образующейся механической энергии, уменьшается полезная работа сердца.

Теплообразование в миокарде происходит в изометрической фазе систолы желудочков (продолжительность около 0,05 секунды).При нормальном ритме сердца суммарное время теплообразования составляет около 3,5 секунды за 1 минуту (0,05 X 70); при тахикардии оно нарастает (0,05 х 100 = 5 секунд). При тахикардии уменьшается и продолжительность общей диастолы сердца и вместе с тем - время восстановления энергетических ресурсов сердца (переход АДФ в АТФ). Таким образом, тахикардия хотя и способствует некоторое время поддержке необходимой величины минутного объема, но механизм этот не рентабелен для организма, поскольку при этом падает и полезная работа сердца, и его механическая эффективность, или коэффициент полезного действия.

Увеличение полезной работы сердца является одним из важных физиологических механизмов компенсации. В поврежденном сердце в фазе компенсации механическая работа увеличивается, при декомпенсации - падает:

где W - полезная работа сердца; Q - систолический объем сердца в миллилитрах (60); Н - давление в аорте или в легочной артерии в метрах водяного столба (2 м и 0,3 м соответственно); m - масса выброшенной крови в миллилитрах (60 мл); υ - скорость тока крови в аорте в метрах в секунду (0,5 м/сек); g - ускорение силы тяжести (9,8 м/сек 2).

В целом работа сердца взрослого человека около 8-9 кгм в минуту.

На первых этапах повреждения сердца выполняемая им работа возрастает. Например, при недостаточности аортальных клапанов, когда полулунные клапаны смыкаются неполностью, во время диастолы кровь частично переходит из аорты в левый желудочек (допустим, 20 мл) и наполнение его кровью увеличивается (20 мл + 60 мл = 80 мл). Работа левого желудочка будет около 10 кгм за 1 минуту. При гипертонии работа сердца увеличивается преимущественно за счет повышения давления в аорте.

Увеличение работы сердца, его гиперфункция постепенно приводят к гипертрофии сердечной мышцы.

Гипертрофия миокарда характеризуется увеличением массы сердечной мышцы, главным образом за счет объема мышечных элементов. Различают физиологическую (или рабочую) и патологическую гипертрофию .

При физиологической гипертрофии масса сердца увеличивается пропорционально развитию скелетной мускулатуры. Она возникает как приспособительная реакция на повышенную потребность организма в кислороде и наблюдается у лиц, занимающихся физическим трудом, спортом, у артистов балета, иногда у беременных. Механическая эффективность (или в старой терминологии КПД - коэффициент полезного действия) сердечной мышцы при физиологической гипертрофии повышается:

Механическая работа сердца за 1 минуту равна примерно 9 кгм. 1 мл кислорода эквивалентен 2,06 кгм работы. Следовательно, кислородный эквивалент работы сердца за минуту составит 4,3 мл.

Общее потребление кислорода сердцем за 1 минуту составляет, по последним данным (Маршалл и Шеферд, 1972), примерно 30 мл. Отсюда

Патологическая гипертрофия характеризуется увеличением массы сердца вне зависимости от развития скелетной мускулатуры. Гипертрофированное сердце может в 2-3 раза превышать размеры и вес нормального сердца. Гипертрофии подвергается тот отдел сердца, деятельность которого усилена. Патологическая гипертрофия, как и физиологическая, сопровождается увеличением массы энергообразующих и сократительных структур миокарда, поэтому гипертрофированное сердце обладает большей мощностью и легче справляется с дополнительной рабочей нагрузкой. Однако гипертрофия носит приспособительный характер до определенного момента, так как такое сердце по сравнению с нормальным имеет более ограниченные возможности приспособления. Резервы гипертрофированного сердца снижены, и по Своим динамическим свойствам оно является менее полноценным, чем нормальное по ряду причин:

  • 1. Процесс гипертрофии не распространяется на коронарные сосуды, которые должны обеспечить питанием возросшую массу сердечной мышцы. При гипертрофии число капилляров на единицу поверхности миокарда уменьшается (рис. 86). Поэтому кровоснабжение и питание гипертрофированной сердечной мышцы поставлено в худшие условия, чем в нормальном сердце.
  • 2. Вследствие увеличения объема гипертрофированных мышечных волокон уменьшается удельная поверхность клеток и в связи с этим ухудшаются условия поступления в клетки питательных веществ и выделения в окружающую среду продуктов обмена (рис. 87).
  • 3. Нервный аппарат сердца и его проводящая система не подвергаются гипертрофии. В результате такого неравномерного развития морфологических структур гипертрофированного сердца ухудшаются условия нервной регуляции сердечной мышцы.

