Конспект: Типы тканей в организме человека. Типы тканей многоклеточных животных. Расположение в организме

Общий обзор организма человека

Организм – целостная, саморегулирующаяся, самовоспроизводящаяся система, состоящая из клеток, тканей, органов и систем органов.

В основе жизнедеятельности всего организма лежит обмен веществ, включающий два взаимосвязанных процесса: синтез органических веществ (ассимиляция) и их расщепление и окисление (диссимиляция) .

Как целостная система организм обладает свойствами живого:

  • наследственностью и изменчивостью,
  • ростом, развитием и размножением,
  • раздражимостью,
  • обменом веществ и энергии,
  • целостностью, дискретностью и др.

Целостность организма обеспечивается:

    структурным объединением всех его частей (клеток, тканей, органов);

    регуляторным действием нервной системы (при помощи нервных импульсов);

    гуморальной регуляцией (при помощи циркулирующих в жидкостях внутренней среды организма биологически активных веществ, которые вырабатывают в процессе своей жизнедеятельности клетки, ткани, органы, железы внутренней секреции).

Упорядоченное и эффективное функционирование сложного многоклеточного организма чело­века обеспечивается согласованной работой двух систем - нервной и эндок­ринной.

Организм состоит из клеток. На уровне клетки происходят важнейшие процессы: обмен веществ, рост, размножение.

Основные компоненты клетки: клеточная оболочка, ядро, цитоплазма с органоидами и включениями.

Строение и функции тканей.

Ткань – совокупность клеток и межклеточного вещества, имеющих общее происхождение, сходное строение и выполняющих одинаковые функции.

Существует 4 типа тканей: эпителиальная, соединительная, мышечная, нервная.

Эпителиальная ткань (эпителий) покрывает тело, выстилает его полости и внутренние органы, образует большинство желез. Классификация:

Покровный эпителий.

Железистый эпителий.

Однослойный:

  • кубический,

    цилиндрический.

Многослойный:

    ороговевающий,

    неороговевающий,

    кубический,

    цилиндрический,

    переходный.

Экзокринные железы:

    одноклеточные,

    многоклеточные,

Эндокринные железы:

    одноклеточные,

    многоклеточные.

Особенности морфологии:
  • клетки плотно прилегают друг к другу, образуя сплошной пласт (межклеточного вещества практически нет);
  • клетки эпителия всегда располагаются на слое соединительной ткани.
Свойства: обладает высокой способностью к восстановлению. Функции: защитная (защита нижележащих структур от механических по­вреждений и от инфекции, потери тепла и влаги), участвует в обмене веществ (всасывание, выделение, газообмен), секреторная (эпителиальные клетки желез выделяют секреты и биологически активные вещества). Соединительная ткань образует скелет, подкожную жировую клетчатку, собственно кожу (дерму), кровь, лимфу, входит в состав всех внутренних органов. Классификация:

Жидкая

Рыхлая

Плотная волокнистая

Костная

Кровь и лимфа

Волокнистая

Дерма кожи

Компактная

Сухожилия, связки

Губчатая

Особенности морфологии: Свойства: ткань обладает очень высокой способностью к восстановлению. Функции: трофическая (питательная); защитная (фагоцитоз и выработка иммунитета); механическая (опорная); кроветворная (красный костный мозг); восстановительная (регенерация). Мышечная ткань.

Свойства: возбудимость (способность отвечать на раздражение), сократимость (способность волокон укорачиваться и удлиняться), проводимость (способность проводить возбуждение). Эти свойства основываются не только на функциональных особенностях мышц, но и объясняются их строением.

Функция мышечной ткани – двигательная. Классификация:

I. По гистологическому признаку:

II. По физиологическому признаку:

    Неисчерченная:

    Исчерченная:

    поперечно-полосатая мышечная ткань,

    сердечная мышечная ткань.

    Непроизвольная:

    гладкая мышечная ткань,

    сердечная мышечная ткань.

    Произвольная:

    поперечно-полосатая мышечная ткань.

Гладкая мышечная ткань входит в состав стенок сосудов и полых внутренних органов.

    состоит из мелких (до 0,1 мм длиной) веретеновидных клеток с одним ядром и тонкими, по всей длине клетки, миофибриллами;

    сокращается непроизвольно, медленно (время сокращения 3 – 180 с), с небольшой силой, способна к длительному тоническому сокращению, медленно утомляется, небольшая потребностью в энергии и кислороде;

    иннервируется вегетативной нервной системой.

