Строение и функции зрительного анализатора. Орган зрения. Как происходит восприятие и передача зрительной информации

Орган зрения играет важнейшую роль во взаимодействии человека с окружающей средой. С его помощью к нервным центрам поступает до 90 % информации о внешнем мире. Он обеспечивает восприятие света, цветовой гаммы и ощущение пространства. Благодаря тому, что орган зрения является парным и подвижным, зрительные образы воспринимаются объемно, т.е. не только по площади, но и по глубине.

Орган зрения включает глазное яблоко и вспомогательные органы глазного яблока. В свою очередь орган зрения – составная часть зрительного анализатора, который кроме указанных структур включает проводящий зрительный путь, подкорковые и корковые центры зрения.

Глаз имеет округлую форму, передний и задний полюсы (рис. 9.1). Глазное яблоко состоит из:

1) наружной фиброзной оболочки;

2) средней – сосудистой оболочки;

3) сетчатки;

4) ядра глаза (пере­дняя и задняя камеры, хрусталик, стекловидное тело).

Диаметр глаза примерно равен 24 мм, объем глаза у взрослого человека в среднем 7,5 см 3 .

1) Фиброзная оболочка – наружная плотная оболочка, выполняющая каркасную и защитную функции. Фиброзная оболочка подразделяется на задний отдел – склеру и прозрачный передний – роговицу.

Склера – плотная соединительно-тканая оболочка толщиной 0,3–0,4 мм в задней части, 0,6 мм вблизи роговицы. Она образована пучками коллагеновых волокон, между которыми залегают уплощенные фибробласты с небольшим количеством эластических волокон. В толще склеры в зоне соединения ее с роговицей имеется множество мелких разветвленных сообщающихся между собой полостей, образующих венозный синус склеры (шлеммов канал), через кото­рый обеспечивается отток жидкости из передней камеры глаза.К склере прикрепляются глазодвигательные мышцы.

Роговица – это прозрачная часть оболочки, которая не имеет сосудов, а по форме напоминает часовое стекло. Диаметр роговицы – 12 мм, толщина – около 1 мм. Основные свойства роговицы – прозрачность, равномерная сферичность, высокая чувствительность и высокая преломляющая способность (42 дптр). Роговица выполняет защитную и оптическую функции. Она состоит из нескольких слоев: наружного и внутрненнего эпителиальных с множеством нервных окончаний, внутренних, образованных тонкими соединительно-ткаными (коллагеновыми) пластинками, между которыми лежат уплощенные фибробласты. Эпителиоциты наружного слоя снабжены множеством микроворсинок и обильно смочены слезой. Роговица лишена кровеносных сосудов, ее питание происходит за счет диффузии из сосудов лимба и жидкости передней камеры глаза.

Рис. 9.1. Схема строения глаза:

А: 1 – анатомическая ось глазного яблока; 2 – роговица; 3 – передняя камера; 4 – задняя камера; 5 – коньюктива; 6 – склера; 7 – сосудистая оболочка; 8 – цилиарная связка; 8 – сетчатка; 9 – желтое пятно, 10 – зрительный нерв; 11 – слепое пятно; 12 – стекловидное тело, 13 – ресничатое тело; 14 – циннова связка; 15 – радужка; 16 – хрусталик; 17 – оптическая ось; Б: 1 – роговица, 2 – лимб (край роговицы), 3 – венозный синус склеры, 4 – радужно-рого-вичный угол, 5 – конъюнктива, 6 – ресничная часть сетчатки, 7 – склера, 8 – сосудистая оболочка, 9 – зубчатый край сетчатки, 10 – ресничная мышца, 11 – ресничные отростки, 12 – задняя камера глаза, 13 – радужка, 14 – задняя поверхность радужки, 15 – реснич­ный поясок, 16 – капсула хрусталика, 17 – хрусталик, 18 – сфинктер зрачка (мышца, суживающая зрачок), 19 – передняя камера глазного яблока

2) Сосудистая оболочка содержит большое количество кровеносных сосудов и пигмента. Она состоит из трех частей: собственно сосудистой оболочки, ресничного тела и радужки.

Собственно сосудистая оболочка образует большую часть сосудистой оболочки и выстилает заднюю часть склеры.

Большая часть ресничного тела – это ресничная мышца, образованная пучками миоцитов, среди которых различают продольные, циркулярные и радиальные волокна. Сокращение мышцы приводит к расслаблению волокон ресничного пояска (цинновой связки), хрусталик расправляется, округляется, вследствие этого выпуклость хрусталика и его пре­ломляющая сила увеличивается, происходит аккомодация на близлежащие предметы. Миоциты в старческом возрасте частично атрофируются, развивается соединительная ткань; это приводит к нарушению аккомодации.

Ресничное тело кпереди продолжается в радужку, которая представляет собой круглый диск с отверстием в центре (зрачок). Радужка расположена между роговицей и хрусталиком. Она отделяет переднюю камеру (ограниченную спереди роговицей) от задней (ограниченной сзади хрусталиком). Зрачковый край радужки зазубрен, латеральный периферический – ресничный край – пере­ходит в ресничное тело.

Радужка состоит из соединительной ткани с сосудами, пигментных клеток, которые определяют цвет глаз, и мышечных волокон, расположенных радиально и циркулярно, которые образуют сфинктер (суживатель) зрачка и дилататор зрачка. Различное количество и качество пигмента меланина обусловливает цвет глаз – карий, черный, (при наличии большого количества пигмента) или голубой, зеленоватый (если мало пигмента).

3) Сетчатка – внутренняя (светочувствительная) оболочка глазного яблока – на всем протяжении прилежит изнутри к сосудистой оболочке. Она состоит из двух листков: внутреннего – светочувствительного (нервная часть) и наружного – пигментного. Сетчатка делится на две части – заднюю зрительную и переднюю (ресничную и радужковую). Последняя не содержит светочувствительных клеток (фоторецепторов). Границей между ними является зубчатый край, который расположен на уровне перехода собственно сосудистой оболочки в ресничный кружок. Место выхода из сетчатки зрительного нерва называется диском зрительного нерва (слепое пятно, где также отсутствуют фоторецепторы). В центре диска в сетчатку входит центральная артерия сетчатки.

Зрительная часть состоит из наружной пигментной и внутренней нервной частей. Во внутреннюю часть сетчатки входят клетки с отростками в форме колбочек и палочек, которые являются светочувствительными элементами глазного яблока. Колбочки воспринимают световые лучи при ярком (дневном) свете и являются одновременно рецепторами цвета, а палочки функционируют при сумеречном освещении и играют роль рецепторов сумеречного света. Остальные нервные клетки выпол­няют связующую роль; аксоны этих клеток, соединившись в пучок, образуют нерв, который выходит из сетчатки.

Каждая палочка состоит из наружного и внутреннего сегментов. Наружный сегмент – светочувствительный – образован сдвоенными мембранными дисками, которые представляют собой складки плазматической мем­браны. Зрительный пурпур – родопсин, располагающийся в мембранах наружного сегмента, под действием света изменяется, что приводит к возникновению импульса. Наружный и внутренний сегменты связаны между собой ресничкой. Во внутреннем сегменте – множество митохондрий, рибосом, элементов эндоплазматической сети и пластинчатого комплекса Гольджи.

Палочки покрывают почти всю сетчатку за исключением «слепого» пятна. Наибольшее количество колбочек находится на расстоянии около 4 мм от диска зрительного нерва в углублении округлой формы, так называемое желтое пятно, в нем отсутствуют сосуды и оно является местом наилучшего видения глаза.

Различают три типа колбочек, каждый из которых воспринимает свет определенной длины волны. В отличие от палочек в наружном сег­менте одного типа имеется иодопсин, к оторый воспринимает красный свет. Количество колбочек в сетчатке глаза человека достигает 6–7 млн, коли­чество палочек – в 10–20 раз больше.

4) Ядро глаза состоит из камер глаза, хрусталика и стекловидного тела.