В конечном итоге гипертрофия утрачивает свое приспособительное значение и перестает быть полезной для организма. Ослабление сократительной способности гипертрофированного сердца наступает тем скорее, чем сильнее выражена гипертрофия и чем больше рабочая нагрузка на сердце.

Недостаточность сердца от перегрузки

Недостаточность сердца от перегрузки развивается при пороках сердца, гипертонии малого и большого круга кровообращения. Реже перегрузка может быть вызвана заболеваниями системы крови (анемия) или эндокринных желез (гипертиреоз).

Недостаточность сердца при перегрузке во всех случаях развивается после более или менее длительного периода компенсаторной гиперфункции и гипертрофии миокарда. Образование энергии в миокарде при этом резко увеличено: напряжение, развиваемое миокардом, повышено, работа сердца увеличена, но КПД значительно снижен.

Пороки сердца . Характеризуются нарушением внутрисердечной гемодинамики, что обусловливает перегрузку той или иной камеры сердца. При недостаточности митральных клапанов в период систолы желудочков часть крови, поступающей обратно в предсердия (ретроградный заброс крови), достигает 2л в минуту. В результате диастолическое наполнение левого предсердия равняется 7 л в минуту (5 л из легочных вен +2 л из левого желудочка). Это же количество крови перейдет в левый желудочек. При систоле левого желудочка 5 л в минуту переходят в аорту, а 2 л крови ретроградно возвращаются в левое предсердие. Таким образом, общий минутный объем желудочка составляет 7 л, что стимулирует гиперфункцию левых камер сердца (работа левого желудочка около 10 кгм в минуту), завершающуюся их гипертрофией. Гиперфункция и гипертрофия предотвращают развитие недостаточности кровообращения. Но если в дальнейшем клапанный дефект возрастает (гипертрофия обусловливает «относительную недостаточность клапанов»), величина обратного заброса может достигнуть 4 л в минуту. В связи с этим уменьшается количество крови, выбрасываемой в периферические сосуды.

При митральном стенозе уменьшение площади атрио-вентрикулярного отверстия (в норме 4-6 см 2) создает сопротивление переходу крови из левого предсердия в желудочек. Повышенное диастолическое растяжение предсердия приводит к повышению давления в нем и к усилению его систолического сокращения (гиперфункция), а в дальнейшем - к компенсаторной гипертрофии мускулатуры левого предсердия. Одним из механизмов компенсации при митральном стенозе является также постоянное укорочение систолы желудочков и соответствующее увеличение продолжительности периода диастолического наполнения. На некоторое время минутный объем сердца сохраняется в пределах нормы. При срыве компенсаторных механизмов нарастает остаточная кровь в предсердии, приводящая к застою крови в малом круге кровообращения с последующей гиперфункцией и гипертрофией правого желудочка.

Нарушения гемодинамики при митральном стенозе определяются степенью сужения митрального отверстия. В эксперименте на изолированных сердцах собак показано, что уменьшение площади поперечного сечения митрального отверстия на 61% значительно нарушает переход крови из предсердия в желудочек.

Рассчитана величина митрального отверстия людей и показано, что больные, у которых площадь митрального отверстия около 2,5 см 2 , находятся в состоянии полной компенсации; при митральном отверстии площадью 1,3-1,6 см 2 активность больных ограничена; при отверстиях в 0,6-1,1 см 2 активность больных значительно ограничена, а при уменьшении размеров отверстия до 0,4-0,9 см 2 больные должны соблюдать постельный режим (Горлин Р., 1960).

Перегрузка сердца при гипертонии большого или малого круга кровообращения . Определяется повышением периферического сопротивления и артериального (среднего динамического) давления. Гиперфункции и гипертрофии прежде всего подвергается мускулатура желудочков, работающих против повышенного сопротивления. Постоянная гиперфункция и гипертрофия могут длительное время обеспечивать компенсацию. Ослабление кровоснабжения гипертрофированного миокарда или добавочные факторы повреждения сердца (инфекции и интоксикации, нарушения трофики и др.) способствуют возникновению декомпенсации и расстройству общего кровообращения.