Поперечно-полосатая скелетная мышечная ткань образует скелетную мускулатуру, мышцы рта, языка, глотки, верхней части пищевода, гортани, мимические мышцы и диафрагму. Особенности морфологии и физиологии:

    представлена длинными, вытянутыми мышечными волокнами (до 10 -12 см длиной). Каждое волокно состоит из цитоплазмы, большого числа ядер и специальных органоидов – миофибрилл; диаметр миофибрилл не превышает 1 мкм. В каждом волокне находится до 1000 миофибрилл;

    миофибриллы поперечно-полосатой мускулатуры имеют поперечно-полосатую исчерченность: под микроскопом мышечное волокно выглядит разделенным на чередующиеся темные и светлые диски. Миофибриллы состоят из продольных нитей: толстых и тонких. Толстые нити состоят из белка миозина, а тонкие – из актина;

    сокращение быстрое с большой силой и скоростью (сокращаются и расслабляются за 0,1 с), произвольное, быстро наступает утомление;

    сокращения регулируются соматической нервной системой.

Поперечно-полосатая сердечная мышечная ткань: Особенности морфологии и физиологии:

    состоит из соединенных друг с другом клеток, содержит поперечно-исчерченные миофибриллы;

    содержит большое число митохондрий;

    сокращается непроизвольно, медленно, обладает автоматией и низкой утомляемостью;

    ее сокращения регулируются вегетативной нервной системой.

Нервная ткань образует головной и спинной мозг, нервные узлы, нервы. Особенности морфологии и физиологии:
  • состоит из нервных клеток (нейронов) и расположенных между ними клеток нейроглии (соединительная ткань);
  • нейрон имеет тело и 2 типа отростков: короткие ветвящиеся – дендриты (обычно их много) и один длинный – аксон (нейрит), который обычно не разветвляется, отростки клеток могут объединяться в пучки;
  • дендриты проводят возбуждение к телу нервной клетки;
  • аксон, имеющий миелиновую оболочку, передает импульс от клетки к другим нервным клеткам и рабочим органам (скорость проведения импульсов по волокнам соматической нервной системы – до 120 м/с);
  • передача информации в нервной системе осуществляется посредством специализированных межклеточных контактов – синапсов. Синапс образован двумя мембранами и узкой щелью между ними. Одна из мембран принадлежит клетке, посылающей сигнал, а другая – клетке, принимающей сигнал. Информация передается от одной клетке к другой при участии медиаторов, которые выделяются из передающей клетки в синаптическую щель, а затем взаимодействуют с мембраной принимающей клетки, и она приходит в состояние возбуждения;
  • нейроны подразделяются на чувствительные, двигательные и вставочные;
  • скопления тел нейронов и дендриты образуют серое вещество головного, спинного мозга и нервные узлы, а аксоны – белое вещество мозга, нервные волокна и нервы;
  • чувствительные нервные волокна начинаются рецепторами (специальные образования, приспособленные к восприятию раздражений и преобразованию их в нервный импульс) в органах, двигательные нервные волокна заканчиваются нервными окончаниями в органах.

Существует 4 типа клеток нейроглии:

    олигодендроциты представляют собой клетки-спутницы, которые окружают тело нейрона и покрывают миелиновой оболочкой некоторые аксоны;

    микроглия – мелкие подвижные отростчатые клетки, которые выполняют фагоцитарную функцию.

    астроциты имеют звездчатую форму, у одних есть тонкие цитоплазматические отростки, которые оканчиваются в пространстве вокруг сосудистой стенки, обеспечивая доставку питательных веществ к нейрону.

    эпендимные клетки образуют непрерывную выстилку желудочков мозга и сохраняются в канале спинного мозга. Выполняют функцию активного транспорта и секреторную функцию, а также принимают участие в образовании спинно-мозговой жидкости.

Свойства: возбудимость (способность воспринимать раздражения и отвечать на них) и проводимость (способность передавать возбуждение). Функции: рецепторная и проводниковая.

Органы и системы органов.

Орган – часть организма, имеющая определенную форму, строение, расположение и выполняющая определенную функцию. Состоит из всех видов тканей, но обычно одна ткань преобладает (в сердце мышечная ткань, в головном мозге – нервная).

