Влияние света. Особенности человеческого зрения Развитие восприятия цвета

Человек обладает способностью видеть окружающий мир во всем многообразии цветов и оттенков. Он может любоваться закатом, изумрудной зеленью, бездонным синим небом и другими красотами природы. О восприятии цвета и его воздействии на психику и физическое состояние человека пойдет речь в этой статье.

Что такое цвет

Цветом называют субъективное восприятие мозгом человека видимого света, отличий в его спектральной структуре, ощущаемых глазом. У людей способность различать цвета развита лучше, чем у остальных млекопитающих.

Свет воздействует на фоточувствительные рецепторы глазной сетчатки, а те потом вырабатывают сигнал, передаваемый в мозг. Получается, что восприятие цвета формируется сложным образом в цепочке: глаз (нейронные сети сетчатки и экстерорецепторы) - зрительные образы головного мозга.

Таким образом, цвет - это интерпретация окружающего мира в сознании человека, возникающая в результате обработки сигналов, поступающих от светочувствительных клеток глаза - колбочек и палочек. При этом первые отвечают за восприятие цвета, а вторые - за остроту сумеречного зрения.

"Цветовые расстройства"

Глаз реагирует на три первичных тона: синий, зеленый и красный. А мозг воспринимает цвета как комбинацию этих трех основных красок. Если сетчатка теряет способность различать какой-либо цвет, то и человек утрачивает ее. Например, бывают люди, которые не в состоянии отличить от красного. У 7% мужчин и 0,5% женщин встречаются такие особенности. Крайне редко люди вообще не видят красок вокруг, это значит, что рецепторные клетки в их сетчатке не функционируют. Некоторые страдают слабым сумеречным зрением - это значит, что у них слабочувствительные палочки. Такие проблемы возникают по разным причинам: вследствие дефицита витамина А или наследственных факторов. Однако человек может приспособиться к "цветовым расстройствам", поэтому без специального обследования их почти невозможно обнаружить. Люди с нормальным зрением в состоянии различить до тысячи оттенков. Восприятие цвета человеком меняется в зависимости от условий окружающего мира. Один и тот же тон выглядит по-разному при свете свечей или при солнечном освещении. Но человеческое зрение быстро адаптируется к этим изменениям и идентифицирует знакомый цвет.

Восприятие формы

Познавая природу, человек все время открывал для себя новые принципы устройства мира - симметрию, ритм, контраст, пропорции. Этими впечатлениями он руководствовался, преобразуя окружающую среду, создавая свой собственный уникальный мир. В дальнейшем объекты действительности породили в сознании человека стабильные образы, сопровождаемые четкими эмоциями. Восприятие формы, величины, цвета связаны у индивида с символическими ассоциативными значениями геометрических фигур и линий. Например, при отсутствии членений, вертикаль воспринимается человеком как нечто бесконечное, несоизмеримое, устремленное ввысь, легкое. Утолщение в нижней части или горизонтальное основание делает ее в глазах индивида более устойчивой. А вот диагональ символизирует движение и динамику. Получается, что композиция, основывающаяся на четких вертикалях и горизонталях, тяготеет к торжественности, статичности, устойчивости, а изображение, базирующееся на диагоналях - к изменчивости, нестабильности и движению.

Двоякое воздействие

Общепризнанным является факт, что восприятие цвета сопровождается сильнейшим эмоциональным воздействием. Эта проблема подробно изучалась живописцами. В. В. Кандинский отмечал, что цвет двояко влияет на человека. Сначала индивид испытывает физическое воздействие, когда глаз либо очарован цветом, либо раздражен им. Это впечатление мимолетно, если речь идет о привычных предметах. Однако в необычном контексте (картине художника, например) цвет может вызвать сильнейшее эмоциональное переживание. В этом случае можно говорить о втором виде влияния цвета на индивида.

Физическое воздействие цвета

Многочисленные эксперименты психологов и физиологов подтверждают способность цвета влиять на физическое состояние человека. Доктор Подольский описывал зрительное восприятие цвета человеком следующим образом.

  • Голубой цвет - обладает антисептическим эффектом. На него полезно смотреть при нагноениях и воспалениях. Чувствительному индивиду помогает лучше, чем зеленый. Но «передозировка» этого цвета вызывает некоторую угнетенность и усталость.
  • Зеленый цвет - гипнотический и болеутоляющий. Он положительно воздействует на нервную систему, снимает раздражительность, усталость и бессонницу, а также поднимает тонус и крови.
  • Желтый цвет - стимулирует мозг, поэтому помогает при умственной недостаточности.
  • Оранжевый цвет - оказывает возбуждающее действие и ускоряет пульс, не поднимая при этом кровяное давление. Он улучшает жизненный тонус, но со временем может утомить.
  • Фиолетовый цвет - воздействует на легкие, сердце и увеличивает выносливость тканей организма.
  • Красный цвет - оказывает согревающее действие. Он стимулирует деятельность мозга, устраняет меланхолию, но в больших дозах раздражает.

Виды цвета

По-разному можно классифицировать влияние цвета на восприятие. Существует теория, согласно которой, все тона можно разделить на стимулирующие (теплые), дезинтегрирующие (холодные), пастельные, статичные, глухие, теплые темные и холодные темные.

Стимулирующие (теплые) цвета способствуют возбуждению и действуют как раздражители:

  • красный - жизнеутверждающий, волевой;
  • оранжевый - уютный, теплый;
  • желтый - лучезарный, контактирующий.

Дезинтегрирующие (холодные) тона приглушают возбуждение:

  • фиолетовый - тяжелый, углубленный;
  • синий - подчеркивающий дистанцию;
  • светло-синий - направляющий, уводящий в пространство;
  • сине-зеленый - изменчивый, подчеркивающий движение.

Приглушают воздействие чистых цветов:

  • розовый - таинственный и нежный;
  • лиловый - изолированный и замкнутый;
  • пастельно-зеленый - мягкий, ласковый;
  • серо-голубой - сдержанный.

Статичные цвета могут уравновесить и отвлечь от возбуждающих красок:

  • чисто-зеленый - освежающий, требовательный;
  • оливковый - смягчающий, успокаивающий;
  • желто-зеленый - раскрепощающий, обновляющий;
  • пурпурный - претенциозный, изысканный.

Глухие тона способствуют концентрации (черный); не вызывают возбуждения (серый); гасят раздражение (белый).

Теплые темные цвета (коричневые) вызывают вялость, инертность:

  • охра - смягчает рост возбуждения;
  • землисто-коричневый - стабилизирует;
  • темно-коричневый - снижает возбудимость.

Темные холодные тона подавляют и изолируют раздражение.

Цвет и личность

Восприятие цвета во многом зависит и от личностных характеристик человека. Этот факт доказал в своих работах об индивидуальном восприятии цветовых композиций немецкий психолог М. Люшер. Согласно его теории, пребывающий в различном эмоциональном и умственном состоянии индивид может по-разному отреагировать на один и тот же цвет. При этом особенности восприятия цвета зависят от степени развития личности. Но даже при слабой душевной восприимчивости краски окружающей действительности воспринимается неоднозначно. Теплые и светлые тона притягивают глаз больше, чем темные. И в то же время ясные, но ядовитые цвета вызывают беспокойство, и зрение человека невольно ищет холодный зеленый или синий оттенок, чтобы отдохнуть.

Цвет в рекламе

В рекламном обращении выбор цвета не может зависеть только от вкуса дизайнера. Ведь яркие тона могут как привлечь внимание потенциального клиента, так и затруднить получение необходимой информации. Поэтому восприятие формы и цвета индивида должно обязательно учитываться при создании рекламы. Решения могут быть самыми неожиданными: например, на пестром фоне ярких картинок непроизвольное внимание человека скорее привлечет строгое черно-белое объявление, а не красочная надпись.