Радужка разделяет пространство между роговицей, с одной стороны, и хрусталиком с цинновой связкой и ресничным телом, с другой, на две камеры переднюю изаднюю, которые играют важную роль в циркуляции водянистой влаги внутри глаза. Водянистая влага – жидкость с очень низкой вязкостью, она содер­жит около 0,02 % белка. Водянистая влага вырабатывается капиллярами ресничных отростков и радужки. Обе камеры сообщаются между собой через зрачок. В углу передней камеры, образованном краем радужки и роговицы, по окружности располагаются выстланные эндотелием щели, через которые передняя камера сообщается с венозным синусом склеры, а последний – с системой вен, куда оттекает водянистая влага. В норме количе­ство образовавшейся водянистой влаги строго соответствует количеству оттекающей. При нарушении оттока водянистой влаги возникает повышение внутриглазного давления – глаукома. При несвоевременном лечении данное состояние может привести к слепоте.

Хрусталик – прозрачная двояковыпуклая линза диаметром около 9 мм, имеющая переднюю и заднюю поверхности, которые переходят одна в другую в области экватора. Коэффициент преломления хрусталика в поверхностных слоях равен 1,32; в центральных – 1,42. Эпителиальные клетки, распо­ложенные вблизи экватора, являются ростковыми, они делятся, уд­линяются, дифференцируются в хрусталиковые волокна и накладываются на периферические волокна позади экватора, в результате чего диаметр хрусталика увеличивается. В процессе дифференцировки ядро и органеллы исчезают, в клетке сохраняются лишь свободные рибосомы и микротрубочки. Хрусталиковые волокна дифференцируются в эмбриональном периоде из эпителиальных клеток, покрывающих заднюю поверхность образующегося хрусталика, и сохраняются в течение всей жизни человека. Волокна склеены между собой веществом, чей индекс светопреломления аналогичен таковому в волокнах хрусталика.

Хрусталик как бы подвешен на ресничном пояске (цинновой связке) между волокнами которого расположены пространства пояска, (петитов канал), сообщающиеся с камерами глаза. Волокна пояска прозрачны, они сливаются с веществом хрусталика и пере­дают ему движения ресничной мышцы. При натяжении связки (расслабление ресничной мышцы) хрусталик уплощается (установ­ка на дальнее видение), при расслаблении связки (сокращение ресничной мышцы) выпуклость хрусталика увеличивается (уста­новка на ближнее видение). Это и называется аккомодацией глаза.

Снаружи хрусталик покрыт тонкой прозрачной эластичной капсулой, к ко­торой прикрепляется ресничный поясок (циннова связка). При сокращении ресничной мышцы изменяются размеры хрусталика и его преломляющая способность.Хрусталик обеспечивает аккомодацию глазного яблока, преломляя световые лучи силой в 20 диоптрий.

Стекловидное тело заполняет пространство между сетчаткой сзади, хрусталиком и задней стороной ресничного пояска спереди. Оно представляет собой аморфное межклеточное вещество желеобразной консистенции, которое не имеет сосудов и нервов и покрыто оболочкой, его индекс светопреломления – 1,3. Стекловидное тело состоит из гигроскопического белка витреина и гиалуроновой кислоты. На передней поверхности стекловидного тела имеется ямка, в которой располагается хрусталик.

Вспомогательные органы глаза. К вспомогательным органам глаза относятся мышцы глазного яблока, фасции глазницы, веки, брови, слезный аппарат, жировое тело, конъюнктива, влагалище глазного яблока. Двигательный аппарат глаза представлен шестью мышцами. Мышцы начинаются от сухожильного кольца вокруг зрительного нерва в глубине глазницы и прикрепляются к глазному яблоку. Мышцы действуют таким образом, что оба глаза поворачиваются согласованно и направлены в одну и ту же точку (рис. 9.2).

Рис. 9.2. Мышцы глазного яблока (глазодвигательные мышцы):

А – вид спереди, Б – вид сверху; 1 – верхняя прямая мышца, 2 – блок, 3 – верхняя косая мышца, 4 – медиальная прямая мышца, 5 – нижняя косая мышца, б – нижняя прямая мышца, 7 – латеральная прямая мышца, 8 – зрительный нерв, 9 – перекрест зрительных нервов

Глазница, в которой находится глазное яблоко, состоит из надкостницы глазницы. Между влагалищем и надкостницей глазницы находится жировое тело глазницы, которое выполняет роль эластичной подушки для глазного яблока.

Веки (верхнее и нижнее) представляют собой образования, которые лежат впереди глазного яблока и прикрывают его сверху и снизу, а при смыкании полностью его скрывают. Пространство между краями век называется глазной щелью, вдоль переднего края век расположены ресницы. Основу века составляет хрящ, который сверху покрыт кожей. Веки уменьшают или перекрывают доступ светового потока. Брови и ресницы – это короткие щетинковые волосы. При мигании ресницы задерживают крупные частицы пыли, а брови способствуют отведению пота в латеральном и медиальном направлении от глазного яблока.

Слезный аппарат состоит из слезной железы с выводными протоками и слезоотводящих путей (рис. 9.3). Слезная железа расположена в верхнелатеральном углу глазницы. Она выделяет слезу, состоящую в основном из воды, в которой содержится около 1,5 % NaCl, 0,5 % альбумина и слизь, а также в слезе имеется лизоцим, обладающий выраженным бактерицидным действием.

Кроме того, слеза обеспечивает смачивание роговицы – препятствует ее воспалению, удаляет с ее поверхности частицы пыли и участвует в обеспечении ее питания. Движе­нию слезы способствуют мигательные движения век. Затем слеза по капиллярной щели около края век оттекает в слезное озеро. В этом месте берут начало слезные канальца, которые открываются в слезный мешок. После­дний находится в одноименной ямке в нижнемедиальном углу глазницы. Книзу он переходит в довольно широкий носослезный канал, по которому слезная жид­кость попадает в полость носа.

Зрительное восприятие

Формирование изображения в глазу происходит при участии оптических систем (роговицы и хрусталика), дающих перевернутое и уменьшенное изображение объекта на поверхности сетчатки. Кора головного мозга осуществляет еще один поворот зрительного образа, благодаря чему мы видим различные объекты окружающего мира в реальном виде.

Приспособление глаза к ясному видению на расстоянии удаленных предметов называют аккомодацией. Механизм аккомодации глаза связан с сокращением ресничных мышц, которые изменяют кривизну хрусталика. При рассмотрении предметов на близком расстоянии одновременно с аккомодацией действует и конвергенция, т. е. происходит сведение осей обоих глаз. Зрительные линии сходятся тем больше, чем ближе находится рассматриваемый предмет.

Преломляющую силу оптической системы глаза выражают в диоптриях – (дптр). Преломляющая сила глаза человека составляет 59 дптр при рассмотрении дале­ких и 72 дптр – при рассмотрении близких предметов.

Существуют три главные аномалии преломления лучей в глазу (рефракции): близорукость, или миопия; дальнозоркость, или гиперметропия, и астигматизм (рис. 9.4). Основная причина всех дефектов глаза состоит в том, что не согласуются между собой преломляющая сила и длина глазного яблока, как в нормальном глазу. При близорукости лучи сходятся перед сетчаткой в стекловидном теле, а на сетчатке вместо точки возникает круг светорассеяния, глазное яблоко при этом имеет большую длину, чем в норме. Для коррекции зрения используют вог­нутые линзы с отрицательными диоптриями.

Рис. 9.4. Ход лучей света в глазу:

а – при нормальном зрении, б – при близорукости, в – при дальнозоркости, г – при астигматизме; 1 – коррекция двояковогнутой линзой для исправления дефектов близорукости, 2 – двояковыпуклой – дальнозоркости, 3 – цилиндрической – астигматизма

При дальнозоркости глазное яблоко короткое, и поэтому параллельные лучи, идущие от далеких предметов, собираются сзади сетчатки, а на ней получается неясное, расплывчатое изображение предмета. Этот недостаток может быть компенсирован путем использования преломляющей силы выпуклых линз с положительными диоптриями. Астигматизм – различное преломление лучей света в двух главных меридианах.

Старческая дальнозоркость (пресбиопия) связана со слабой эластичностью хрусталика и ослаблением натяжения цинновых связок при нормальной длине глазного яблока. Исправить это нарушение рефракции можно с помощью двояковыпуклых линз.