Система органов – группа органов, выполняющих определенную функцию, развивающихся из общего эмбрионального зачатка и топографически связанных между собой. В организме человека имеются следующие системы:

    половая : мужская половая система: внутренние половые органы (яички и их придатки, семявыносящие протоки с семенными пузырьками, предстательная железа) и наружные (половой член и мошонка); женская половая система : внутренние половые органы: яичники, маточные трубы, матка, влагалище и наружные (большие и малые половые губы, клитор, девственная плева).

    сенсорные системы (органы чувств): орган осязания, орган обоняния, орган вкуса, орган зрения, орган слуха);

    лимфатическая (лимфатические сосуды, лимфатические узлы).

В процессе эволюции выработан ряд приспособлений, поддерживающих определенный состав внутренней среды, необходимый клеткам любого организма. Этот принцип кратко сформулирован К. Бернаром: «постоянство внутренней среды есть условие свободной жизни». Для того чтобы организм мог существовать в изменяющихся условиях внешней среды, он должен иметь механизмы регуляции состава своей внутренней среды. Для достижения приспособлений к различным условиям внешней среды в организме формируются функциональные системы – это временное объединение различных органов для достижения определенного результата (потовые железы, сосуды кожи – для поддержания определенной температуры тела при разной температуре окружающей среды). Теорию функциональных систем разработал П. К. Анохин.

Для обозначения тенденции к поддержанию постоянства внутренней среды У. Кэннон ввел термин гомеостаз. Согласованная деятельность всех систем органов и тканей обеспечивает существование и жизнедеятельность каждого отдельного организма.

Цель урока: ознакомить учащихся со строением эпителиальной и соединительной тканей.

Тип урока: раскрывающий содержание темы

Вид урока: урок лабораторной работы

Задачи:

Образовательная:

Сформировать понятия: ткань, эпителиальная ткань, соединительная ткань;

Продолжить формировать понятия: клетка, межклеточное вещество, виды соединительной ткани: хрящевая, костная, жировая, кровь.

Развивающая:

Продолжить развитие навыков самостоятельной работы с учебником, микроскопом и микропрепаратами;

Продолжить развитие трудолюбия через заполнение дидактической карточки.

Воспитательная:

Воспитывать бережное отношение к своему здоровью.

Методы:

    Словесные (беседа, рассказ, объяснение);

    Наглядные (демонстрация рисунков в учебнике);

    Практические (работа с учебником, микроскопом, дидактической карточкой).

Оборудование: микроскопы с разрешением 160 и выше, микропрепараты «Однослойный эпителий почечных канальцев кошки», «Гиалиновый хрящ», «Костная ткань», учебник, дидактический материал.

Литература: Сонин Н. И., Сапин М. Р. Биология. Человек. 8 класс: учеб. для общеобразоват. учреждений / Н. И. Сонин, М. Р. Сапин. – 3-е изд., стереотип. – М.: Дрофа, 2010. – 287 с.

Этапы урока:

    Организационный момент

    Изложение нового материала

    Закрепление изученного материала

    Задание на дом

Ход урока:

Организационный момент

Учитель: Здравствуйте, ребята! Тема сегодняшнего нашего занятия «Ткани. Эпителиальные и соединительные ткани под микроскопом». По этой теме мы выполним лабораторную работу. Прежде чем начать делать лабораторную работу, я отмечу отсутствующих (отметка отсутствующих). Откройте рабочие тетради и запишите сегодняшнюю дату, тему урока.

Изложение нового материала

Учитель: В многоклеточном организме группы клеток приспособлены к выполнению определенных функций. Такие группы клеток, сходных по строению и происхождению, выполняющих определенную функцию и соединенных между собой межклеточным веществом, называют тканью.

У человека, как и у животных, выделяют четыре типа тканей: эпителиальные, соединительные, мышечные и нервную.

Эпителиальные ткани . Эпителиальные ткани образуют поверхностные слои кожи, слизистые оболочки внутренних органов (пищеварительного тракта, дыхательных и мочевыводящих путей), образуют многочисленные железы, выстилают изнутри сосуды.

Эпителий кожи, роговицы глаз защищает от неблагоприятных внешних воздействий, а эпителий желудка, кишечника предохраняет их стенки от действия пищеварительных соков. Через кишечный эпителий питательные вещества всасываются в кровь, а в легких через клетки эпителия осуществляется газообмен.