Дети и цвета

Восприятие цвета детьми складывается постепенно. Сначала они различают только теплые тона: красный, оранжевый и желтый. Затем развитие психических реакций приводит к тому, что ребенок начинает воспринимать голубой, фиолетовый, синий и зеленый цвета. И только с возрастом малышу становится доступно все многообразие цветовых тонов и оттенков. В три года ребятишки, как правило, называют два-три цвета, а узнают около пяти. Причем некоторые дети с трудом различают основные тона даже в четырехлетнем возрасте. Они слабо дифференцируют цвета, с трудом запоминают их названия, заменяют промежуточные оттенки спектра основными и так далее. Для того чтобы ребенок научился адекватно воспринимать окружающий мир, нужно учить его правильно различать цвета.

Развитие восприятия цвета

С самого раннего возраста нужно учить цветовосприятию. Малыш от природы очень любознателен и нуждается в разнообразной информации, но вводить ее нужно постепенно, чтобы не раздражать чувствительную психику ребенка. В раннем возрасте дети обычно связывают цвет с образом какого-нибудь предмета. Например, зеленый - елочка, желтый - цыпленок, синий - небо и так далее. Воспитателю нужно воспользоваться этим моментом и развивать цветовосприятие, используя естественные формы.

Цвет, в отличие от размера и формы, можно только увидеть. Поэтому при определении тона большая роль отводится сопоставлению путем наложения. Если два цвета поместить рядом, каждый ребенок поймет, одинаковые они или разные. При этом ему еще не нужно знать название окраски, достаточно уметь выполнять задания типа «Посади каждую бабочку на цветок такого же цвета». После того как ребенок научится зрительно различать и сопоставлять цвета, имеет смысл приступать к выбору по образцу, то есть к действительному развитию цветовосприятия. Для этого можно использовать книгу Г. С. Швайко под названием «Игры и игровые упражнения для развития речи». Знакомство с красками окружающего мира помогает ребятишкам тоньше и полнее чувствовать действительность, развивает мышление, наблюдательность, обогащает речь.

Визуальный цвет

Интереснейший эксперимент над собой поставил один житель Британии - Нил Харбиссон. Он с детства не умел различать цвета. Врачи нашли у него редчайший дефект зрения - ахроматопсию. Парень видел окружающую действительность словно в черно-белом кино и считал себя социально отрезанным человеком. Однажды Нил согласился на эксперимент и позволил вживить себе в голову специальный кибернетический инструмент, который позволяет ему видеть мир во всем его красочном многообразии. Оказывается, восприятие глазом цвета вовсе не обязательно. В затылок Нила имплантировали чип и антенну с датчиком, которые улавливают вибрацию и преобразуют ее в звук. При этом каждой ноте соответствует определенный цвет: фа - красный, ля - зеленый, до - синий и так далее. Теперь для Харбиссона визит в супермаркет сродни посещению ночного клуба, а картинная галерея напоминает ему поход в филармонию. Технология подарила Нилу доселе невиданное в природе ощущение: визуальный звук. Мужчина ставит интересные эксперименты со своим новым чувством, например, подходит вплотную к разным людям, изучает их лица и сочиняет музыку портретов.

Заключение

О восприятии цвета можно говорить бесконечно. Эксперимент с Нилом Харбиссоном, например, говорит о том, что психика человека очень пластична и может приспособиться к самым необычным условиям. Кроме того, очевидно, что в людях заложено стремление к прекрасному, выражающееся во внутренней потребности видеть мир цветным, а не монохромным. Зрение - уникальный и хрупкий инструмент, изучение которого займет еще немало времени. Узнать о нем как можно больше будет полезно каждому.

Страсть к цвету

Восприятие цвета. Физика

Около 80% всей входящей информации мы получаем визуально
Мы познаем окружающий мир на 78% благодаря зрению, на 13% - слуху, на 3% - тактильным ощущениям, на 3% - обонянию и на 3% - вкусовым рецепторам.
Мы запоминаем 40% увиденного и только 20% услышанного*
*Источник: R. Bleckwenn & B. Schwarze. Учебник дизайна (2004)

Физика цвета. Цвет мы видим только благодаря тому, что наши глаза способны регистрировать электромагнитное излучение в оптическом его диапазоне. А электромагнитное излучение это и радиоволны и гамма излучение и рентгеновское излучение, терагерцевое, ультрафиолетовое, инфракрасное.

Цвет - качественная субъективная характеристика электромагнитного излучения оптического диапазона, определяемая на основании возникающего
физиологического зрительного ощущения и зависящая от ряда физических, физиологических и психологических факторов.
Восприятие цвета определяется индивидуальностью человека, а также спектральным составом, цветовым и яркостным контрастом с окружающими источниками света,
а также несветящимися объектами. Очень важны такие явления, как метамерия, индивидуальные наследственные особенности человеческого глаза
(степень экспрессии полиморфных зрительных пигментов) и психики.
Говоря простым языком цвет - это ощущение, которое получает человек при попадании ему в глаз световых лучей.
Одни и те же световые воздействия могут вызвать разные ощущения у разных людей. И для каждого из них цвет будет разным.
Отсюда следует что споры "какой цвет на самом деле" бессмысленны, поскольку для каждого наблюдателя истинный цвет - тот, который видит он сам


Зрение дает нам информации об окружающей действительности больше, чем другие органы чувств: самый большой поток информации в единицу времени мы получаем именно глазами.





Отраженные от объектов лучи попадают через зрачок на сетчатку, которая представляет собой прозрачный шарообразный экран толщиной 0.1 - 0.5 мм, на который проецируется окружающий мир. Сетчатка содержит 2 типа фоточувствительных клеток: палочки и колбочки.

Цвет происходит из света
Чтобы видеть цвета, необходим источник света. В сумерках мир теряет свою цветность. Там, где нет света, возникновение цвета невозможно.

Учитывая огромное, многомиллионное количество цветов и их оттенков, колористу нужно обладать глубокими, полноценными знаниями о цветовосприятии и происхождении цвета.
Все цвета представляют собой часть луча света – электромагнитных волн, исходящих от солнца.
Эти волны являются частью спектра электромагнитного излучения, в который входят гамма-излучение, рентгеновское излучение, ультрафиолетовое излучение, оптическое излучение (свет), инфракрасное излучение, электромагнитное терагерцевое излучение,
электромагнитные микро- и радиоволны. Оптическое излучение – это та часть электромагнитного излучения, которую способны воспринимать наши глазные сенсоры. Мозг обрабатывает полученные от глазных сенсоров сигналы и интерпретирует их в цвет и форму.

Видимое излучение (оптическое)
Видимое, инфракрасное и ультрафиолетовое излучение составляет так называемую оптическую область спектра в широком смысле этого слова.
Выделение такой области обусловлено не только близостью соответствующих участков спектра, но и сходством приборов, применяющихся для её исследования и разработанных исторически главным образом при изучении видимого света (линзы и зеркала для фокусирования излучения, призмы, дифракционные решётки, интерференционные приборы для исследования спектрального состава излучения и пр.).
Частоты волн оптической области спектра уже сравнимы с собственными частотами атомов и молекул, а их длины - с молекулярными размерами и межмолекулярными расстояниями. Благодаря этому в этой области становятся существенными явления, обусловленные атомистическим строением вещества.
По этой же причине, наряду с волновыми, проявляются и квантовые свойства света.