Зрение одним глазом дает нам представление о предмете лишь в одной плоскости. Только зрение одновременно двумя глазами дает восприятие глубины и правильное представление о взаимном расположении предметов. Способность к слиянию отдельных изображений, получаемых каждым глазом, в единое целое обеспечивает бинокулярное зрение.

Острота зрения характеризует пространственную разрешающую способность глаза и определяется тем наименьшим углом, при котором человек способен различать раздельно две точки. Чем меньше угол, тем лучше зрение. В норме этот угол равен 1 минуте, или 1 единице.

Для определения остроты зрения используют специальные таблицы, на которых изображены буквы или фигурки различного размера.

Поле зрения – это пространство, которое воспринимается одним глазом при неподвижном его состоянии. Изменение поля зрения может быть ранним признаком некоторых заболеваний глаз и головного мозга.

Механизм фоторецепции основан на поэтапном превращении зрительного пигмента родопсина под действием квантов света. Последние поглощаются группой атомов (хромофоры) специализированных молекул – хромолипопротеинов. В каче­стве хромофора, который определяет степень поглощения света в зрительных пигментах, выступают альдегиды спиртов витамина А, или ретиналь. Ретиналь в норме (в темноте) связывается с бесцветным белком опсином, образуя при этом зрительный пигмент родопсин. При поглощении фотона цис-ретиналь переходит в полную трансформу (изменяет конформацию) и отсоединяется от опсина, при этом в фоторецепторе запускается электрический импульс, который направляется в головной мозг. При этом молекула теряет цвет, и этот процесс называют выцветанием. После прекращения воздействия света родопсин тотчас же ресинтезируется. В полной темноте необходимо около 30 минут, чтобы все палочки адап­тировались и глаза приобрели максимальную чувствительность (весь цис-ретиналь соединился с опсином, вновь образуя родопсин). Этот процесс беспрерывный и лежит в основе темновой адаптации.

От каждой фоторецепторной клетки отходит тонкий отросток, заканчивающийся в наружном сетчатом слое утолщением, которое образует синапс с отростками биполярных нейронов.

Ассоциативные нейроны , расположенные в сетчатке, передают возбуждение от фоторецепторных клеток к крупным оптикоганглионарным невроцитам , аксоны которых (500 тыс – 1 млн) и образуют зрительный нерв, который выходит из глазницы через канал зрительного нерва. На нижней поверхности мозга образуется перекрест зрительных нервов. Информация от латеральных частей сетчатки, не перекрещиваясь, направляется в зрительный тракт, а от медиальных – перекрещивается. Затем импульсы проводятся к подкорковым центрам зрения, которые расположены в среднем и промежуточном мозге: верхние холмики среднего мозга обеспечивают ответную реакцию на неожиданные зри­тельные раздражители; задние ядра таламуса (зрительного бугра) промежуточного мозга обеспечивают бессознательную оценку зрительной информации; от латеральных коленчатых тел промежуточного мозга по зрительной лучистости импульсы направляются к корковому центру зрения. Он расположен в шпорной борозде затылочной доли и обеспечивает сознательную оценку поступившей информации (рис. 9.5).

  • Инж. геол. изыск.проводят для сбора данных характерных геологическое строение местности по к-ой прокладывается дорога и ее гидрогеологические условия

  • Зрительный анализатор позволяет человеку не только опознавать предметы, но и определять их местоположения в пространстве или замечать его изменения. Удивительный факт - около 95% всей информации человек воспринимает с помощью зрения.

    Строение зрительного анализатора

    Глазное яблоко располагается в глазницах, парных впадинках черепа. У основания глазницы заметна небольшая щель, с помощью которой нервы и сосуды соединяются с глазом. Помимо этого, к глазному яблоку подходят еще и мышцы, благодаря которым происходит движение глаз по сторонам. Веки, брови и ресницы - это своеобразная защита глаза снаружи. Ресницы - защита от чрезмерного солнца, попадания песка, пыли в глаза. Брови не позволяют поту со лба стекать на органы зрения. Веки считаются универсальным глазным "чехлом". Со стороны щеки в верхнем углу глаза располагается слезная железа, которая выделяет слезы при опускании верхнего века. Они своевременно увлажняют и промывают глазные яблоки. Выделившаяся слеза течет в угол глаза, расположенный близко к носу, где расположен слезный канал, способствующий выделению излишков слезы. Именно это и является причиной всхлипывания носом плачущего человека.

    Снаружи глазное яблоко покрыто белковой оболочкой, так называемой склерой. В передней части склера переходит в роговицу. Сразу за ней находится сосудистая оболочка. Она имеет черный цвет, поэтому свет изнутри зрительный анализатор не рассеивает. Как было упомянуто выше, склера переходит в радужку, или радужную оболочку. Цвет глаз - это и есть цвет радужной оболочки. В середине радужки расположен круглый зрачок. Он может сужаться и расширяться благодаря гладким мышцам. Таким образом зрительный анализатор человека регулирует количество свет, пропускаемого в глаз, которое необходимо для рассмотрения объекта. Сзади зрачка расположен хрусталик. Он имеет форму двояковыпуклой линзы, которая может становиться более выпуклой или плоской благодаря все тем же гладким мышцам. Чтобы рассмотреть предмет, расположенный вдали, зрительный анализатор вынуждает хрусталик стать плоским, а вблизи - выпуклым. Вся внутренняя полость глаза наполнена стекловидным телом. Оно не имеет никакого цвета, что позволяет свету проходить без помех. Позади глазного яблока расположена сетчатка.

    Строение сетчатки

    Сетчатка имеет рецепторы (клетки в виде колбочек и палочек), примыкающие к сосудистой оболочке, волоконца которой защищают со всех сторон, образуя черный футляр. Колбочки имеют светочувствительность гораздо меньшую, чем палочки. Они располагаются преимущественно в центре сетчатки, в желтом пятне. Следовательно, в периферии глаза преобладают палочки. Они способны передавать на зрительный анализатор лишь черно-белое изображение, зато действуют и при слабом освещении благодаря своей высокой светочувствительности. Перед палочками и колбочками расположены нервные клетки, принимающие и обрабатывающие информацию, поступающую на сетчатку.

    У человека есть удивительный дар, который он не всегда ценит, — возможность видеть. Человеческий глаз способен различать мелкие предметы и малейшие оттенки, при этом видеть не только днем, но и ночью. Специалисты утверждают, что с помощью зрения мы узнает от 70 до 90 процентов всей информации. Многие произведения искусства не были бы возможны при отсутствии глаз.

    Поэтому разберемся подробнее, зрительный анализатор – что это такое, какие он выполняет функции, какое имеет строение?

    Составляющие зрения и их функции

    Начнем с рассмотрения строения зрительного анализатора, состоящего из:

    • глазного яблока;
    • проводящих путей — по ним картинка, зафиксированная глазом, подается в подкоровые центры, а потом и в кору мозга.

    Поэтому в целом выделяют три отдела зрительного анализатора:

    • периферическая – глаза;
    • проводниковая – зрительный нерв;
    • центральная – зрительная и подкорковая зоны коры головного мозга.

    Зрительный анализатор еще называют зрительной секреторной системой. Глаз включает в себя глазницу, а также вспомогательный аппарат.

    Центральная часть находится в основном в затылочной части мозговой коры. Вспомогательный аппарат глаза представляет собой систему защиты и движения. В последнем случае внутренняя часть век имеет слизистую оболочку, называемую конъюнктивой. Защитная система включает нижнее и верхнее веко с ресницами.

    Пот с головы спускается вниз, но не попадает в глаза за счет существования бровей. В слезах есть лизоцим, который убивает вредоносные микроорганизмы, попадающие в глаза. Моргание век способствует регулярному увлажнению яблока, после чего слезы спускаются ближе к носу, где попадают в слезной мешок. Дальше они переходят в полость носа.

    Глазное яблоко двигается постоянно, для чего предусмотрено 2 косые и 4 прямые мышцы. У здорового человека оба глазных яблока перемещаются в одном направлении.