Таким образом, недостаточность сердца от перегрузки всегда сочетается с компенсаторной гиперфункцией и гипертрофией сердца; при этом чем значительнее нагрузка на сердце и интенсивнее гиперфункция, тем больше вероятность возникновения недостаточности.

Недостаточность сердца вследствие повреждения миокарда

Повреждение миокарда может быть вызвано инфекциями, интоксикациями, гиповитаминозами, коронарной недостаточностью, аутоаллергическими процессами. Для поражения миокарда характерно резкое снижение его сократительной функции. Оно может быть обусловлено уменьшением образования или нарушением использования энергии, либо нарушением обмена белков миокарда.

Нарушения энергетического обмена в миокарде могут быть результатом недостаточности субстратов для окисления, развития гипоксии, уменьшения активности ферментов, участвующих в окислении субстратов, и разобщения окисления и фосфорилирования.

Недостаточность субстратов для окисления чаще всего возникает вследствие уменьшения кровоснабжения сердца и изменения состава притекающей к сердцу крови, а также нарушения проницаемости клеточных мембран.

Склероз коронарных сосудов является наиболее частой причиной уменьшения кровоснабжения сердечной мышцы. Относительная ишемия сердца может быть результатом гипертрофии, при которой увеличение объема мышечных волокон не сопровождается соответствующим увеличением числа кровеносных капилляров.

Метаболизм миокарда может быть нарушен как при недостатке (например, гипогликемия), так и при избытке (например, при резком увеличении в притекающей крови молочной, пировиноградной кислот, кетоновых тел) некоторых субстратов. Вследствие сдвига рН миокарда возникают вторичные изменения активности ферментных систем, приводящие к нарушениям метаболизма.

Диффузия субстратов в мышечную клетку нарушается при первичном изменении проницаемости клеточной мембраны (воспаление). Этому способствуют поверхностно активные гормоны - кортикоиды, а также токсины и наркотические вещества.

Недостаток кислорода в сердце может возникнуть при ишемии миокарда, при гипоксии острой (удушье) или хронической (дыхательная недостаточность), при анемии.

Локальный недостаток кислорода возникает при инфаркте миокарда. При этом нарушается нормальное соотношение между анаэробным и аэробным обменом в миокарде, повышается удельный вес анаэробного обмена. Следствием этого является уменьшение содержания гликогена в печени, накопление молочной кислоты в крови и уменьшение образования АТФ.

Уменьшение активности ферментов, участвующих в окислении субстратов , может быть результатом нарушения их синтеза при недостаточном введении в организм витаминов, являющихся коферментами важнейших ферментативных реакций. Так, недостаток кокарбоксилазы (кофермента, участвующего в декарбоксилировании пировиноградной кислоты) возникает при авитаминозе В,. При этом нарушается включение пировиноградной кислоты в цикл Кребса, возрастает количество ее в миокарде и она появляется в коронарной крови. Обмен в этом случае идет малоэффективным в энергетическом отношении анаэробным путем.



Недостаток коэнзима А возникает при дефиците пантотеновой кислоты (витамин В 3). Это приводит к торможению образования лимонной кислоты и тем самым нарушается включение пировиноградной кислоты в цикл Кребса.

При недостатке рибофлавина (витамина В 2) падает активность флавопротеинов, соответственно замедляется транспорт водорода в цепи окислительно-восстановительных ферментов.

Разобщение окисления и фосфорилирования приводит к тому, что при нормальном течении окислительных процессов большая, чем в норме, часть энергии, не будучи превращенной в энергию макроэргических связей АТФ, рассеивается в виде тепла. Такое состояние возникает при избытке тиреоидного гормона. Недостаток АТФ приводит к ослаблению сократимости миокарда.

Нарушения белкового обмена в миокарде приводят к ослаблению его сократимости и проявляются в количественных изменениях белков миофибрилл (актомиозин, альфа- и бета-миозин) и в изменении сократимости миозина.

Количественные изменения белков миофибрилл были обнаружены в экстрактах из сердец людей, умерших при явлениях острой или хронической недостаточности сердца, а также в гипертрофированных сердцах подопытных животных. При гипертрофии содержание актомиозина было увеличено, а при сердечной недостаточности уменьшено.