Самым известным источником оптического излучения является Солнце. Его поверхность (фотосфера) нагрета до температуры 6000 градусов по Кельвину и светит ярко-белым светом (максимум непрерывного спектра солнечного излучения расположен в «зелёной» области 550 нм, где находится и максимум чувствительности глаза).
Именно потому, что мы родились возле такойзвезды, этот участок спектра электромагнитного излучения непосредственно воспринимается нашими органами чувств.
Излучение оптического диапазона возникает, в частности, при нагревании тел (инфракрасное излучение называют также тепловым) из-за теплового движения атомов и молекул.
Чем сильнее нагрето тело, тем выше частота, на которой находится максимум спектра его излучения (см.: Закон смещения Вина). При определённом нагревании тело начинает светиться в видимом диапазоне (каление), сначала красным цветом, потом жёлтым и так далее. И наоборот, излучение оптического спектра оказывает на тела тепловое воздействие (см.: Болометрия).
Оптическое излучение может создаваться и регистрироваться в химических и биологических реакциях.
Одна из известнейших химических реакций, являющихся приёмником оптического излучения, используется в фотографии.
Источником энергии для большинства живых существ на Земле является фотосинтез - биологическая реакция, протекающая в растениях под действием оптического излучения Солнца.

Цвет играет огромную роль в жизни обычного человека. Жизнь колориста посвящена цвету.

Заметно, что цвета спектра, начинаясь с красного и проходя через оттенки противоположные, контрастные красному (зелёный, циан), затем переходят в фиолетовый цвет, снова приближающийся к красному. Такая близость видимого восприятия фиолетового и красного цветов связана с тем, что частоты, соответствующие фиолетовому спектру, приближаются к частотам, превышающим частоты красного ровно в два раза.
Но сами эти последние указанные частоты находятся уже вне видимого спектра, поэтому мы не видим перехода от фиолетового снова к красному цвету, как это происходит в цветовом круге, в который включены неспектральные цвета, и где присутствует переход между красным и фиолетовым через пурпурные оттенки.

При прохождении луча света через призму различные по длине волны, его составляющие, преломляются под разными углами. В результате мы можем наблюдать спектр света. Этот феномен очень похож на феномен радуги.

Следует различать солнечный свет и свет, исходящий от искусственных источников освещения. Только солнечный свет можно считать чистым светом.
Все остальные искусственные источники освещения будут влиять на восприятие цвета. Например, лампы накаливания являются источниками теплого (желтого) света.
Флуоресцентные лампы, чаще всего, дают холодный (синий) свет. Для корректной диагностики цвета необходим дневной свет или же источник освещения, максимально к нему приближенный.
Только солнечный свет можно считать чистым светом. Все остальные искусственные источники освещения будут влиять на восприятие цвета.

Многообразие цветов: Цветовосприятие основывается на способности различать изменения в направлении тона, светлоте/яркости и насыщенности цвета в оптическом диапазоне с длинами волн от 750 нм (красный) до 400 нм (фиолетовый).
Изучив физиологию восприятия цвета, мы можем лучше понять, как формируется цвет, и использовать эти знания на практике.

Мы воспринимаем все многообразие цветов только при наличии и нормальном функционировании всех конусных сенсоров.
Мы способны различать тысячи различных направлений тона. Точное количество зависит от способности глазных сенсоров улавливать и различать световые волны. Эти способности можно развивать тренировками и упражнениями.
Цифры, приведенные ниже, звучат невероятно, но это реальные способности здорового и хорошо подготовленного глаза:
Мы можем различать около 200 чистых цветов. Меняя их насыщенность, мы получаем приблизительно по 500 вариаций каждого цвета. Меняя их светлоту, получаем еще по 200 нюансов каждой вариации.
Хорошо подготовленный человеческий глаз способен различать до 20 миллионов цветовых нюансов!
Цвет субъективен, поскольку мы все воспринимаем его по-разному. Хотя, пока наши глаза здоровы, эти отличия незначительны.

Мы можем различать 200 чистых цветов
Меняя насыщенность и светлоту этих цветов, мы можем различать до 20 миллионов оттенков!

“You only see what you know. You only know what you see.”
«Вы видите только ведомое. Вы ведаете только видимое ».
Марсель Пруст (французский романист), 1871-1922.

Восприятие нюансов одного цвета не одинаково для разных цветов. Тоньше всего мы воспринимаем изменения в зеленом спектре - достаточно изменения длины волны всего на 1 нм, чтобы мы могли увидеть отличие. В красном и синем спектрах необходимо изменение длины волны на 3-6 нм, чтобы отличие стало заметно для глаза. Возможно, отличие в более тонком восприятии зеленого спектра было связано с необходимостью отличать съедобное от несъедобного во времена зарождения нашего вида (профессор, доктор археологии, Герман Крастел BVA).

Цветные картинки, возникающие в нашем сознании, – это кооперация глазных сенсоров и мозга. Мы «ощущаем» цвета, когда конические сенсоры, находящиеся в сетчатке глаза, генерируют сигналы под воздействием попадающих на них волн определенной длины и передают эти сигналы в мозг. Поскольку в цветовосприятии задействованы не только глазные сенсоры, но и мозг, то в результате мы не только видим цвет, но и получаем на него определенный эмоциональный отклик.

Наше уникальное цветоощущение никоим образом не меняет наш эмоциональный отклик на определенные цвета., отмечают ученые. Независимо от того, каков для человека голубой цвет, он всегда становится немного более спокойным и расслабленным, смотря на небо. Короткие волны голубого и синего цветов успокаивают человека, тогда как длинные волны (красный, оранжевый, желтый) наоборот – придают активности и живости человеку.
Эта система реакции на цвета присуща каждому живому организму на Земле – от млекопитающих до одноклеточных (например, одноклеточные «предпочитают» обрабатывать рассеянный свет желтого цвета в процессе фотосинтеза). Считается, что данная взаимосвязь цвета и нашего самочувствия, настроения обуславливается дневным/ночным циклом существования. Например, на рассвете все окрашено в теплые и яркие цвета – оранжевый, желтый – это сигнал каждому, даже самому маленькому существу, что начался новый день и пора приниматься за дела. Ночью и в полдень, когда течение жизни замедляется, вокруг доминируют синие и фиолетовые оттенки.
В своих исследованиях Джей Нейц и его коллеги из Университета штата Вашингтон отметили, что изменение цвета рассеянного света может изменить суточный цикл рыб, в то время как изменение интенсивности этого света не имеет решающего влияния. На этом эксперименте и базируется предположение ученых, что именно благодаря доминированию синего цвета в ночной атмосфере (а не просто темнота), живые существа чувствуют усталость и желание спать.
Но наши реакции не зависят от цветочувствительных клеток сетчатки. В 1998 году ученые обнаружили совершенно отдельный набор цветовых рецепторов – меланопсинов – в человеческом глазу. Эти рецепторы определяют количество синего и желтого цветов в окружающем нас пространстве и отправляют эту информацию в участки мозга, отвечающие за регулирование эмоций и циркадного ритма. Ученые считают, что меланопсины – очень древняя структура, отвечавшая за оценку количества цветов еще в незапамятные времена.
«Именно благодаря этой системе, наше настроение и активность поднимаются, когда вокруг преобладают оранжевый, красный или желтый цвета», - считает Нейц. «Но наши индивидуальные особенности восприятия различных цветов – это совсем другие структуры – синие, зеленые и красные колбочки. Поэтому, тот факт, что у нас одинаковые эмоциональные и физические реакции на одни и те же цвета не может подтвердить, что все люди видят цвета одинаково».
Люди, которые в силу некоторых обстоятельств имеют нарушения в цветовосприятии, часто не могут видеть красный, желтый или синий цвет, но, тем не менее, их эмоциональные реакции не разнятся с общепринятыми. Для вас небо всегда голубое и оно всегда дарит ощущение умиротворенности, даже если для кого-то ваш «голубой» является «красным» цветом.