    Диаметр органа составляет 24 мм, а его масса – около 6-8 г. Яблоко располагается в глазнице, сформированной костями черепа. Есть три оболочки: сетчатка, сосудистая и наружная.

    Наружная

    Внешняя оболочка имеет роговицу и склеру. В первой нет кровеносных сосудов, однако имеет множество нервных окончаний. Питание осуществляется благодаря межклеточной жидкости. Роговица пропускает свет, а также выполняет защитную функцию, предотвращая повреждение внутренности глаза. Она имеет нервные окончания: в результате попадания на нее даже небольшой пыли появляются режущие боли.

    Склера имеет либо белый, либо голубоватый цвет. К ней фиксируются глазодвительные мышцы.

    Средняя

    В средней оболочке можно выделить три части:

    • сосудистая оболочка, находящаяся под склерой, имеет множество сосудов, поставляет кровь для сетчатки;
    • ресничное тело контактирует с хрусталиком;
    • радужка – зрачок реагирует на интенсивность света, который попадает на сетчатку (расширяется при слабом, сужается при сильном освещении).

    Внутренняя

    Сетчатка – мозговая ткань, которая позволяет реализовать функцию зрения. Она выглядит как тонкая оболочка, прилегающая по всей поверхности к сосудистой оболочке.

    Глаз имеет две камеры, заполненные прозрачной жидкостью:

    • переднюю;
    • заднюю.

    В итоге можно выделить факторы, которые обеспечивают выполнение всех функций зрительного анализатора:

    • достаточное количество света;
    • фокусировка картинки на сетчатке;
    • аккомодационный рефлекс.

    Глазодвигательные мышцы

    Они являются частью вспомогательной системы органа зрения и зрительного анализатора. Как отмечалось, есть две косые и четыре прямые мышцы.

    • нижняя;
    • верхняя.
    • нижняя;
    • латеральная;
    • верхняя;
    • медиальная.

    Прозрачные среды внутри глаз

    Они необходимы, чтобы пропускать лучи света к сетчатке, а также их преломлять в роговице. Дальше лучи попадают в переднюю камеру. Затем преломление осуществляется хрусталиком – линзой, меняющей силу преломления.

    Можно выделить два основных нарушения зрения:

    • дальнозоркость;
    • близорукость.

    Первое нарушение образуется при снижении выпуклости хрусталика, близорукость – наоборот. В хрусталике нет нервов, сосудов: развитие воспалительных процессов исключено.

    Бинокулярное зрение

    Чтобы получить одну картинку, сформированную двумя глазами, картинка фокусируется в одной точке. Такие линии зрения расходятся при взгляде на удаленные объекты, сходятся – близкие.

    Еще благодаря бинокулярному зрению можно определить нахождение объектов в пространстве по отношению друг к другу, оценивать их удаленность, прочее.

    Гигиена зрения

    Мы рассмотрели строение зрительного анализатора, а также определенным образом разобрались, как ведется работа зрительного анализатора. А напоследок стоит узнать, как же правильно следить за гигиеной органов зрения, чтобы обеспечить их эффективную и бесперебойную работу.

    • необходимо защищать глаза от механического воздействия;
    • читать книги, журналы и прочую текстовую информацию необходимо с хорошим освещением, держать объект чтения на должном расстоянии – около 35 см;
    • желательно, чтобы свет падал слева;
    • чтение на коротком расстоянии способствует развитию близорукости, поскольку хрусталику длительное время приходится пребывать в выпуклом состоянии;
    • нельзя допускать воздействия излишне яркого освещения, которое способно разрушить световоспринимающие клетки;
    • не стоит читать в транспорте или лежа, поскольку в этом случае постоянно меняется фокусное расстояние, снижается эластичность хрусталика, ослабевает ресничная мышца;
    • нехватка витамина А может спровоцировать снижение остроты зрения;
    • частые прогулки на свежем воздухехорошая профилактика многих заболеваний глаз.

    Подведение итогов

    Следовательно, можно отметить, что зрительный анализатор представляет собой непростой, но весьма важный инструмент для обеспечения качественной жизни человека. Не зря изучение органов зрения переросло в отдельную дисциплину – офтальмологию.

    Кроме определенной функции, глаза играют еще и эстетическую роль, украшая человеческое лицо. Поэтому зрительный анализатор – очень важный элемент организма, очень важно соблюдать гигиену органов зрения, периодически приходить на осмотр к врачу и правильно питаться, вести здоровый образ жизни.

    ДОКЛАД НА ТЕМУ:

    ФИЗИОЛОГИЯ ЗРИТЕЛЬНОГО АНАЛИЗАТОРА.

    СТУДЕНТКИ: Путилина М., Аджиева А.

    Преподаватель: Бунина Т. П.

    Физиология зрительного анализатора

    Зрительный анализатор (или зрительная сенсорная система) – важнейший из органов чувств человека и большинства высших позвоночных животных. Он дает более 90% информации, идущей к мозгу от всех рецепторов. Благодаря опережающему эволюционному развитию именно зрительных механизмов мозг хищных животных и приматов претерпел резкие изменения и достиг значительного совершенства. Зрительное восприятие – многозвеньевой процесс, начинающийся с проекции изображения на сетчатку глаза и возбуждения фоторецепторов и заканчивающийся принятием высшими отделами зрительного анализатора, локализованными в коре мозга, решения о наличии в поле зрения того или иного зрительного образа.

    Структуры зрительного анализатора:

      Глазное яблоко.

      Вспомогательный аппарат.

    Строение глазного яблока:

    Ядро глазного яблока окружают три оболочки: наружная, средняя и внутренняя.

      Наружная - очень плотная фиброзная оболочка глазного яблока (tunica fibrosa bulbi), к которой прикрепляются наружные мышцы глазного яблока, выполняет защитную функцию и благодаря тургору обусловливает форму глаза. Она состоит из передней прозрачной части - роговицы, и задней непрозрачной части белесоватого цвета - склеры.

      Средняя, или сосудистая, оболочка глазного яблока играет важную роль в обменных процессах, обеспечивая питание глаза и выведение продуктов обмена. Она богата кровеносными сосудами и пигментом (богатые пигментом клетки хориоидеи препятствуют проникновению света через склеру, устраняя светорассеяние). Она образована радужкой, ресничным телом и собственно сосудистой оболочкой. В центре радужки имеется круглое отверстие - зрачок, через которое лучи света проникают внутрь глазного яблока и достигают сетчатки (величина зрачка изменяется в результат взаимодействия гладких мышечных волокон - сфинктера и дилататора, заключённых в радужке и иннервируемых парасимпатическим и симпатическим нервами). Радужка содержит различное количество пигмента, от которого зависит её окраска - «цвет глаз».

      Внутренняя, или сетчатая, оболочка глазного яблока (tunica interna bulbi), - сетчатка - рецепторная часть зрительного анализатора, здесь происходит непосредственное восприятие света, биохимические превращения зрительных пигментов, изменение электрических свойств нейронов и передача информации в центральную нервную систему. Сетчатка состоит из 10 слоев:

      Пигментный;

      Фотосенсорный;

      Наружная пограничная мембрана;

      Наружный зернистый слой;

      Наружный сетчатый слой;

      Внутренний зернистый слой;

      Внутренний сетчатый;

      Слой ганглиозных клеток;

      Слой волокон зрительного нерва;

      Внутренняя пограничная мембрана

    Центральная ямка (желтое пятно). Область сетчатки, в которой находятся одни колбочки (цветочувствительные фоторецепторы); в связи с этим обладает сумеречной слепотой (гемеролопией); для этой области характерны миниатюрные рецептивные поля (одна колбочка – один биполяр – одна ганглиозная клетка), и как следствие, максимальная острота зрения

    С функциональной точки зрения оболочки глаза и её производные подразделяют на три аппарата: рефракционный (светопреломляющий) и аккомодационный (приспособительный), формирующие оптическую систему глаза, и сенсорный (рецепторный) аппарат.