Изменения сократимости актомиозина обнаружены при декомпенсированных пороках сердца, например при недостаточности трехстворчатого клапана, стенозе устья легочной артерии. При уменьшении общего количества актомиозина в желудочке сердца собак наблюдается и изменение его свойств - менее выраженное уменьшение вязкости в ответ на добавление АТФ. Изменение сократимости актомиозина может быть как результатом нарушения его структуры, так и следствием ионных сдвигов в мышечном волокне. Так, сократимость актомиозина понижается при уменьшении концентрации внутриклеточного Са ++ и К + .

При миокардитах, кроме непосредственного поражения миофибрилл, возникают изменения и в нервной регуляции сердца. Так, обнаружено нарушение передачи возбуждения на сердце с блуждающих нервов (за счет структурных изменений в них и понижения активности холинэстеразы) при нормальном проведении симпатических воздействий. Изменяется реакция сердца на импульсы, поступающие к нему из интеро- и экстеро-рецепторов желудочно-кишечного тракта, слизистой оболочки дыхательных путей, с рецепторов дуги аорты и каротидного синуса. Патологические изменения возбудимости миокарда и его нервных окончаний становятся причиной извращения реакции на фармакологические вещества - барбамил, новокаин, глюкозиды, наперстянку, строфантин, кофеин и др.

Механизм Факторы компенсации Факторы декомпенсации
Повышение активности симпатической нервной системы Увеличение ЧСС, усиление сократимости миокарда, перераспределение кровообращения Кардиотоксичность, увеличение работы сердца, вазоспазм - ухудшение периферического кровотока, "десенситизация" адрено-рецепторов кардиомиоцшов, стимуляция системы ренин-ангиотензин-альдостерон, стимуляция развития фиброза миокарда, усиление реабсорбции натрия и воды
Активация системы ренин-ангиотензин-альдостерон Усиление сократимости миокарда Кардиотоксичность, стимуляция развития фиброза миокарда, ухудшение периферического кровотока, усиление реабсорбции натрия и воды, переключение поперечно-полосатых мышц на анаэробный метаболизм, усиление секреции вазопрессина, стимуляция центра жажды
Усиление синтеза предсердного натрийуретического фактора Торможение реабсорбции натрия, вазодилатация
Усиление синтеза дигиталисоподобного фактора Усиление сократимости миокарда, увеличение экскреции натрия
Усиление синтеза простациклина и эндотелиального расслабляющего фактора Вазодилатация
Усиление синтеза эндотелина Вазоспазм - ухудшение периферического кровотока
Усиление секреции ваэопрессина Увеличение реабсорбции воды, вазоспазм - ухудшение периферического кровотока

Характерное для сердечной недостаточности увеличение кон-дентрации альдостерона в крови не только усиливает реабсорбцию натрия, но и способствует пролиферации соединительнотканных эле­ментов миокарда, усилению синтеза коллагена.

Появление нарушений сократительной активности миокарда не ограничивается стимуляцией симпатической нервной системы и сис­темы ренин-ангиотензин-альдостерон (табл. 14). Увеличение реаб­сорбции натрия с повышением осмолярности крови стимулирует освобождение вазопрессина, усиливающего реабсорбцию воды из канальцевой жидкости. Закономерной реакцией на перерастяжение предсердий является увеличение освобождения предсердного натрий­уретического фактора, ингибирующего реабсорбцию натрия в поч­ках и вызывающего вазодилатацию. К числу механизмов, противо­действующих вазоспазму при сердечной недостаточности, относится усиление синтеза эндотелием фактора релаксации и вазодилататор-ных простагландинов. Однако способности клеток к синтезу этих вазодилататорных субстанций достаточно быстро истощаются.



Увеличение объема циркулирующей крови также может рас­сматриваться как своеобразная компенсаторная реакция, направ­ленная на поддержание на должном уровне сердечного выброса че­рез увеличение венозного возврата крови к сердцу. Оно связано с уве­личением не только объема плазмы, но и числа эритроцитов. Ги-поксемия стимулирует эритропоэз, что в определенной мере способ­ствует увеличению кислородной емкости крови. В условиях гипо-ксемии в эритроцитах увеличивается содержание 2,3-дифосфогли-церина, облегчающего диссоциацию оксигемоглобина в микроцир-куляторном русле. Однако увеличение массы и вязкости циркули­рующей крови увеличивает нагрузку на сердце.

Перераспределение кровотока также не может рассматриваться жак оптимальный механизм компенсации, поскольку уменьшение почечного кровотока стимулирует выработку ренина и увеличивает реабсорбируемую из канальцевой жидкости фракцию натрия, а не­адекватная перфузия скелетных мышц стимулирует в них анаэроб­ный метаболизм, увеличивая кислородную задолженность.