Железистые эпителиальные клетки выделяют различные вещества (секреты). Железистый эпителий образует железы. Различают железы внешней и внутренней секреции.

У первых секрет выделяется через специальные протоки на поверхность тела или в полость тела (таковы, например, потовые, слюнные, молочные железы). Железы внутренней секреции не имеют протоков, и их секрет (гормон) выделяется непосредственно в кровь.

Несмотря на многообразие функций, эпителиальные ткани имеют ряд характерных особенностей. Их клетки плотно прилегают друг к другу, располагаясь в один или несколько рядов, межклеточное вещество развито слабо. Клетки эпителиальных тканей при повреждении быстро замещаются новыми.

Соединительные ткани . В организме человека различают несколько видов соединительной ткани, на первый взгляд очень разных: хрящевая, костная, жировая, кровь. Их строение и функции различны, но все они имеют хорошо развитое межклеточное вещество. Межклеточное вещество в зависимости от выполняемой тканью функции может быть различным. Так, у крови оно жидкое, у костей - твердое, у хрящей - упругое, эластичное.

Соединительные ткани выполняют различные функции. Волокнистая соединительная ткань заполняет промежутки между органами, окружает сосуды, нервы, мышечные пучки, образует внутренние слои кожи - дерму и жировую клетчатку. Опорную, механическую функцию выполняют костная и хрящевая ткани. Кровь выполняет питательную, транспортную и защитную функции.

Задание 1. Рассмотрите микропрепарат «Однослойный эпителий почечных канальцев кошки» сначала при малом, а затем при большом увеличении. Отметьте особенности строения данной ткани (форму клеток, их расположение, особенности их соединения). Зарисуйте основные структуры однослойного эпителия, обозначив все перечисленные детали его строения.

Порядок описания препарата

Результаты наблюдения

Название препарата

Однослойный эпителий почечных канальцев кошки

Тип ткани

Эпителиальная

Местонахождение ткани

Стенки канальцев, в которых образуется моча, на поперечном сечении имеют вид прозрачных кружков и эллипсов

Тип клеток

Однотипные

Расположение клеток

Выстилают стенку канальца, образуя сомкнутый ряд

Вид клеток и ядра

Клетки цилиндрической формы, ядро одно, крупное

Еле заметная полоска позади клеточного ряда, бесструктурная

Рисунок ткани

Задание 2. Рассмотрите микропрепарат «Гиалиновый хрящ», «Костная ткань» под микроскопом. Отметьте особенности строения этих тканей (форму клеток, их расположение, особенности их соединения). Зарисуйте рассмотренные препараты тканей. Сделайте вывод об особенностях строения тканей.

Порядок описания препарата

Результаты наблюдения

Название препарата

Гиалиновый хрящ или Костная ткань

Тип ткани

Соединительная

Местонахождение ткани

Тип клеток

Расположение клеток

Вид клеток и ядра

Наличие межклеточного вещества

Рисунок ткани

Закрепление изученного материала

Учитель: Для закрепления изученного материала давайте решим задачу.

После сильных травм раны не всегда заживают полностью, и на месте повреждения остается рубец, вывести который бесследно практически невозможно. Рубец - это участок соединительной ткани, функции кожи он не выполняет. Он менее эластичен, в нем нет волосяных фолликулов, потовых и сальных желез. Через три месяца после образования не леченый рубец прорастает сосудами, через девять месяцев на всю глубину поражения рубец прорастает нервной тканью.

Вопрос: Какая функция эпителия проявляется, если накладывать на лицо питательный крем? Какие особенности строения эпителиальной ткани вам известны?