    Светопреломляющий аппарат

    Светопреломляющий аппарат глаза представляет собой сложную систему линз, формирующую на сетчатке уменьшенное и перевёрнутое изображение внешнего мира, включает в себя роговицу, камерную влагу - жидкости передней и задней камер глаза, хрусталик, а также стекловидное тело, позади которого лежит сетчатка, воспринимающая свет.

    Хруста́лик (лат. lens) - прозрачное тело, расположенное внутри глазного яблока напротив зрачка; являясь биологической линзой, хрусталик составляет важную часть светопреломляющего аппарата глаза.

    Хрусталик представляет собой прозрачное двояковыпуклое округлое эластичное образование, циркулярно фиксированное к цилиарному телу. Задняя поверхность хрусталика прилегает к стекловидному телу, спереди от него находятся радужка и передняя и задняя камеры.

    Максимальная толщина хрусталика взрослого человека примерно 3,6-5 мм (в зависимости от напряжения аккомодации), его диаметр около 9-10 мм. Радиус кривизны передней поверхности хрусталика в покое аккомодации равен 10 мм, а задней - 6 мм, при максимальном напряжении аккомодации передний и задний радиус сравниваются, уменьшаясь до 5,33 мм.

    Показатель преломления хрусталика неоднороден по толщине и в среднем составляет 1,386 или 1,406 (ядро) также в зависимости от состояния аккомодации.

    В покое аккомодации преломляющая сила хрусталика составляет среднем 19,11 диоптрий, при максимальном напряжении аккомодации - 33,06 дптр.

    У новорождённых хрусталик почти шаровидный, имеет мягкую консистенцию и преломляющую силу до 35,0 дптр. Дальнейший рост его происходит, в основном, за счет увеличения диаметра.

    Аккомодационный аппарат

    Аккомодационный аппарат глаза обеспечивает фокусировку изображения на сетчатке, а также приспособление глаза к интенсивности освещения. Он включает в себя радужку с отверстием в центре - зрачком - и ресничное тело с ресничным пояском хрусталика.

    Фокусировка изображения обеспечивается за счёт изменения кривизны хрусталика, которая регулируется цилиарной мышцей. При увеличении кривизны хрусталик становится более выпуклым и сильнее преломляет свет, настраиваясь на видение близко расположенных объектов. При расслаблении мышцы хрусталик становится более плоским, и глаз приспосабливается для видения удалённых предметов. У других животных, в частности, головоногих, при аккомодации превалирует как раз изменение расстояния между хрусталиком и сетчаткой.

    Зрачок представляет собой отверстие переменного размера в радужной оболочке. Он выполняет роль диафрагмы глаза, регулируя количество света, падающего на сетчатку. При ярком свете кольцевые мышцы радужки сокращаются, а радиальные расслабляются, при этом зрачок сужается, и количество света, попадающего на сетчатку уменьшается, это предохраняет её от повреждения. При слабом свете наоборот сокращаются радиальные мышцы, и зрачок расширяется, пропуская в глаз больше света.

    цинновы связки (ресничные пояски). Отростки ресничного тела, направляются к капсуле хрусталика. При расслабленном состоянии гладкой мускулатуры ресничного тела оказывают максимальное растягивающее действие на капсулу хрусталика, в результате чего он максимально уплощен, а преломляющая его способность минимальна (это имеет место в момент рассматривания предметов, находящихся на большом удалении от глаз); в условиях сокращенного состояния гладкой мускулатуры ресничного тела имеет место обратная картина (при рассматривании близко расположенных от глаз предметов)

    передняя и задняя камеры глаза соответственно, заполнены водянистой влагой.

    Рецепторный аппарат зрительного анализатора. Структура и функции отдельных слоев сетчатки

    Сетчатка представляет собой внутреннюю оболочку глаза, имеющую сложную многослойную структуру. Здесь расположены два вида различных по своему функциональному значению фоторецепторов – палочки и колбочки и несколько видов нервных клеток с их многочисленными отростками.

    Под влиянием световых лучей в фоторецепторах происходят фотохимические реакции, состоящие в изменении светочувствительных зрительных пигментов. Это вызывает возбуждение фоторецепторов, и затем синоптическое возбуждение связанных с палочками и колбочками нервных клеток. Последние образуют собственно нервный аппарат глаза, который передает зрительную информацию в центры головного мозга и участвует в ее анализе и переработке.

    ВСПОМОГАТЕЛЬНЫЙ АППАРАТ

    Вспомогательный аппарат глаза включает защитные приспособления и мышцы глаза. К защитным приспособлениям относятся веки с ресницами, конъюнктива и слезный аппарат.

    Веки представляют собой парные кожно-конъюктивные складки, прикрывающие спереди глазное яблоко. Передняя поверхность века покрыта тонкой, легко собирающейся в складки кожей, под которой лежит мышца века и которая на периферии переходит в кожу лба и лица. Задняя поверхность века выстлана конъюнктивой. Веки имеют передние края век, несущие ресницы и задние края век, переходящие в конъюнктиву.

    Между верхними и нижними веками имеется щель век с медиальным и латеральным углами. У медиального угла щели век передний край каждого века имеет небольшое возвышение - слезный сосочек, на вершине которого точечным отверстием открывается слезный каналец. В толще век заложены хрящи, тесно сращенные с конъюнктивой и в значительной мере определяющие форму век. Медиальной и латеральной связками век эти хрящи укреплены к краю глазницы. В толще хрящей залегают довольно многочисленные (до 40) железы хряща, протоки которых открываются вблизи свободных задних краев обоих век. У лиц, работающих в пыльных цехах, часто наблюдается закупорка этих желез с последующим их воспалением.

    Мышечный аппарат каждого глаза состоит из трех пар антагонистически действующих глазодвигательных мышц:

    Верхней и нижней прямых,

    Внутренней и наружной прямых,

    Верхней и нижней косых.

    Все мышцы, за исключением нижней косой, начинаются, кaк и мышцы, поднимающие верхнее веко, от сухожильного кольца, расположенного вокруг зрительного канала глазницы. Затем четыре прямые мышцы направляются, постепенно дивергируясь, кпереди и после прободения теноновой капсулы налетаются своими сухожилиями в склеру. Линии их прикрепления находятся на разном расстоянии от лимба: внутренней прямой - 5,5-5,75 мм, нижней - 6-6,6 мм, наружной - 6,9-7 мм, верхней - 7,7-8 мм.

    Верхняя косая мышца от зрительного отверстия направляется к костно-сухожильному блоку, расположенному у верхневнутреннего угла глазницы и, перекинувшись через него, идет кзади и кнаружи в виде компактного сухожилия; прикрепляется к склере в верхненаружном квадранте глазного яблока на расстоянии 16 мм от лимба.

    Нижняя косая мышца начинается от нижней костной стенки глазницы несколько латеральнее места входа в носослезный канал, идет кзади и кнаружи между нижней стенкой глазницы и нижней прямой мышцей; прикрепляется к склере на расстоянии 16 мм от лимба (нижненаружный квадрант глазного яблока).

    Внутренняя, верхняя и нижняя прямые мышцы, а также нижняя косая мышца иннервируются веточками глазодвигательного нерва, наружная прямая - отводящего, верхняя косая - блокового.

    При сокращении той или иной мышцы глаз совершает движение вокруг оси, которая перпендикулярна ее плоскости. Последняя проходит вдоль мышечных волокон и пересекает точку вращения глаза. Это означает, что у большинства глазодвигательных мышц (за исключением наружной и внутренней прямых мышц) оси вращения имеют тот или иной угол наклони по отношению к исходным координатным осям. Вследствие этого при сокращении таких мышц глазное яблоко совершает сложное движение. Так, например, верхняя прямая мышца при среднем положении глаза поднимает его кверху, ротирует кнутри и несколько поворачивает к носу. Вертикальные движения глаза будут увеличиваться по мере уменьшения угла расхождения между сагиттальной и мышечной плоскостями, т. е. при повороте глаза кнаружи.