Патогенез

основных клинических проявлений

сердечной недостаточности

Основные клинические проявления сердечной недостаточности сводятся к одышке, снижению толерантности к физической нагруз-


I

43ак. 131

ке, отекам, цианозу. У абсолютного большинства больных также отмечается тахикардия.

Патогенез этих симптомов достаточно сложен В свое время широко обсуждались две возможные концепции развития основных проявлений сердечной недостаточности: ретроградная (backward failure), предложенная Джеймсом Хоун в 1832 г, и антеградная (forward failure), которая была высказана в начале XX столетия Маккензи. Согласно первой гипотезе все основные проявления сер­дечной недостаточности связаны с застоем крови перед камерой сердца, сократимость стенок которой нарушена (венозный застой). Вторая гипотеза объясняет все проявления сердечной недостаточно­сти с позиции поступления в артериальное русло меньшего по срав­нению с необходимым количества крови. Однако предпринятые в последующие годы специальные исследования показали, что при хронической сердечной недостаточности имеют значение оба меха­низма. Относительно "чистые" формы могут встречаться лишь в ур-гентных ситуациях. Так, резчайшее снижение сердечного выброса при массивной эмболии легочной артерии является классическим примером антеградной недостаточности, в то время как отек легких при митральном стенозе или же обширном инфаркте миокарда пред­ставляет собою типичную ретроградную недостаточность.

Выраженность тех или иных проявлений сердечной недоста­точности определяется, с одной стороны, быстротой развития деком­пенсации, с другой - преимущественным нарушением сократитель­ной активности того или иного отдела сердца. В соответствии с этим принято различать острые и хронические формы сердечной недо­статочности, а также право- и левожелудочковую недостаточность. Безусловно, подобное подразделение является в определенной мере условным, поскольку в клинике чаще встречаются смешанные (право- и левожелудочковые) проявления сердечной недостаточно­сти, а острые формы сердечной недостаточности нередко возникают

у пациентов с длительно существующей хронической сердечной не­достаточностью.

Изолированная правожелудочковая сердечная недостаточность бывает представлена у больных с хроническими заболеваниями лег­ких или же повторными эмболиями мелких ветвей легочной арте­рии, приводящими к повышению давления в легочной артерии и пе­регрузке (нагрузке давлением) правых отделов сердца. Она также выявляется у больных констриктивным перикардитом и пороками клапанов правых отделов сердца. Хроническая изолированная лево-желудочковая сердечная недостаточность в течение определенного времени может отмечаться у пациентов с ишемической болезнью


сердца, митральными и аортальными пороками и другими заболе­ваниями, приводящими к изолированной перегрузке левых отделов сердца.

Одышка. Это основное проявление левожелудочковой недоста­точности. Принято различать одышку при напряжении, возникаю­щую при меньших, чем у здоровых лиц, физических нагрузках;

одышку, появляющуюся только в горизонтальном положении, обус­ловленную перемещением части крови из нижней половины тулови­ща в сосуды грудной клетки. У ряда пациентов в горизонтальном положении возникают пароксизмы одышки (пароксизмальная ноч­ная одышка), обычно сохраняющиеся при переходе больного в по­ложение сидя. Причины развития подобных пароксизмов не ясны, хотя они, безусловно, являются отражением существенных наруше­ний сократительной активности миокарда левого желудочка. Пола­гают, что в основе пароксизмальной ночной одышки лежит сочета­ние увеличения количества крови в грудной клетке с уменьшением L влияний симпатической нервной системы на миокард в ночное вре­мя и угнетением ночью активности дыхательного центра. Максималь­ной степени выраженности одышка достигает при отеке легких. " В основе одышки, развивающейся при нарушении сократитель-^ной активности левых отделов сердца, лежит повышение давления г в легочных капиллярах, что затрудняет поступление жидкости из " интерстициальной ткани в венозный отдел капилляров. Результа-|том этих нарушений является увеличение объема интерстициальной ^жидкости с увеличением жесткости легких (уменьшением эластич­ности) и уменьшением дыхательного объема. Повышенное кровена­полнение легких в сочетании с увеличением объема интерстициаль-даой жидкости могут способствовать уменьшению диаметра воздухо-яосных путей и повышению бронхиального сопротивления. Усиле­нию одышки способствуют гипоксемия, метаболический ацидоз и раз-^дражение так называемых рецепторов натяжения, локализованных в стенке легочных сосудов и в интерстиции. Наконец, прогрессиро-ванию одышки при тяжелой сердечной недостаточности могут спо­собствовать выпот (транссудат) в плевральные полости и/или в по­длость перикарда, наличие асцита, затрудняющее свободное движе-" ние диафрагмы.