Жировая ткань развивается из мезенхимы с 30 недели эмбрионального развития. Мезенхимальная клетка превращается в липобласт, который в свою очередь, превращается в зрелую жировую клетку - адипоцит.
Существует два периода активного увеличения количества адипоцитов: (1) период эмбрионального развития и (2) период полового созревания. В другие периоды жизни человека обычно размножения клеток-предшественников не происходит. Накопление жира идет только путем увеличения размеров уже существующих жировых клеток.
Если количество жира в клетке достигает критической массы, клетки-предшественники получают сигнал, и начинают размножаться, давая рост новым жировым клеткам.
У худого взрослого человека имеется около 35 миллиардов жировых клеток, у человека с выраженным ожирением до 125 миллиардов, то есть в 4 раза больше. Вновь образованные жировые клетки обратному развитию не подлежат, и сохраняются на всю жизнь. Если человек худеет, то они лишь уменьшаются в размерах.
ХИМИЧЕСКИЙ СОСТАВ БЕЛОЙ ЖИРОВОЙ ТКАНИ
Жировая ткань содержит 65-85% ТГ, 22% воды, 5,8% белка, 15 ммоль/кг калия. Из жирных кислот 42-51% приходится на олеиновую, 22-31% - на пальмитиновую, 5-14% - на пальмитоолеиновую, 3-5 % - на миристиновую, 1-5 % - на линолевую кислоты.
Состав жировой ткани зависит от области тела, глубины слоя; он может также несколько отличаться у отдельных индивидуумов. Особенно подвергается изменениям содержание воды и белка. Чем глубже под поверхностью кожи жир расположен, тем больше он содержит насыщенных кислот. У новорожденных насыщенные жиры во всех слоях содержатся в одинаковом количестве.
ОСОБЕННОСТИ МЕТАБОЛИЗМА БЕЛОЙ ЖИРОВОЙ ТКАНИ
Энергетический обмен низкий, преимущественно анаэробный, ткань потребляет мало кислорода. Энергия АТФ в основном тратится на транспорт жирных кислот через клеточные мембраны (с участием карнитина).
Белковый обмен низкий, белки синтезируются адипоцитами преимущественно для собственных нужд. На экспорт в жировой ткани синтезируются лептин, белки острой фазы воспаления (α1-кислый гликопротеин, гаптоглобин), компоненты системы комплимента (адипсин, комплемент С3, фактор В), интерлейкины.
Углеводный обмен. Невысокий, преобладает катаболизм. Углеводный обмен в жировой ткани тесно связан с липидным.
Липидный обмен
Жировая ткань стоит на 2 месте по обмену липидов после печени. Здесь происходят реакции липолиза и липогенеза.
Липогенез. В жировой ткани синтез липидов идет в абсорбтивный период по глицерофосфатному пути. Процесс стимулируется инсулином.
Этапы липогенеза:
1. Под действием инсулина на рибосомах стимулируется синтез ЛПЛ.
2. ЛПЛ выходит из адипоцита и фиксируется на поверхности стенки капилляра с помощью гепарансульфата.
3. ЛПЛ гидролизует ТГ в составе липопротеинов

4. Образовавшийся глицерин уноситься кровью в печень.
5. Жирные кислоты из крови транспортируются в адипоцит.
6. Кроме поступающих из вне экзогенных жирных кислот, в адипоците синтезируются жирные кислоты из глюкозы. Процесс стимулируется инсулином.
7. Жирные кислоты в адипоците под действием Ацил-КоА синтетазы превращаются в Ацил-КоА.

7. Глюкоза поступает в адипоцит с участием ГЛЮТ-4 (активатор инсулин).
8. В адипоците глюкоза вступает в гликолиз с образованием ФДА (активатор инсулин).
9. В цитоплазме ФДА восстанавливается глицерол-ф ДГ до глицерофосфата:

Так как в жировой ткани нет глицерокиназы, глицерофосфат образуется только из глюкозы (не может из глицерина).
10. В митохондриях глицерофосфат под действием глицеролфосфат ацилтрансферазы превращается в лизофосфатид:

11. В митохондриях лизофосфатид под действием лизофосфатид ацилтрансферазы превращается в фосфатид:

11. Фосфатид под действием фосфотидат фосфогидролазы превращается в 1,2-ДГ:

12. 1,2-ДГ под действием ацилтрансферазы превращается в ТГ:

13. Молекулы ТГ объединяются в крупные жировые капли.
2. Липолиз. Липолиз в жировой ткани активируется при дефиците глюкозы в крови (постабсорбционный период, голодание, физическая нагрузка). Процесс стимулируется глюкагоном, адреналином, в меньшей степени СТГ и глюкокортикоидами.
В результате липолиза концентрация свободных жирных кислот в крови возрастает в 2 раза.