    Все движения глазных яблок подразделяют на сочетанные (ассоциированные, конъюгированные) и конвергентные (фиксация разноудаленных объектов за счет конвергенции). Сочетанные движения - это те, которые направлены в одну сторону: вверх, вправо, влево и т. д. Эти движения совершаются мышцами - синергистами. Так, например, при взгляде вправо в правом глазу сокращается наружная, а в левом - внутренняя прямые мышцы. Конвергентные движения реализуются посредством действия внутренних прямых мышц каждого глаза. Разновидностью их являются фузионные движения. Будучи очень мелкими, они осуществляют особо точную фиксационную установку глаз, благодаря чему создаются условия для беспрепятственного слияния в корковом отделе анализатора двух сетчаточных изображений в один цельный образ.

    Восприятие света

    Мы воспринимаем свет благодаря тому, что его лучи проходят через оптическую систему глаза. Там возбуждение обрабатывается и передаётся в центральные отделы зрительной системы. Сетчатка - это сложная оболочка глаза, содержащая несколько слоев клеток, различных по форме и функциям.

    Первый (внешний) слой - пигментный, состоит из плотно расположенных эпителиальных клеток, содержащих чёрный пигмент фусцин. Он поглощает световые лучи, способствуя более четкому изображению предметов. Второй слой - рецепторный, образован светочувствительными клетками - зрительными рецепторами - фоторецепторами: колбочками и палочками. Они воспринимают свет и превращают его энергию в нервные импульсы.

    Каждый фоторецептор состоит из чувствительного к действию света наружного сегмента, содержащего зрительный пигмент, и внутреннего сегмента, содержащего ядро и митохондрии, обеспечивающие энергетические процессы в фоторецепторной клетке.

    Электронно-микроскопические исследования выявили, что наружный сегмент каждой палочки состоит из 400-800 тонких пластинок, или дисков, диаметром около 6 мкм. Каждый диск представляет собой двойную мембрану, состоящую из мономолекулярных слоев липидов, находящихся между слоями молекул белка. С молекулами белка связан ретиналь, входящий в состав зрительного пигмента родопсина.

    Наружный и внутренний сегменты фоторецепторной клетки разделены мембранами, через которые проходит пучок из 16-18 тонких фибрилл. Внутренний сегмент переходит в отросток, помощью которого фоторецепторная клетка передает возбуждение через синапс на контактирующую с ней биполярную нервную клетку.

    У человека в глазу имеется около 6-7 млн. колбочек и 110-125 млн. палочек. Палочки и колбочки распределены в сетчатке неравномерно. Центральная ямка сетчатки (fovea centralis) содержит только колбочки (до 140000 колбочек на 1 мм2). По направлению к периферии сетчатки число колбочек уменьшается, а количество палочек возрастает. Периферия сетчатки содержит почти исключительно палочки. Колбочки функционируют в условиях ярой освещенности и воспринимают цвета; палочки являются рецепторами, воспринимающими световые лучи в условиях сумеречного зрения.

    Раздражение различных участков сетчатки показывает, что различные цвета воспринимаются лучше всего при действии световых раздражителей на центральную ямку, где расположены почти исключительно колбочки. По мере удаления от центра сетчатки восприятие цвета становиться все хуже. Периферия сетчатки, где находятся исключительно палочки, не воспринимает цвета. Световая чувствительность колбочкового аппарата сетчатки во много раз меньше таковой элементов, связанных с палочками. Поэтому в сумерках в условиях малой освещенности, центральное колбочковое зрение резко понижено и преобладает периферическое палочковое зрение. Так как палочки не воспринимают цвета, то в сумерках человек цвета не различает.

    Слепое пятно. Место входа зрительного нерва в глазное яблоко – сосок зрительного нерва – не содержит фоторецепторов и поэтому нечувствительно к свету; это так называемое слепое пятно. В существовании слепого пятна можно убедиться с помощью опыта Мариотта.

    Мариотт проделывал опыт так: помещал двух вельмож на расстоянии 2 м друг против друга и просил их рассматривать одним глазом некоторую точку сбоку,- тогда каждому казалось, что у его визави нет головы.

    Как это ни странно, но люди только в XVII веке узнали, что на сетчатке их глаз существует «слепое пятно», о котором никто раньше не думал.

    Нейроны сетчатки. Кнутри от слоя фоторецепторных клеток в сетчатке расположен слой биполярных нейронов, к которым изнутри примыкает слой ганглиозных нервных клеток.

    Аксоны ганглиозных клеток образуют волокна зрительного нерва. Таким образом, возбуждение, возникающее в фоторецепторе при действии света, попадает на волокна зрительного нерва через нервные клетки – биполярные и ганглиозные.

    Восприятие изображения предметов

    Чёткое изображение предметов на сетчатке обеспечиваются сложной уникальной оптической системой глаза, состоящей из роговицы, жидкостей передней и задней камер, хрусталика и стекловидного тела. Световые лучи проходят сквозь перечисленные среды оптической системы глаза и преломляются в них согласно законам оптики. Основное значение для преломления света в глазу имеет хрусталик.

    Для чёткого восприятия предметов необходимо, чтобы их изображение всегда фокусировалось в центре сетчатки. Функционально глаз приспособлен для рассмотрения удалённых предметов. Однако люди могут чётко различать предметы, расположенные на разном расстоянии от глаза, благодаря способности хрусталика изменять свою кривизну, а соответственно и преломляющую силу глаза. Способность глаза приспосабливаться к ясному видению предметов, расположенных на разном расстоянии, называют аккомодацией. Нарушение аккомодационной способности хрусталика приводит к нарушению остроты зрения и возникновения близорукости или дальнозоркости.

    Парасимпатические преганглионарные волокна исходят из ядра Вестфаля-Эдингера (висцеральная часть ядра III пары черепного нерва) и затем идут в составе III пары черепных нервов к ресничному ганглию, который лежит сразу позади глаза. Здесь преганглионарные волокна образуют синапсы с постганглионарными парасимпатическими нейронами, которые, в свою очередь, посылают волокна в составе ресничных нервов в глазное яблоко.

    Эти нервы возбуждают: (1) ресничную мышцу, которая регулирует фокусирование хрусталиков глаз; (2) сфинктер радужной оболочки, сужающий зрачок.

    Источником симпатической иннервации глаза являются нейроны боковых рогов первого грудного сегмента спинного мозга. Выходящие отсюда симпатические волокна входят в симпатическую цепочку и поднимаются к верхнему шейному ганглию, где они синаптически связываются с ганглионарными нейронами. Их постганглионарные волокна проходят вдоль поверхности каротидной артерии и далее вдоль более мелких артерий и достигают глаза.

    Здесь симпатические волокна иннервируют радиальные волокна радужной оболочки (которые расширяют зрачок), а также некоторые внеглазные мышцы глаза (обсуждаются далее в связи с синдромом Горнера).

    Механизм аккомодации, фокусирующий оптическую систему глаза, важен для поддержания высокой остроты зрения. Аккомодация осуществляется в результате сокращения или расслабления ресничной мышцы глаза. Сокращение этой мышцы увеличивает преломляющую силу хрусталика, а расслабление снижает ее.

    Аккомодация хрусталика регулируется механизмом отрицательной обратной связи, который автоматически регулирует преломляющую силу хрусталика, чтобы достичь высочайшей степени остроты зрения. Когда глаза, сфокусированные на некотором отдаленном объекте, должны внезапно сфокусироваться на ближнем объекте, хрусталик обычно аккомодирует в течение менее 1 сек. Хотя точный механизм регуляции, вызывающий это быстрое и точное фокусирование глаза, не ясен, известны некоторые из его особенностей.

    Во-первых, при внезапном изменении расстояния до точки фиксации преломляющая сила хрусталика изменяется в направлении, соответствующем достижению нового состояния фокуса, в пределах доли секунды. Во-вторых, разные факторы помогают изменить силу хрусталика в нужном направлении.

    1. Хроматическая аберрация. Например, лучи красного цвета фокусируются слегка сзади по отношению к голубым лучам, поскольку голубые лучи сильнее преломляются хрусталиком, чем красные. Глаза, по-видимому, способны определить, какой из этих двух типов лучей лучше сфокусирован, и этот «ключ» передает информацию аккомодирующему механизму для увеличения или уменьшения силы хрусталика.