Тахикардия. Развитие тахикардии связано с увеличением сим­патических и уменьшением парасимпатических влияний на деятель­ность синусового узла.

Слабость. Ощущение физической слабости характерно для всех больных с сердечной недостаточностью. Оно обусловлено пере­распределением кровотока с ухудшением кровоснабжения скелетных


мышц, увеличением анаэробного метаболизма с накоплением мо­лочной кислоты. При далеко зашедших формах сердечной недоста­точности развивается выраженная атрофия скелетных мышц.

Отеки. Отеки являются проявлением выраженной сердечной недостаточности. Они возникают в тех случаях, когда прирост объ­ема внеклеточной жидкости превышает 5 л. Их появление связано с увеличением реабсорбции натрия и воды в почках. Увеличение реабсорбции натрия обусловлено, как уже указывалось, непосред­ственно влиянием катехоламинов и альдостерона на уровне дис-тальных канальцев, уменьшением скорости гломерулярной фильт­рации, приводящем к увеличению фракции реабсорбируемого нат­рия и перераспределением внутрипочечного кровотока (уменьшение кровотока в мозговом слое почки со снижением активности противо-точного механизма). Усиление реабсорбции воды связано как с уве­личением реабсорбции натрия, так и с повышением концентрации в крови вазопрессина. Меньшее значение в развитии отеков имеет повышение давления в венозном отделе микроциркуляторного рус­ла, приводящее к нарушению поступления в кровоток жидкости из интерстиция.

Олигурия и никтурия являются отражением нарушений функ­циональной способности почек при сердечной недостаточности. В ос­нове никтурии лежит улучшение почечного кровотока в горизон­тальном положении при резком ограничении физической активно­сти пациента.

Цианоз. Происхождение цианоза у больных с сердечной недо­статочностью обусловлено как уменьшением оксигенации гемогло­бина ("центральный" компонент цианоза), так и ухудшением ка­пиллярного кровотока ("периферический" компонент цианоза). Су­щественное замедление кровотока приводит к увеличению экстрак­ции кислорода из оксигемоглобина в периферических тканях, что сопровождается возрастанием артериовенозной разницы по кисло­роду и последующему меньшему насыщению кислородом гемогло­бина в венозной крови. При сердечной недостаточности цианоз, как правило, носит распространенный характер с преобладанием си-нюшности пальцев рук, губ и ушных раковин. Попытки улучшить местное кровообращение в конечностях приводят к уменьшению степени цианоза кожи пальцев и ногтевого ложа при преобладании периферического компонента и оказываются неэффективными при преобладании гипоксемии.

Мозговые симптомы. При далеко зашедшей сердечной недо­статочности у лиц пожилого возраста с сопутствующим атероскле­розом из-за резкого уменьшения мозгового кровотока возможно по-


[

явление различного рода психических нарушений (дезориентация, головные боли, бессонница и т.д.) вплоть до острых психозов.

Кахексия. Обычно развивается у пациентов с тяжелой хрони­ческой сердечной недостаточностью. Она обусловлена плохим аппе­титом больных, нарушением абсорбции в желудочно-кишечном трак-? те при правожелудочковой сердечной недостаточности, увеличени-i ем обмена из-за интенсивной работы дыхательных мышц и, нако-1 нец, нарушением протеинсинтезирующей способности печени.

Острые формы сердечной недостаточности. К острым фор-" мам сердечной недостаточности принято относить отек легких и кар-диогенный шок, являющиеся проявлением острых нарушений со­кратительной активности левых отделов сердца. Безусловно, воз­можны и остро возникающие нарушения сократимости правых от­делов сердца (массивная эмболия легочной артерии, разрыв створ­ки трехстворчатого клапана и др.).