ОСОБЕННОСТИ МЕТАБОЛИЗМА БУРОЙ ЖИРОВОЙ ТКАНИ
Энергетический обмен. Ткань потребляет много кислорода, активно окисляет глюкозу и жирные кислоты. Энергетический обмен высокий. При этом, АТФ образуется только в реакциях субстратного фосфорилирования (2 реакции гликолиза, 1 реакции ЦТК). Причина - разобщение в митохондриях белком термогенином (РБ-1) процессов окисления и фосфорилирования, низкая активность АТФ синтетазы, отсутствие дыхательного контроля со стороны АДФ. В бурой жировой ткани вся образующаяся при окислении энергия рассеивается в виде тепла (термогенез).
Термогенез в бурой жировая ткань активируется при переохлаждении СНС, а также при излишке липидов в крови, под действием лептина. Благодаря этому повышается температура тела и снижается концентрация липидов в крови. Отсутствие бурой жировой ткани у взрослых людей является причиной 10% всех случаев ожирения.

Типы тканей

Эпителиальная ткань

Эпителиальная (покровная) ткань, или эпителий, представляет собой пограничный слой клеток, который выстилает покровы тела, слизистые оболочки всех внутренних органов и полостей, а также составляет основу многих желез.

Эпителий отделяет организм (внутреннюю среду) от внешней среды, но одновременно служит посредником при взаимодействии организма с окружающей средой.

Клетки эпителия плотно соединены друг с другом и образуют механический барьер, препятствующий проникновению микроорганизмов и чужеродных веществ внутрь организма.

Клетки эпителиальной ткани живут непродолжительное время и быстро заменяются новыми (этот процесс именуется регенерацией ).

Эпителиальная ткань участвует и во многих других функциях: секреции (железы внешней и внутренней секреции), всасывании (кишечный эпителий), газообмене (эпителий легких).

Главной особенностью Эпителия является то, что он состоит из непрерывного слоя плотно прилегающих клеток. Эпителий может быть в виде пласта из клеток, выстилающих все поверхности организма, и в виде крупных скоплений клеток - желез: печень, поджелудочная, щитовидная, слюнные железы и др. В первом случае он лежит на базальной мембране, которая отделяет эпителий от подлежащей соединительной ткани. Однако существуют исключения: эпителиальные клетки в лимфатической ткани чередуются с элементами соединительной ткани, такой эпителий называется атипическим.

Эпителиальные клетки, располагающиеся пластом, могут лежать во много слоев (многослойный эпителий) или в один слой (однослойный эпителий). По высоте клеток различают эпителии плоский, кубический, призматический, цилиндрический.

Соединительная ткань

Состоит из клеток, межклеточного вещества и соединительнотканных волокон. Из нее состоят кости, хрящи, сухожилия, связки, кровь, жир, она есть во всех органах (рыхлая соединительная ткань) в виде так называемой стромы (каркаса) органов.

В противоположность эпителиальной ткани во всех типах соединительной ткани (кроме жировой) межклеточное вещество преобладает над клетками по объему, т.е. межклеточное вещество очень хорошо выражено. Химический состав и физические свойства межклеточного вещества очень разнообразны в различных типах соединительной ткани. Например, кровь - клетки в ней «плавают» и передвигаются свободно, поскольку межклеточное вещество хорошо развито.

В целом, соединительная ткань составляет то, что называют внутренней средой организма. Она очень разнообразна и представлена различными видами - от плотных и рыхлых форм до крови и лимфы, клетки которых находятся в жидкости. Принципиальные различия типов соединительной ткани определяются соотношениями клеточных компонентов и характером межклеточного вещества.

В плотной волокнистой соединительной ткани (сухожилия мышц, связки суставов) преобладают волокнистые структуры, она испытывает существенные механические нагрузки.

Рыхлая волокнистая соединительная ткань чрезвычайно распространена в организме. Она очень богата, наоборот, клеточными формами разных типов. Одни из них участвуют в образовании волокон ткани (фибробласты), другие, что особенно важно, обеспечивают прежде всего защитные и регулирующие процессы, в том числе через иммунные механизмы (макрофаги, лимфоциты, тканевые базофилы, плазмоциты).

Костная ткань

Костная ткань, образующая кости скелета, отличается большой прочностью. Она поддерживает форму тела (конституцию) и защищает органы, расположенные в черепной коробке, грудной и тазовой полостях, участвует в минеральном обмене. Ткань состоит из клеток (остеоцитов) и межклеточного вещества, в котором расположены питательные каналы с сосудами. В межклеточном веществе содержится до 70% минеральных солей (кальций, фосфор и магний).