Три характеристики цвета.

Светлота - степень близости цвета к белому называют светлотой.
Любой цвет при максимальном увеличении светлоты становится белым
Другое понятие светлоты относится не к конкретному цвету, а к оттенку спектра, тону. Цвета, имеющие различные тона при прочих равных характеристиках, воспринимаются нами с разной светлотой. Жёлтый тон сам по себе - самый светлый, а синий или сине-фиолетовый - самый тёмный.

Насыщенность – степень отличия хроматического цвета от равного ему по светлоте ахроматического, «глубина» цвета. Два оттенка одного тона могут различаться степенью блёклости. При уменьшении насыщенности каждый хроматический цвет приближается к серому.

Цветовой тон - характеристика цвета, отвечающая за его положение в спектре: любой хроматический цвет может быть отнесён к какому-либо определённому спектральному цвету. Оттенки, имеющие одно и то же положение в спектре (но различающиеся, например, насыщенностью и яркостью), принадлежат к одному и тому же тону. При изменении тона, к примеру, синего цвета в зеленую сторону спектра он сменяется голубым, в обратную - фиолетовым.
Иногда изменение цветового тона соотносят с «теплотой» цвета. Так, красные, оранжевые и жёлтые оттенки, как соответствующие огню и вызывающие соответствующие психофизиологические реакции, называют тёплыми тонами, голубые, синие и фиолетовые, как цвет воды и льда - холодными. Следует учесть, что восприятие «теплоты» цвета зависит как от субъективных психических и физиологических факторов (индивидуальные предпочтения, состояние наблюдателя, адаптация и др.), так и от объективных (наличие цветового фона и др.). Следует отличать физическую характеристику некоторых источников света - цветовую температуру от субъективного ощущения «теплоты» соответственного цвета. Цвет теплового излучения при повышении температуры проходит по «тёплым оттенкам» от красного через жёлтый к белому, но максимальную цветовую температуру имеет цвет циан.

Человеческий глаз – это орган, дающий нам возможность видеть окружающий мир.
Зрение даёт нам информации об окружающей действительности больше, чем другие органы чувств: самый большой поток информации в единицу времени мы получаем именно глазами.

Каждое новое утро мы просыпаемся и открываем глаза - наша деятельность не возможна без зрения.
Зрению мы доверяем больше всего и его больше всего используем для получения опыта («не поверю, пока сам не увижу!»).
Мы говорим «с широко открытыми глазами», когда открываем разум навстречу чему-то новому.
Глаза используются нами постоянно. Они позволяют нам воспринимать формы и размеры объектов.
И, что самое главное для колориста, они позволяют нам видеть цвет.
Глаз является очень сложным по своему строению органом. Для нас важно понять, как мы видим цвет и как воспринимаем полученные оттенки на волосах.
Восприятие глаза основывается на светочувствительном внутреннем слое глаза, именуемом сетчаткой.
Отражённые от объектов лучи попадают через зрачок на сетчатку, которая представляет собой прозрачный шарообразный экран толщиной 0.1 - 0.5 мм, на который проецируется окружающий мир. Сетчатка содержит 2 типа фоточувствительных клеток: палочки и колбочки.
Эти клетки являются своего рода датчиками, которые реагируют на падающий свет, преобразовывая его энергию в сигналы, передаваемые в мозг. Мозг переводит эти сигналы в образы, которые мы «видим».

Человеческий глаз представляет из себя сложную систему, главной целью которой является наиболее точное восприятие, первоначальная обработка и передача информации, содержащейся в электромагнитном излучении видимого света. Все отдельные части глаза, а также клетки, их составляющие, служат максимально полному выполнению этой цели.
Глаз - это сложная оптическая система. Световые лучи попадают от окружающих предметов в глаз через роговицу. Роговица в оптическом смысле - это сильная собирающая линза, которая фокусирует расходящиеся в разные стороны световые лучи. Причём оптическая сила роговицы в норме не меняется и дает всегда постоянную степень преломления. Склера является непрозрачной наружной оболочкой глаза, соответственно, она не принимает участия в проведении света внутрь глаза.
Преломившись на передней и задней поверхности роговицы, световые лучи проходят беспрепятственно через прозрачную жидкость, заполняющую переднюю камеру, вплоть до радужки. Зрачок, круглое отверстие в радужке, позволяет центрально расположенным лучам продолжить свое путешествие внутрь глаза. Более периферийно оказавшиеся лучи задерживаются пигментным слоем радужной оболочки. Таким образом, зрачок не только регулирует величину светового потока на сетчатку, что важно для приспособления к разным уровням освещённости, но и отсеивает боковые, случайные, вызывающие искажения лучи. Далее свет преломляется хрусталиком. Хрусталик тоже линза, как и роговица. Его принципиальное отличие в том, что у людей до 40 лет хрусталик способен менять свою оптическую силу - феномен, называемый аккомодацией. Таким образом, хрусталик производит более точную до фокусировку. За хрусталиком расположено стекловидное тело, которое распространяется вплоть до сетчатки и заполняет собой большой объем глазного яблока.
Лучи света, сфокусированные оптической системой глаза, попадают в конечном итоге на сетчатку. Сетчатка служит своего рода шарообразным экраном, на который проецируется окружающий мир. Из школьного курса физики мы знаем, что собирательная линза дает перевёрнутое изображение предмета. Роговица и хрусталик - это две собирательные линзы, и изображение, проецируемое на сетчатку, также перевёрнутое. Другими словами, небо проецируется на нижнюю половину сетчатки, море - на верхнюю, а корабль, на который мы смотрим, отображается на макуле. Макула, центральная часть сетчатки, отвечает за высокую остроту зрения. Другие части сетчатки не позволят нам ни читать, ни наслаждаться работой на компьютере. Только в макуле созданы все условия для восприятия мелких деталей предметов.
В сетчатке оптическая информация воспринимается светочувствительными нервными клетками, кодируется в последовательность электрических импульсов и передается по зрительному нерву в головной мозг для окончательной обработки и сознательного восприятия.

Конусные сенсоры (0,006 мм в диаметре) способны различать малейшие детали, соответственно активными они становятся при интенсивном дневном или искусственном освещении. Они гораздо лучше, чем палочки, воспринимают быстрые движения и дают высокое визуальное разрешение. Но их восприятие снижается при уменьшении интенсивности света.

Самая высокая концентрация колбочек находится в середине сетчатки, в точке называемой центральной ямкой. Здесь концентрация колбочек достигает 147,000 на квадратный миллиметр, обеспечивая максимальное визуальное разрешение картинки.
Чем ближе к краям сетчатки, тем ниже концентрация конусных сенсоров (колбочек) и тем выше концентрация цилиндрических сенсоров (палочек), отвечающих за сумеречное и периферийное зрение. В центральной ямке палочки отсутствуют, что объясняет нам, почему ночью мы лучше видим тусклые звезды, когда смотрим на точку рядом с ними, а не на них самих.

Существует 3 типа конусных сенсоров (колбочек), каждый из которых отвечает за восприятие одного цвета:
Чувствительный к красному (750 нм)
Чувствительный к зеленому (540 нм)
Чувствительный к синему (440 нм)
Функции колбочек: Восприятие в условиях интенсивной освещенности (дневное зрение)
Восприятие цветов и мелких деталей. Количество колбочек в человеческом глазе: 6-7 миллионов

Эти 3 типа колбочек позволяют нам видеть все многообразие цветов окружающего мира. Поскольку все остальные цвета являются результатом сочетания сигналов, поступающих от этих 3 видов колбочек.