    2. Конвергенция. При фиксации глаз на ближнем объекте глаза конвергируют. Нервные механизмы конвергенции одновременно посылают сигнал, увеличивающий преломляющую силу хрусталика глаза.

    3. Ясность фокуса в глубине ямки по сравнению с ясностью фокуса по краям различна, поскольку центральная ямка лежит несколько глубже, чем остальная сетчатка. Предполагают, что это различие также дает сигнал, в каком направлении следует изменить силу хрусталика.

    4. Степень аккомодации хрусталика все время слегка колеблется с частотой до 2 раз в секунду. При этом визуальное изображение становится яснее, когда колебание силы хрусталика изменяется в правильном направлении, и менее ясным, когда сила хрусталика изменяется в неправильном направлении. Это может дать быстрый сигнал к выбору правильного направления изменения силы хрусталика для обеспечения соответствующего фокуса. Области коры большого мозга, регулирующие аккомодацию, функционируют в тесной параллельной связи с областями, контролирующими фиксационные движения глаз.

    При этом анализ зрительных сигналов осуществляется в областях коры, соответствующих полям 18 и 19 по Бродману, а двигательные сигналы к ресничной мышце передаются через претектальную зону ствола мозга, затем - через ядро Вестфаля-Эдингера и в итоге - по парасимпатическим нервным волокнам к глазам.

    Фотохимические реакции в рецепторах сетчатки

    В палочках сетчатки человека и многих животных содержится пигмент родопсин, или зрительный пурпур, состав, свойства и химические превращения которого подробно изучены в последние десятилетия. В колбочках найден пигмент йодопсин. В колбочках имеются также пигменты хлоролаб и эритролаб; первый из них поглощает лучи, соответствующие зеленой, а второй – красной части спектра.

    Родопсин представляет собой высокомолекулярное соединение (молекулярная масса 270000), состоящее из ретиналя – альдегида витамина А и балка опсина. При действии кванта света происходит цикл фотофизических и фотохимических превращений этого вещества: ретиналь изомеризуется, его боковая цепь выпрямляется, связь ретиналя с белком нарушается, активируются ферментативные центры белковой молекулы. Конформационное изменение молекул пигмента активирует ионы Са2+, которые посредством диффузии достигают натриевых каналов, вследствие чего проводимость для Na+ снижается. В результате снижения натриевой проводимости возникает увеличение электроотрицательности внутри фоторецепторной клетки по отношению к внеклеточному пространству. После чего ретиналь отщепляется от опсина. Под влиянием фермента, названного редуктазой ретиналя, последний переходит в витамин А.

    При затемнении глаз происходит регенерация зрительного пурпура, т.е. ресинтез родопсина. Для этого процесса необходимо, чтобы сетчатка получала цис-изомер витамина А, из которого образуется ретиналь. Если же витамин А в организме отсутствует, образование родопсина резко нарушается, что и приводит к развитию куринной слепоты.

    Фотохимические процессы в сетчатке происходит весьма экономно, т.е. при действии даже очень яркого света расщепляется только небольшая часть имеющегося в палочках родопсина.

    Структура йодопсина близка к родопсину. Йодопсин представляет собой также соединение ретиналя с белком опсином, который образуется в колбочках и отличается от опсина палочек.

    Поглощение света родопсином и йодопсином различно. Йодопсин в наибольшей степени поглощает желтый свет с длиной волны около 560 нм.

    Сетчатка представляет собой довольно сложную нейронную сеть с горизонтальными и вертикальными связями между фоторецепторами и клетками. Биполярные клетки сетчатки передают сигналы от фоторецепторов в слой ганглиозных клеток и к амакриновым клеткам (вертикальная связь). Горизонтальные и амакриновые клетки участвуют в горизонтальной передаче сигналов между соседними фоторецепторами и ганглиозными клетками.

    Восприятие цвета

    Восприятие цвета начинается с поглощения света колбочками - фоторецепторами сетчатки (фрагмент внизу). Колбочка отвечает на сигнал всегда одинаково, но ее активность передается двум различным типам нейронов, называемым биполярными клетками ON- и OFF-типа, которые, в свою очередь, соединены с ганглиозными клетками ON- и OFF-типа, а их аксоны несут сигнал в мозг - сначала в латеральное коленчатое тело, а оттуда далее в зрительную кору

    Многоцветность воспринимается благодаря тому, что колбочки реагируют на определенный спектр света изолированно. Существует три типа колбочек. Колбочки первого типа реагируют преимущественно на красный цвет, второго - на зелёный и третьего - на синий. Эти цвета называют основными. Под действием волн различной длины колбочки каждого типа возбуждаются неодинаково.

    Самой большой длине волны соответствует красный цвет, самой короткой – фиолетовый;

    Цвета между красным и фиолетовым располагаются в известной последовательности красный- оранжевый – желтый – зеленый – голубой – синий – фиолетовый.

    Наш глаз воспринимает длины волн только в диапозоне 400-700 нм. Фотоны с длиной волн выше 700 нм относятся к инфракрасному излучению, воспринимаются в форме тепла. Фотоны с длиной волн ниже 400 нм относят к ультрафиолетовому излучению, они из-за своей высокой энергии способны оказывать повреждающее действие на кожу и слизистые; после ультрафиолетового идет уже рентгеновское и гамма-излучение.

    Вследствие этого каждая длина волны воспринимается как особый цвет. Например, когда мы смотрим на радугу, то самыми заметными для нас кажутся основные цвета (красный, зелёный, синий).

    Оптическим смешением основных цветов можно получить остальные цвета и оттенки. Если все три типа колбочек возбуждаются одновременно и одинаково, возникает ощущение белого цвета.

    Сигналы о цвете передаются по медленным волокнам ганглиозных клеток

    В результате смешения сигналов, несущих информацию об окраске и форме, человек может увидеть то, чего нельзя было бы ожидать на основе анализа длины волны света, отраженного от предмета, что наглядно демонстрируют иллюзии.

    Зрительные пути:

    Аксоны ганглиозных клеток дают начало зрительному нерву. Правый и левый зрительные нервы сливаются у основания черепа, образуя перекрест, где нервные волокна, идущие от внутренних половин обеих сетчаток, пересекаются и переходят на противоположную сторону. Волокна, идущие от наружных половин каждой сетчатки объединяются вместе с перекрещенным пучком аксонов из контралатерального зрительного нерва, образуя зрительный тракт. Зрительный тракт заканчивается в первичных центрах зрительного анализатора, к которым относятся латеральные коленчатые тела, верхние бугорки четверохолмия и претектальная область ствола мозга.

    Латеральные коленчатые тела являются первой структурой ЦНС, где происходит переключение импульсов возбуждения на пути между сетчаткой и корой большого мозга. Нейроны сетчатки и латерального коленчатого тела производят анализ зрительных стимулов, оценивая их цветовые характеристики, пространственный контраст и среднюю освещенность в различных участках поля зрения. В латеральных коленчатых телах начинается бинокулярное взаимодействие от сетчатки правого и левого глаза.

    Чтобы взаимодействовать с окружающим миром, человеку необходимо принимать и анализировать информацию из внешней среды. Для этого природа и наделила его органами чувств. Их шесть: глаза, уши, язык, нос, кожа и Таким образом, человек формирует представление обо всем, что его окружает и о себе самом в результате зрительных, слуховых, обонятельных, осязательных, вкусовых и кинестетических ощущений.

    Вряд ли можно утверждать, что какой-то орган чувств является более значимым, нежели остальные. Они дополняют друг друга, создавая полную картину мира. Но то, что большую часть всей информации - до 90%! - люди воспринимают с помощью глаз - это факт. Чтобы понимать, как эта информация попадает в мозг и как происходит ее анализ, нужно представлять себе строение и функции зрительного анализатора.