В своем развитии костная ткань проходит волокнистую и пластинчатую стадии. На различных участках кости она организуется в виде компактного или губчатого костного вещества.

Хрящевая ткань

Хрящевая ткань состоит из клеток (хондроцитов) и межклеточного вещества (хрящевого матрикса), характеризующегося повышенной упругостью. Она выполняет опорную функцию, так как образует основную массу хрящей.

Различают три разновидности хрящевой ткани: гиалиновую, входящую в состав хрящей трахеи, бронхов, концов ребер, суставных поверхностей костей; эластическую, образующую ушную раковину и надгортанник; волокнистую, располагающуюся в межпозвоночных дисках и соединениях лобковых костей.

Жировая ткань

Жировая ткань похожа на рыхлую соединительную ткань. Клетки крупные, наполнены жиром. Жировая ткань выполняет питательную, формообразующую и терморегулирующую функции. Жировая ткань подразеляется на два типа: белую и бурую. У человека преобладает белая жировая ткань, часть ее окружает органы, сохраняя их положение в теле человека и другие функции. Количество бурой жировой ткани у человека невелико (она имеется главным образом у новорожденного ребенка). Главная функция бурой жировой ткани - теплопродукция. Бурая жировая ткань поддерживает температуру тела животных во время спячки и температуру новорожденных детей.

Мышечная ткань

Мышечные клетки называют мышечными волокнами, потому что они постоянно вытянуты в одном направлении.

Классификация мышечных тканей проводится на основании строения ткани (гистологически): по наличию или отсутствию поперечной исчерченности, и на основании механизма сокращения - произвольного (как в скелетной мышце) или непроизвольного (гладкая или сердечная мышцы).

Мышечная ткань обладает возбудимостью и способностью к активному сокращению под влиянием нервной системы и некоторых веществ. Микроскопические различия позволяют выделить два типа этой ткани - гладкую (неисчерченную) и поперечнополосатую (исчерченную).

Гладкая мышечная ткань имеет клеточное строение. Она образует мышечные оболочки стенок внутренних органов (кишечника, матки, мочевого пузыря и др.), кровеносных и лимфатических сосудов; сокращение ее происходит непроизвольно.

Поперечнополосатая мышечная ткань состоит из мышечных волокон, каждое из которых представлено многими тысячами клеток, слившимися, кроме их ядер, в одну структуру. Она образует скелетные мышцы. Их мы можем сокращать по своему желанию.

Разновидностью поперечнополосатой мышечной ткани является сердечная мышца, обладающая уникальными способностями. В течение жизни (около 70 лет) сердечная мышца сокращается более 2,5 млн. раз. Ни одна другая ткань не обладает таким потенциалом прочности. Сердечная мышечная ткань имеет поперечную исчерченность. Однако в отличие от скелетной мышцы здесь есть специальные участки, где мышечные волокна смыкаются. Благодаря такому строению сокращение одного волокна бысто передается соседним.

Это обеспечивает одновременность сокращения больших участков сердечной мышцы.

Нервная ткань

Нервная ткань состоит из двух разновидностей клеток: нервных (нейронов) и глиальных. Глиальные клетки вплотную прилегают к нейрону, выполняя опорную, питательную, секреторную и защитную функции.

Нейрон - основная структурная и функциональная единица нервной ткани. Главная его особенность - способность генерировать нервные импульсы и передавать возбуждение другим нейронам или мышечным и железистым клеткам рабочих органов. Нейроны могут состоять из тела и отростков. Нервные клетки предназначены для проведения нервных импульсов. Получив информацию на одном участке поверхности, нейрон очень быстро передает ее на другой участок своей поверхности. Так как отростки нейрона очень длинные, то информация передается на большие расстояния. Большинство нейронов имеют отростки двух видов: короткие, толстые, ветвящиеся вблизи тела - дендриты и длинные (до 1.5 м), тонкие и ветвящиеся только на самом конце - аксоны . Аксоны образуют нервные волокна.

Нервный импульс - это электрическая волна, бегущая с большой скоростью по нервному волокну.