Например: Если объект выглядит желтым – это означает, что отраженные от него лучи стимулируют чувствительные к красному и чувствительные к зеленому колбочки. Если цвет объекта оранжево-желтый – это означает, что чувствительные к красному колбочки были простимулированы сильнее, а чувствительные к зеленому – слабее.
Белый мы воспринимаем в тех случаях, когда все три типа колбочек простимулированы одновременно в равной интенсивности. Такое трехцветное зрение описывается в теории Юнга-Гельмгольца.
Теория Юнга-Гельмгольца объясняет восприятие цвета только на уровне колбочек сетчатки, не раскрывая все феномены цветоощущения, такие как цветовой контраст, цветовая память, цветовые последовательные образы, константность цвета и др., а также некоторые нарушения цветового зрения, например, цветовую агнозию.

Ощущение цвета зависит от комплекса физиологических, психологических и культурно-социальных факторов. Существует т.н. цветоведение - анализ процесса восприятия и различения цвета на основе систематизированных сведений из физики, физиологии и психологии. Носители разных культур по-разному воспринимают цвет объектов. В зависимости от важности тех или иных цветов и оттенков в обыденной жизни народа, некоторые из них могут иметь большее или меньшее отражение вязыке. Способность цветораспознавания имеет динамику в зависимости от возраста человека. Сочетания цветов воспринимаются гармоничными (гармонирующими) либо нет.

Тренировка цветовосприятия.

Изучение теорие цвета и тренировка цветовосприятия важны в любой профессии работающей с цветом.
Глаза и разум нужно тренировать для постижения всех тонкостей цвета, также как тренируются и оттачиваются навыки стрижки или иностранные языки: повторение и практика.

Эксперимент 1: Выполняйте упражнение ночью. Выключите свет в комнате – вся комната мгновенно погрузится во мрак, вы ничего не будете видеть. Через несколько секунд глаза привыкнут к низкой освещенности и начнут все четче выявлять контрасты.
Эксперимент 2: Положите перед собой два чистых белых листа бумаги. На середину одного из них положите квадратик красной бумаги. В середине красного квадратика нарисуйте маленький крестик и в течение нескольких минут смотрите на него, не отрывая взора. Затем переведите взгляд на чистый белый лист бумаги. Почти сразу вы увидите на нем образ красного квадратика. Только цвет у него будет другой - голубовато-зеленый. Через несколько секунд он начнет бледнеть и вскоре исчезнет. Почему это происходит? Когда глаза были сфокусированы на красном квадрате, интенсивно возбуждался соответствующий этому цвету тип колбочек. При переводе взгляда на белый лист интенсивность восприятия этих колбочек резко падает и более активными становятся два других типа колбочек – зелено- и синечувствительных.

Цвет — одно из свойств объектов материального мира, воспринимаемое как зрительное ощущение. Зрительные ощущения возникают под действием на органы зрения света — электромагнитного излучения видимого диапазона спектра. Диапазон длины волны зрительных ощущений (цвета) находится в пределах 380-760 мкм. Физические свойства света тесно связаны со свойствами вызываемого ими ощущения: с изменением мощности света меняется яркость цвета излучателя или светлота цвета окрашенных поверхностей и сред. С изменением длины волны меняется цветность, которая идентична с понятием цвета, ее мы определяем словами «синий», «желтый», «красный», «оранжевый» и пр.

Характер ощущения цвета зависит как от суммарной реакции чувствительных к цвету рецепторов глаза человека, так и от соотношения реакций каждого из трех типов рецепторов. Суммарная реакция чувствительных к цвету рецепторов глаза определяет светлоту, а соотношение ее долей — цветность (цветовой тон и насыщенность). Характеристиками цвета являются цветовой тон, насыщенность и яркость или светлота.

А.С.Пушкин определил цвет как «очей очарованье», а ученый Шредингер — как «интервал излучений в световом диапазоне, который глаз воспринимает одинаково и определяет как цвет словами “красный”, “зеленый”, “синий” и т.д.».

Таким образом, глаз интегрирует (суммирует) определенный интервал световых излучений и воспринимает их как единое целое. Ширина этого интервала зависит от множества факторов, в первую очередь — от уровня адаптации глаза.

Цвет как феномен зрения и объект изучения

Цвет — деяние света,
деяние и страдательные состояния.

И.В.Гёте

Цвет сообщает вещам и явлениям форму, объем и эмоциональность при их восприятии. У большинства биологических видов световые рецепторы локализованы в области сетчатки глаза. Усложнение светового анализатора происходило по мере развития биологической линии. Высшее достижение природы — зрение человека.

С возникновением цивилизации роль цвета возросла. Искусственные источники света (излучатели с ограниченным спектром электромагнитного излучения энергии) и краски (чистый бесконечный цвет) можно рассматривать как искусственные средства синтеза цвета.

Человек всегда пытался овладеть способностью влиять на свое душевное состояние через цвет и использовать цвет для создания комфортной среды обитания, а также в различных изображениях. Первые способы применения цвета в ритуальной практике связаны с их символической функцией. Позже с помощью цветов стали отображать воспринимаемую реальность и визуализировать абстрактные понятия.

Наивысшим достижением в овладении цветом является изобразительное искусство, использующее экспрессивные, импрессивные и символические цвета.

Глаз и ухо человека воспринимают излучения по-разному

По гипотезе Юнга-Гельмгольца наши глаза обладают тремя независимыми светочувствительными рецепторами, реагирующими соответственно на красный, зеленый и синий цвета. Когда окрашенный свет попадает в глаз, эти рецепторы возбуждаются в соответствии с интенсивностью действующего на них цвета, содержащегося в наблюдаемом свете. Любая комбинация возбужденных рецепторов вызывает определенное цветовое ощущение. Области чувствительности трех этих рецепторов частично перекрываются. Поэтому одно и то же цветовое ощущение может быть вызвано различными комбинациями окрашенных световых излучений. Глаз человека постоянно суммирует раздражения, и конечным результатом восприятия оказывается суммарное действие. Необходимо также отметить, что человеку очень трудно, а иногда и невозможно определить, видит он источник света или объект, отражающий свет.

Если глаз можно считать совершенным сумматором, то ухо является совершенным анализатором и обладает фантастической способностью разлагать и анализировать колебания, образующие звук. Ухо музыканта без малейшего затруднения различает, на каком инструменте берется определенная нота, например на флейте или на фаготе. Каждый из этих инструментов имеет четко выраженный, свой тембр. Однако если звуки этих инструментов подвергнуть анализу с помощью соответствующего акустического устройства, то обнаружится, что комбинации обертонов, испускаемые этими инструментами, незначительно отличаются друг от друга. На основе только приборного анализа сложно безошибочно сказать, с каким инструментом мы имеем дело. На слух инструменты различаются безошибочно.

По своей чувствительности глаз и ухо значительно превосходят самые современные электронные устройства. При этом глаз сглаживает мозаичность структуры света, а ухо различает шорохи (вариации тона).

Если бы глаз был таким же анализатором, как и ухо, то, например, белая хризантема представлялась бы нам хаосом цветов, фантастической игрой всех цветов радуги. Объекты представали бы перед нами в различных оттенках (тембрах цвета). Зеленый бере т и зеленый лист, которые обычно кажутся нам одинакового зеленого цвета, были бы окрашенными в различные цвета. Дело в том, что глаз человека дает одно и то же ощущение зеленого цвета от различных комбинаций исходных окрашенных световых пучков. Гипотетический глаз, обладающий аналитической способностью, немедленно обнаружил бы эти различия. Но реальный глаз человека суммирует их, а одна и та же сумма может иметь множество различных слагаемых.