Отек легких. Клинически отек легких проявляется остро воз­никающей тяжелой одышкой, обусловленной увеличением количе­ства жидкости в легких. Теоретически в основе отека легких могут лежать три механизма: нарушение пропульсивной способности ле­вых отделов сердца при нормальной насосной функции правых, усиление насосной функции правых отделов сердца при интактных левых и, наконец, резкое повышение проницаемости легочных ка­пилляров при сравнительно удовлетворительной сократительной ак­тивности сердца. Практически же в основе отека легких у больных с патологией сердца всегда лежит первый механизм. Внезапное ухудшение сократительной активности левых отделов сердца при­водит к повышению давления в легочных венах с резким повыше­нием фильтрации жидкости в интерстиций. Если количество жид­кости превышает объем интерстициального пространства, то это при­водит к отеку альвеолярно-капиллярных перегородок, резкому по­вышению проницаемости альвеолярных мембран с выходом плазмы и эритроцитов в альвеолы (альвеолярный отек), резким уменьше­нием объема газа в альвеолах и нарушением альвеолярно-капил-лярного газообмена.

Классификация сердечной недостаточности

Все классификации сердечной недостаточности, используемые в настоящее время, основаны на оценке выраженности ее клиниче­ских проявлений. Хотя нарушение насосной функции сердца уже на ранних этапах теоретически должно проявляться уменьшением


ударного и сердечного индексов, однако из-за включения компен-саторных механизмов эти показатели снижаются обычно лишь у па­циентов с далеко зашедшей сердечной недостаточностью. Поэтому в клинике они не могут использоваться для объективного подтвер­ждения наличия сердечной недостаточности и оценки степени ее выраженности.

В клинике принято выделять острые и хронические формы сердечной недостаточности. Классическим проявлением острой сердеч­ной недостаточности, как уже указывалось, является отек легких.

Хроническая сердечная недостаточность, в свою очередь, под­разделяется по выраженности клинических проявлений дисфунк­ции правого или левого желудочка на право- и левожелудочковую. Кроме того, в зависимости от тяжести клинических признаков де­компенсации выделяют несколько степеней (классов) сердечной не­достаточности.

В нашей стране используется несколько классификаций хрони­ческой сердечной недостаточности. Наиболее широко применяемой является классификация Н.Д.Стражеско и В.Х.Василенко (табл. 15).

Таблица 15 Классификация сердечной недостаточности

Н.Д.Стражеско и В.Х.Василенко \

Стадия Клинические признаки
I Быстрая утомляемость. Появление при физической нагрузке неадекватной тахикардии и одышки, более медленное по сравнению с нормой исчезновение их в восстановительном периоде.
На Умеренное снижение физической работоспособности, появление неадекватной тахикардии и одышки при незначительной физической нагрузке. Возможно появление умеренного застоя в легких, отеков, гепатомегалии. Физический покой даже без медикаментозной терапии приводит к значительному улучшению состояния больного.
Все проявления сердечной недостаточности резко выражены, но адекватная медикаментозная терапия значительно улучшает состояние больного.
III Резко выражены проявления сердечной недостаточности, в органах развиваются стойкие вторичные изменения (цирроз печени, стойкие изменения в легких, кахексия).

В западных странах и США общепринятой является класси­фикация сердечной недостаточности, предложенная Ныо-Йоркской кардиологической ассоциацией (табл. 16).

Таблица 16

Классификация сердечной недостаточности по системе Ныо-Йоркской кардиологической ассоциации

Очень редко в клинической практике используются другие подходы к классификации сердечной недостаточности. Так, некото­рые авторы выделяют формы сердечной недостаточности, обуслов­ленные перегрузкой камер сердца давлением или же объемом; дру­гие предлагают выделять формы сердечной недостаточности в зави­симости от нарушений кардиогемодинамики в различные фазы сер­дечного цикла - систолическую (преимущественное нарушение со­кратимости миокарда) и диастолическую (преимущественное нару­шение расслабления миокарда). Однако эти классификации, равно как и выделение "антеградных" и "ретроградных" разновидностей сердечной недостаточности, не нашли широкого применения. В зна­чительной мере это обусловлено тем, что клиницист чаще встреча­ется с больными, у которых одновременно имеется перегрузка и дав­лением, и объемом. Что же касается оценки диастолической функ­ции сердца, то до настоящего времени в клинике нет простых и до­ступных методов ее оценки непосредственно у постели больного. Немаловажным является и тот факт, что некоторые особенности, патогенеза сердечной недостаточности в настоящее время сущест­венно не сказываются на врачебной тактике.

Похожие статьи