В зависимости от выполняемых функций и особенностей строения все нервные клетки подразделяются на три типа: чувствительные, двигательные (исполнительные) и вставочные. Двигательные волокна, идущие в составе нервов, передают сигналы мышцам и железам, чувствительные волокна передают информацию о состоянии органов в центральную нервную систему.

Ткани организма человека

Группа тканей

Виды тканей

Строение ткани

Местонахождение

Эпителий

Поверхность клеток гладкая. Клетки плотно примыкают друг к другу

Поверхность кожи, ротовая полость, пищевод, альвеолы, капсулы нефронов

Покровная, защитная, выделительная (газообмен, выделение мочи)

Железистый

Железистые клетки вырабатывают секрет

Железы кожи, желудок, кишечник, железы внутренней секреции, слюнные железы

Выделительная (выделение пота, слез), секреторная (образование слюны, желудочного и кишечного сока, гормонов)

Мерцательный (реснитчатый)

Состоит из клеток с многочисленными волосками (реснички)

Дыхательные пути

Защитная (реснички задерживают и удаляют частицы пыли)

Соединительная

Плотная волокнистая

Группы волокнистых, плотно лежащих клеток без межклеточного вещества

Собственно кожа, сухожилия, связки, оболочки кровеносных сосудов, роговица глаза

Покровная, защитная, двигательная

Рыхлая волокнистая

Рыхло расположенные волокнистые клетки, переплетающиеся между собой. Межклеточное вещество бесструктурное

Подкожная жировая клетчатка, околосердечная сумка, проводящие пути нервной системы

Соединяет кожу с мышцами, поддерживает органы в организме, заполняет промежутки между органами. Осуществляет терморегуляцию тела

Хрящевая

Живые круглые или овальные клетки, лежащие в капсулах, межклеточное вещество плотное, упругое, прозрачное

Межпозвоночные диски, хрящи гортани, трахей, ушная раковина, поверхность суставов

Сглаживание трущихся поверхностей костей. Защита от деформации дыхательных путей, ушных раковин

Живые клетки с длинными отростками, соединенные между собой, межклеточное вещество - неорганические соли и белок оссеин

Кости скелета

Опорная, двигательная, защитная

Кровь и лимфа

Жидкая соединительная ткань, состоит из форменных элементов (клеток) и плазмы (жидкость с растворенными в ней органическими и минеральными веществами - сыворотка и белок фибриноген)

Кровеносная система всего организма

Разносит О2 и питательные вещества по всему организму. Собирает СО2 и продукты диссимиляции. Обеспечивает постоянство внутренней среды, химический и газовый состав организма. Защитная (иммунитет). Регуляторная (гуморальная)

Мышечная

Поперечно-полосатая

Многоядерные клетки цилиндрической формы до 10 см длины, исчерченные поперечными полосами

Скелетные мышцы, сердечная мышца

Произвольные движения тела и его частей, мимика лица, речь. Непроизвольные сокращения (автоматия) сердечной мышцы для проталкивания крови через камеры сердца. Имеет свойства возбудимости и сократимости

Одноядерные клетки до 0,5 мм длины с заостренными концами

Стенки пищеварительного тракта, кровеносных и лимфатических сосудов, мышцы кожи

Непроизвольные сокращения стенок внутренних полых органов. Поднятие волос на коже

Нервные клетки (нейроны)

Тела нервных клеток, разнообразные по форме и величине, до 0,1 мм в диаметре

Образуют серое вещество головного и спинного мозга

Высшая нервная деятельность. Связь организма с внешней средой. Центры условных и безусловных рефлексов. Нервная ткань обладает свойствами возбудимости и проводимости

Короткие отростки нейронов - древовидноветвящиеся дендриты

Соединяются с отростками соседних клеток

Передают возбуждение одного нейрона на другой, устанавливая связь между всеми органами тела

Нервные волокна - аксоны (нейриты) - длинные выросты нейронов до 1 м длины. В органах заканчиваются ветвистыми нервными окончаниями

Нервы периферической нервной системы, которые иннервируют все органы тела

Проводящие пути нервной системы. Передают возбуждение от нервной клетки к периферии по центробежным нейронам; от рецепторов (иннервируемых органов) - к нервной клетке по центростремительным нейронам. Вставочные нейроны передают возбуждение с центростремительных (чувствительных) нейронов на центробежные (двигательные)

Похожие статьи