Известно, что белый свет состоит из целой гаммы цветов — спектров излучения. Мы называем его белым потому, что глаз человека не в состоянии разложить его на отдельные цвета.

Поэтому в первом приближении можно считать, что объект, например красная роза, имеет такую окраску потому, что отражает только красный цвет. Какой-то другой предмет, например зеленый лист, видится зеленым потому, что выделяет из белого света зеленый цвет и отражает только его. Однако на практике ощущение цвета связано не только с избирательным (селективным) отражением (пропусканием) объектом падающего или излучаемого света. Воспринимаемый цвет сильно зависит от цветового окружения объекта, а также от сущности и состояния воспринимающего.

Цвет можно только видеть

Когда человек не имеет отношения к видению, вещи выглядят в основном одними и теми же в то время, когда он смотрит на мир. С другой стороны, когда он научится видеть, ничто не будет выглядеть тем же самым все то время, что он видит эту вещь, хотя она остается той же самой.

Карлос Кастанеда

Цвета, являющиеся результатом действия физических световых стимулов, обычно видятся по-разному при различном составе стимула. Однако цвет зависит также от целого ряда других условий, таких как уровень адаптации глаза, структура и степень сложности поля зрения, состояние и индивидуальные особенности смотрящего. Количество возможных комбинаций из отдельных стимулов мозаичности излучений света значительно больше количества различных цветов, которое приблизительно оценивается в 10 млн.

Из этого следует, что любой воспринятый цвет может быть генерирован большим числом стимулов с различным спектральным составом. Это явление называется метамеризм цвета. Так, ощущение желтого цвета может быть получено под действием либо монохроматического излучения с длиной волны около 576 нм, либо сложного стимула. Сложный стимул может состоять из смеси излучения с длиной волны более 500 нм (цветная фотография, полиграфия) или из сочетания излучения с длиной волны, соответствующей зеленому либо красному цветам, при этом желтая часть спектра полностью отсутствует (телевидение, монитор компьютера).

Как человек видит цвет, или Гипотеза C (B+G) + Y (G+R)

Человечеством создано много гипотез и теорий о том, как человек видит свет и цвет, некоторые из которых были рассмотрены выше.

В этой статье сделана попытка на базе изложенных выше технологий цветоделения и печати, применяемых в полиграфии, дать объяснение цветовому зрению человека. В основе гипотезы лежит положение о том, что глаз человека не является источником излучения, а работает как окрашенная поверхность, освещаемая светом, и спектр света разделен на три зоны — синюю, зеленую и красную. Сделано допущение, что в глазу человека имеется множество приемников света одного типа, из которых состоит мозаичная поверхность глаза, воспринимающая свет. Принципиальная структура одного из приемников показана на рисунке.

Приемник состоит из двух частей, работающих как единое целое. Каждая из частей содержит пару рецепторов: синий и зеленый; зеленый и красный. Первая пара рецепторов (синий и зеленый) завернута в пленку голубого цвета, а вторая (зеленый и красный) — в пленку желтого цвета. Эти пленки работают как светофильтры.

Рецепторы связаны между собой проводниками световой энергии. На первом уровне синий рецептор связан с красным, синий — с зеленым, а зеленый — с красным. На втором уровне эти три пары рецепторов связаны в одной точке («соединение звездой», как при трехфазном токе).

Схема работает по следующим принципам:

Голубой светофильтр пропускает синие и зеленые лучи света и поглощает красные;

Желтый светофильтр пропускает зеленые и красные лучи и поглощает синие;

Рецепторы реагируют только на одну из трех зон спектра света — на синие, зеленые или красные лучи;

На зеленые лучи реагируют два рецептора, которые находятся за голубым и желтым светофильтрами, поэтому чувствительность глаза в зеленой зоне спектра выше, чем в синей и красной (это соответствует экспериментальным данным о чувствительности глаза;

В зависимости от интенсивности падающего света в каждой из трех связанных между собой пар рецепторов возникнет энергетический потенциал, который может быть положительным, отрицательным или нулевым. При положительном или отрицательном потенциале пара рецепторов передает информацию об оттенке цвета, в котором преобладает излучение одной из двух зон. Когда энергетический потенциал создан только за счет световой энергии одного из рецепторов, то должен воспроизводиться один из однозональных цветов — синий, зеленый или красный. Нулевой потенциал соответствует равным долям излучений каждой из двух зон, что дает на выходе один из двухзональных цветов: желтый, пурпурный или голубой. Если все три пары рецепторов имеют нулевой потенциал, то должен воспроизводиться один из уровней серого (от белого до черного) в зависимости от уровня адаптации;

Когда энергетические потенциалы в трех парах рецепторов разные, то в точке серого должен воспроизводиться цвет с преобладанием одного из шести цветов — синего, зеленого, красного, голубого, пурпурного или желтого. Но этот оттенок будет или разбеленным, или зачерненным, в зависимости от общего уровня световой энергии для всех трех рецепторов. Таким образом, воспроизведенный цвет будет всегда содержать ахроматическую составляющую (уровень серого). Этот уровень серого, усредненный для всех приемников глаза, и будет определять адаптацию (чувствительность) глаза к условиям восприятия;

Если в большинстве приемников глаза в течение долгого времени возникают небольшие энергетические потенциалы (соответствующие слабым оттенкам цвета или слабохроматическим цветам, близким к ахроматическим), то они будут выравниваться и дрейфовать к серому или к преобладающему памятному цвету. Исключением являются случаи, когда используется сравнительный эталон цвета или эти потенциалы соответствуют памятному цвету;

Нарушения в цвете фильтров, в чувствительности рецепторов или в проводимости цепей будут приводить к искажению восприятия световой энергии, а следовательно, к искажению воспринимаемого цвета;

Сильные энергетические потенциалы, возникающие при длительном воздействии световой энергии большой мощности, могут вызвать восприятие дополнительного цвета при переводе взгляда на серую поверхность. Дополнительные цвета: к желтому — синий, к пурпурному — зеленый, к голубому — красный и наоборот. Эти эффекты возникают вследствие того, что должно произойти быстрое выравнивание энергетического потенциала в одной из трех точек схемы.

Таким образом, при помощи простой энергетической схемы, включающей три разных рецептора, один из которых дублируется, и два пленочных светофильтра, можно моделировать восприятие любого оттенка окрашенного спектра света, который видит человек.

В данной модели восприятия цвета человеком учитывается только энергетическая составляющая спектра света и не принимаются в расчет индивидуальные особенности человека, его возраст, профессия, эмоциональное состояние и многие другие факторы, которые влияют на восприятие света.

Цвет без света

Открыла мне моя душа и научила прикасаться к тому, что не облеклось плотью и не кристаллизовалось. И позволила она уразуметь, что чувственное есть половина мысленного и то, что мы держим в руках, — часть вожделенного нами.

Дж. Х. Джебран

Цвет возникает в результате восприятия глазом светового электромагнитного излучения и преобразования информации об этом излучении человеческим мозгом. Хотя и считается, что электромагнитное световое излучение — единственный возбудитель ощущения цвета, но цвет можно увидеть и без непосредственного воздействия света — цветовые ощущения свободно могут возникать в мозге человека. Пример — цветные сны или галлюцинации, вызванные воздействием на организм химических веществ. В абсолютно темном помещении мы видим перед глазами разноцветное мерцание, словно наше зрение вырабатывает в отсутствие внешних стимулов какие-то случайные сигналы.

Следовательно, как уже было замечено, цветовой стимул определен как адекватный стимул восприятия цвета или света, но он — не единственно возможный.