    Особенности зрительного анализатора

    Благодаря зрительному восприятию мы узнаем о размерах, форме, расцветке, взаимному расположению объектов окружающего мира, их движении или неподвижности. Это сложный и многоэтапный процесс. Строение и функции зрительного анализатора - системы, осуществляющей получение и обработку зрительной информации, и тем самым обеспечивающей зрение - очень сложны. Изначально в нем можно выделить периферическую (воспринимающую исходные данные), проводящую и анализирующую части. Получение информации осуществляется посредством рецепторного аппарата, включающего в себя глазное яблоко и вспомогательные системы, а далее она отправляется с помощью зрительных нервов в соответствующие центры мозга, где происходит ее обработка и формируются зрительные образы. Все отделы зрительного анализатора будут рассмотрены в статье.

    Как устроен глаз. Наружный слой глазного яблока

    Глаза являются парным органом. Каждое глазное яблоко по форме напоминает слегка приплюснутый шар и состоит из нескольких оболочек: внешней, средней и внутренней, окружающих заполненные жидкостью полости глаза.

    Внешняя оболочка - это плотная фиброзная капсула, сохраняющая форму глаза и защищающая его внутренние структуры. Кроме того, к ней осуществляется крепление шести двигательных мышц глазного яблока. Внешняя оболочка состоит из прозрачной передней части - роговицы, и задней, светонепроницаемой - склеры.

    Роговица является преломляющей средой глаза, она выпуклая, имеет вид линзы и состоит, в свою очередь, из нескольких слоев. В ней нет кровеносных сосудов, но есть множество нервных окончаний. Белая или голубоватая склера, видимую часть которой обычно называют белком глаза, сформирована из соединительной ткани. К ней и крепятся мышцы, обеспечивающие повороты глаз.

    Средний слой глазного яблока

    Средняя сосудистая оболочка участвует в обменных процессах, обеспечивая питание глаза и вывод продуктов обмена. Передняя, самая заметная ее часть - это радужка. Пигментное вещество, находящееся в радужной оболочке, а точнее, его количество, определяет индивидуальный оттенок глаз человека: от голубого, если его мало, до карего, если достаточно. Если пигмент отсутствует, как бывает при альбинизме, то становится видно сплетение сосудов, и радужка приобретает красный цвет.

    Радужная оболочка расположена сразу за роговицей, ее основу составляют мышцы. Зрачок - округлое отверстие по центру радужки - благодаря этим мышцам регулирует проникновение света в глаз, расширяясь при недостаточном освещении и сужаясь при слишком ярком. Продолжением радужки является Функцией этой части зрительного анализатора является выработка жидкости, питающей те отделы глаза, которые не имеют собственных сосудов. Кроме того, ресничное тело оказывает непосредственное влияние на толщину хрусталика посредством специальных связок.

    В заднем отделе глаза в среднем слое располагается хориоидея, или собственно сосудистая почти целиком состоящая из кровеносных сосудов разного диаметра.

    Сетчатка

    Внутренний, самый тонкий слой, - это сетчатая оболочка, или сетчатка, образованная нервными клетками. Здесь происходит непосредственное восприятие и первичный анализ зрительной информации. Задняя часть сетчатки состоит из специальных фоторецепторов, называемых колбочками (их 7 млн) и палочками (130 млн). Именно они отвечают за восприятие предметов глазом.

    Колбочки отвечают за распознавание цвета и обеспечивают центральное зрение, позволяют разглядеть мельчайшие детали. Палочки, будучи более чувствительными, дают возможность человеку видеть в черно-белых цветах в условиях плохого освещения, а также отвечают за периферическое зрение. Больше всего колбочек сосредоточено в так называемом желтом пятне напротив зрачка, несколько выше входа зрительного нерва. Это место соответствует максимальной остроте зрения. Сетчатка, как, впрочем, и все отделы зрительного анализатора, строение имеет непростое - в ее структуре выделяют 10 слоев.

    Строение полости глаза

    Глазное ядро состоит из хрусталика, стекловидного тела и камер, заполненных жидкостью. Хрусталик выглядит как выпуклая с двух сторон прозрачная линза. Он не имеет ни сосудов, ни нервных окончаний и подвешен к отросткам окружающего его ресничного тела, мышцы которого изменяют его кривизну. Такая способность называется аккомодацией и помогает глазу сфокусироваться на близких или, наоборот, далеких предметах.

    Позади хрусталика, прилегая к нему и далее ко всей поверхности сетчатки, расположено Это прозрачное студенистое вещество, заполняющее большую часть объема В составе этой гелеобразной массы 98% - вода. Назначение данного вещества - проведение световых лучей, компенсация перепадов внутриглазного давления, поддержка постоянства формы глазного яблока.

    Передняя камера глаза ограничена роговицей и радужкой. Она посредством зрачка соединяется с более узкой задней камерой, простирающейся от радужки до хрусталика. Обе полости заполнены внутриглазной жидкостью, которая свободно циркулирует между ними.

    Преломление света

    Система зрительного анализатора такова, что изначально лучи света преломляются и фокусируются на роговице и проходят через переднюю камеру до радужки. Через зрачок центральная часть светового потока попадает на хрусталик, где происходит более точная его фокусировка, а потом через стекловидное тело - на сетчатку. На сетчатке проецируется изображение предмета в уменьшенном и притом перевернутом виде, а энергия световых лучей фоторецепторами преобразуется в нервные импульсы. Информация далее через глазной нерв поступает в головной мозг. Место на сетчатке, сквозь которое проходит зрительный нерв, лишено фоторецепторов, поэтому называется слепым пятном.

    Двигательный аппарат органа зрения

    Глаз, чтобы своевременно реагировать на раздражители, должен быть подвижным. За движение зрительного аппарата отвечают три пары глазодвигательных мышц: две пары прямых и одна косых. Эти мышцы, пожалуй, самые быстродействующие в организме человека. Контролирует движения глазного яблока глазодвигательный нерв. Он связывает с четыре из шести глазных мышц, обеспечивая их адекватную работу и согласованные движения глаз. Если глазодвигательный нерв по какой-то причине перестает нормально функционировать, это выражается в различных симптомах: косоглазии, опущении века, двоении предметов, расширении зрачка, нарушениях аккомодации, выпячивании глаз.

    Защитные системы глаза

    Продолжая такую объемную тему, как строение и функции зрительного анализатора, нельзя не упомянуть о тех системах, которые его оберегают. Глазное яблоко расположено в костной полости - глазнице, на амортизирующей жировой подушке, где оно надежно защищено от ударного воздействия.

    Кроме глазницы, в защитный аппарат органа зрения входят верхнее и нижнее веки с ресницами. Они предохраняют глаза от попадания извне различных предметов. Кроме того, веки помогают равномерному распределению по поверхности глаза слезной жидкости, удаляют при мигании с роговицы мельчайшие частицы пыли. Брови тоже в какой-то степени выполняют защитные функции, предохраняя глаза от стекающего со лба пота.

    В верхнем наружном углу глазницы расположены слезные железы. Их секрет защищает, питает и увлажняет роговицу, а также обладает дезинфицирующим действием. Лишняя жидкость через слезный проток стекает в носовую полость.

    Дальнейшее проведение и окончательная обработка информации

    Проводниковый отдел анализатора состоит из пары зрительных нервов, которые выходят из глазниц и в полости черепа входят в специальные каналы, образуя далее неполный перекрест, или хиазму. Изображения от височной (наружной) части сетчатки остаются на той же стороне, а от внутренней, носовой - перекрещиваются и передаются на противоположную сторону мозга. В итоге получается, что правые поля зрения обрабатываются левым полушарием, а левые - правым. Такое пересечение необходимо для формирования объемного зрительного образа.

    После перекреста нервы проводникового отдела продолжаются в зрительных трактах. Визуальная информация поступает ту часть коры больших полушарий мозга, которая отвечает за ее обработку. Такая зона расположена в затылочной области. Там происходит окончательное преобразование поступившей информации в зрительное ощущение. Это и есть центральная часть зрительного анализатора.

    Итак, строение и функции зрительного анализатора таковы, что нарушения на любом из его участков, будь то воспринимающая, проводящая или анализирующая зоны, влекут сбой его работы в целом. Это очень многогранная, тонкая и совершенная система.

    Нарушения зрительного анализатора - врожденные или приобретенные, - в свою очередь, приводят к значительным сложностям в познании действительности и ограничению возможностей.

    Похожие статьи