0

Чтобы видеть, нам нужен свет. Это положение может показаться слишком очевидным, чтобы заслуживать упоминания, однако оно не всегда было столь банальным. Платон думал, что зрительное восприятие существует не потому, что свет проникает в глаз, а потому, что частицы, исходящие из глаз, обволакивают окружающие предметы. Трудно представить себе теперь, почему Платон не попытался разрешить проблему с помощью простых экспериментов. Хотя для философов вопрос о том, каким образом мы видим, всегда был излюбленной темой размышлений и теоретических построений, только за последнее столетие эта проблема стала предметом систематических исследований; это довольно странно, поскольку все научные наблюдения зависят от показаний человеческих органов чувств и главным образом от зрения.

В течение последних 300 лет существовали две соперничавшие теории относительно природы света. Исаак Ньютон (1642-1727) считал, что свет - это поток частиц, в то время как Христиан Гюйгенс (1629-1695) утверждал, что свет представляет собой, по всей видимости, колебание небольших эластичных сферических образований, соприкасающихся друг с другом и перемещающихся во всепроникающей среде - эфире. Любое возмущение этой среды, как он считал, будет распространяться во всех направлениях в виде волны, а эта волна и есть свет.

Полемика относительно природы света - одна из наиболее впечатляющих и интересных в истории науки. Основным вопросом на ранних стадиях дискуссии был вопрос о том, распространяется ли свет с определенной скоростью или он достигает цели мгновенно. Ответ на этот вопрос был получен совершенно неожиданно датским астрономом Рёмером (1644-1710). Он изучал затмение четырех ярких спутников, вращающихся вокруг Юпитера, и обнаружил, что периоды между затмениями нерегулярны и зависят от расстояния между Юпитером и Землей.

В 1675 г. он пришел к заключению, что этот факт определяется временем, которое требуется, чтобы свет, исходящий от спутников Юпитера, достиг глаза экспериментатора; время возрастает с увеличением расстояния вследствие ограниченной скорости света. Действительно, расстояние от Земли до Юпитера равно примерно 299 274000 км - это в два раза больше, чем расстояние от Земли до Солнца; наибольшая временная разница, которую он наблюдал, равнялась 16 мин. 36 сек. -на этот отрезок времени раньше или позже, чем полагалось по расчету, начиналось затмение спутников. На основании несколько ошибочной оценки расстояния до Солнца он подсчитал, что скорость света равна 308 928 км/сек. Современные знания о диаметре земной орбиты позволяют нам уточнить эту величину и считать ее равной 299 274 км/сек, или Зх10 10 см/сек. Скорость света, таким образом, на небольших расстояниях от Земли измеряется очень точно, и теперь мы рассматриваем ее как одну из основных констант Вселенной.

Вследствие ограниченной скорости света и определенной задержки нервных импульсов, поступающих я мозг, мы всегда видим прошлое. Наше восприятие Солнца запаздывает на 8 мин.; всем известно, что наиболее отдаленный из видимых невооруженным глазом объектов - туманность Андромеды уже больше не существует и то, что мы видим, происходило за миллион лет до появления человека на Земле.

Скорость света, равная Зх10 10 см/сек, строго сохраняется только в полном вакууме. Когда свет проходит через стекло или воду или какую-нибудь другую пропускающую свет среду, его скорость уменьшается в соответствии с показателем преломления света (приблизительно в соответствии с плотностью этой среды). Это замедление скорости света исключительно важно, так как именно благодаря этому свойству света призма преломляет свет, а линзы создают изображение. Закон преломления (отклонение луча света в зависимости от изменения показателя преломления) был впервые установлен Снеллиусом, профессором математики, в Лейдене в 1621 году. Снеллиус умер в возрасте 35 лет, оставив свои работы неопубликованными. Декарт сформулировал Закон преломления одиннадцать лет спустя. Закон преломления гласит:

«При переходе света из среды А в среду В отношение синуса угла падения к синусу угла преломления света является константою».

Мы можем видеть, как это происходит, из простой диаграммы (рис. 2, 3): если АВ - луч, проходящий через плотную среду в вакуум (или воздух), то он появится в воздухе под углом i по линии BD.

Закон гласит, что sin i/sin r является постоянной величиной. Эта константа и есть индекс рефракции, или показатель преломления, обозначенный v.

Ньютон думал, что частицы света (корпускулы) притягиваются к поверхности плотной среды, Гюйгенс полагал, что преломление возникает вследствие того, что скорость света уменьшается в плотной среде. Эти предположения были высказаны задолго до того, как французский физик Фуко доказал прямыми измерениями, что скорость света в плотной среде действительно уменьшается. Некоторое время считали, что корпускулярная теория света Ньютона совершенно ошибочна и что свет - это только ряды волн, проходящих через среду, эфир; однако начало нынешнего столетия ознаменовалось важным доказательством того, что волновая теория света не объясняет всех световых явлений. Теперь считается, что свет - это и частицы и волны.

Свет состоит из единиц энергии - квантов. Они соединяют в себе свойства и частиц и волн. Коротковолновый свет содержит большее количество волн в каждом пучке, чем длинноволновый. Этот факт находит свое отражение в правиле, согласно которому энергия одного кванта является функцией частоты, иначе говоря, E = hv, где Е - это энергия в эрг/ сек; h - небольшая постоянная величина (константа Планка), а υ частота излучения.

Когда свет преломляется призмой, каждая частота отклоняется под несколько иным углом, так что из призмы пучок света выходит в виде веера лучей, окрашенных во все цвета спектра. Ньютон открыл, что белый свет состоит из всех цветов спектра, разложив солнечный луч на спектр и затем обнаружив, что он может вновь смешать цвета и получить белый свет, если пропускать спектр через вторую сходную призму, установленную в обратном положении.

Ньютон обозначил семь цветов своего спектра следующим образом: красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый. Никто в действительности не видит синий цвет в чистом виде, еще более сомнителен оранжевый. Подобное деление спектра на цвета объясняется тем, что Ньютон любил число 7, и он добавил оранжевый и синий, чтобы получить магическую цифру!

Теперь мы знаем то, чего не знал Ньютон, а именно, что каждый спектральный цвет, или оттенок, является светом определенной частоты. Мы знаем также, что так называемое электромагнитное излучение, по существу, ничем не отличается от светового. Физическое различие между радиоволнами, инфракрасным светом, видимым светом, ультрафиолетовыми и рентгеновскими лучами состоит в их частоте. Только очень узкий диапазон этих частот возбуждает глаз и дает изображение и ощущение цвета. Диаграмма (рис. 2, 5) показывает, как узка эта полоса в физической картине волн. Взгляните на этот рисунок, ведь мы почти слепы!

Если нам известна скорость света и его частота, то легко подсчитать длину волны, однако в действительности частоту света трудно измерить непосредственно. Легче измерить длину световых волн, чем их частоту, хотя это не относится к низкочастотным радиоволнам. Длина световой волны измеряется путем расщепления света не с помощью призмы, а с помощью специальной решетки из тонких тщательно начерченных по определенным правилам линий, в результате чего также возникают цвета спектра. (Это можно видеть, если держать диск светового поляризатора наклонно, под тупым углом к источнику света: тогда отражение будет состоять из ярких цветов.) Если даны расстояния между линиями, нанесенными по определенному образцу и составляющими решетку, и угол, благодаря которому возникает пучок света данного цвета, то длина волны может быть определена очень точно. Подобным путем можно установить, что голубой свет имеет длину волны приблизительно 1/100 000 см, в то время как длина волны красного света равна 1/175 000 см. Длина световой волны важна для установления границ разрешающей способности оптических инструментов.

Мы не можем невооруженным глазом видеть один квант света, тем не менее рецепторы сетчатки настолько чувствительны, что они могут стимулироваться одним квантом света. Однако, чтобы получить ощущение вспышки света, необходимо несколько (от пяти до восьми) квантов света. Отдельные рецепторы сетчатки настолько чувствительны, насколько это вообще возможно для какого-либо детектора света, поскольку квант - это наименьшее количество лучистой энергии, которое вообще может существовать. К сожалению, прозрачные проводящие среды глаза далеки от совершенства и скрадывают возможности сетчатки воспринимать свет. Только около 10% света, поступающего в глаз, достигают рецепторов, остальное теряется вследствие поглощения и расщепления внутри глаза прежде, чем свет достигнет сетчатки. Несмотря на эти потери, оказывается возможным при идеальных условиях видеть одну свечу на расстоянии 27 353 м.

Идея квантовой природы света имеет важное значение для понимания зрительного восприятия; эта идея вдохновила на ряд изящных экспериментов, направленных на выяснение физических свойств света и его восприятия глазом и мозгом. Первый эксперимент, посвященный изучению квантовой природы света, был проведен тремя физиологами - Гехтом, Шлером и Пиренном в 1942 г. Их работа является сейчас классической. Предполагая, что глаз должен обладать почти или целиком такой же чувствительностью, как это теоретически возможно, они задумали очень остроумный эксперимент, чтобы выяснить, сколько квантов света должно быть воспринято рецепторами, чтобы мы увидели вспышку света. Доказательство основывалось на использовании распределения Пуассона. Оно описывает ожидаемое распределение попаданий в цель. Идея состоит в том, что по крайней мере частично изменения чувствительности глаза во времени связаны не с состоянием самого глаза или нервной системы, а с колебаниями энергии слабого светового источника. Вообразите беспорядочный поток пуль, они не будут попадать в цель с постоянной скоростью, скорость будет варьировать, сходным образом наблюдаются колебания и в количестве квантов света, которые достигают глаза. Данная вспышка может содержать малое или большое число квантов света, и вероятность обнаружить ее будет тем выше, чем больше она превышает среднее число квантов во вспышке. Для яркого света этот эффект несуществен, однако, поскольку глаз чувствителен и к нескольким квантам, колебания энергии света важно учитывать при минимальных величинах этой энергии, необходимых для возникновения ощущения.

Представление о квантовой природе света важно также и для понимания способности глаза выделять тонкие детали. Одна из причин, почему мы можем читать при свете луны только крупный газетный шрифт, состоит в том, что количество квантов, попадающих на сетчатку, недостаточно, чтобы создать полный образ за тот короткий промежуток времени, который требуется глазу, чтобы интегрировать энергию, - это число порядка одной десятой секунды. В действительности это еще не все, что может быть сказано по этому поводу; чисто физический фактор, обусловленный квантовой природой света, способствует появлению хорошо известного зрительного феномена - ухудшению остроты зрения при тусклом свете. До последнего времени это явление трактовалось исключительно как свойство глаза. В самом деле часто довольно трудно установить, следует ли относить тот или иной зрительный феномен к области психологии, физиологии или физики.

Как возникают изображения? Проще всего изображение может быть получено с помощью булавочного отверстия. Рисунок показывает, как это делается. Луч от части предмета х может достигнуть только одной части экрана у - той части, которая расположена на прямой линии, проходящей через булавочное отверстие. Каждая часть предмета освещает соответствующую часть экрана, так что на экране создается перевернутое изображение предмета. Полученное с помощью булавочного отверстия изображение будет довольно тусклым, потому что для четкого изображения нужно еще меньшее отверстие (хотя, если отверстие слишком мало, изображение будет расплывчатым, поскольку нарушается волновая структура света).

Линза фактически представляет собой пару призм. Они направляют поток света от каждой точки объекта к соответствующей точке экрана, давая, таким образом, яркое изображение. В отличие от булавочного отверстия, линзы хорошо работают только тогда, когда соответствующим образом подобраны и правильно установлены. Хрусталик может быть неправильно настроен и не соответствовать глазу, в котором он находится. Хрусталик может фокусировать изображение спереди или сзади сетчатки, вместо того чтобы фокусировать его на самой сетчатке, что приводит к появлению близорукости или дальнозоркости. Поверхность хрусталика может быть недостаточно сферической и вызывать искажение или нарушение четкости изображения. Роговица может быть неправильной формы или иметь изъяны (возможно, вследствие повреждения металлической стружкой на производстве или песчинкой при вождении машины без предохранительных очков). Эти оптические дефекты могут быть скомпенсированы с помощью искусственных линз - очков. Очки исправляют дефекты аккомодации, изменяя силу хрусталика; они корригируют астигматизм, добавляя несферический компонент. Обычные очки не могут исправить дефекты поверхности роговицы, однако, новые роговичные линзы, установленные на самом глазу, образуют новую поверхность роговицы.

Очки удлиняют нашу активную жизнь. С их помощью мы можем читать и выполнять сложную работу в старости. До их изобретения работники умственного и физического труда становились беспомощными вследствие недостатков зрения, хотя они были еще сильны разумом.

Используемая литература: Р. Л. Грегори
Глаз и мозг. Психология зрительного восприятия: Л.Р. Грегори
под ред. Э. Пчелкина, С. Елинсон.-м. 1970 г.

Скачать реферат: У вас нет доступа к скачиванию файлов с нашего сервера.

Чувствительность и острота зрения. Чувствительность к интенсивности света определяется палочками и колбочками. Между ними есть два существенных различия, объясняющие ряд явлений, связанных с восприятием интенсивности, или яркости.

Первое различие состоит в том, что в среднем одна ганглиозная клетка соединена с большим количеством палочек, чем колбочек; поэтому «палочковые» ганглиозные клетки имеют больше входов, чем «колбочковые». Второе различие состоит в том, что палочки и колбочки размещены на сетчатке по-разному. В зоне фовеа много колбочек, но нет палочек, а на периферии много палочек, но относительно мало колбочек. Из-за того, что ганглиозная клетка соединена с большим количеством палочек, чем колбочек, палочковое зрение оказывается более чувствительным, чем колбочковое. На рис. 4.11 показано, как именно это происходит. В левой части рисунка изображены три соседних колбочки, каждая из которых подсоединена (не непосредственно) к одной ганглиозной клетке; в правой части рисунка показаны три соседних палочки, которые все подсоединены (не непосредственно) к одной ганглиозной клетке.

Чтобы понять, что означают эти различные схемы «подключения» колбочек и палочек, представьте, что палочкам и колбочкам предъявляются три очень слабых близко расположенных световых пятна. Когда их предъявляют колбочкам, каждое из пятен света в отдельности может быть слишком слабым, чтобы вызвать нервный импульс в соответствующем рецепторе, и следовательно, ни один нервный импульс не дойдет до ганглиозной клетки. Но когда те же три пятна предъявляются палочкам, активация от этих трех рецепторов может быть объединена, и тогда эта сумма окажется достаточной, чтобы вызвать нервную реакцию в ганглиозной клетке. Поэтому подсоединение нескольких палочек к одной ганглиозной клетке обеспечивает конвергенцию нервной активности, и именно благодаря такой конвергенции палочковое зрение чувствительнее колбочкового.

Но за это преимущество в чувствительности приходится платить, а именно - меньшей остротой зрения по сравнению с колбочковым зрением (острота зрения - это способность различать детали). Снова обратимся к двум схемам на рис. 4.10, но теперь представим, что три рядом расположенных пятна света достаточно яркие. Если их предъявить колбочкам, каждое пятно вызовет нервную реакцию в соответствующем рецепторе, что, в свою очередь, приведет к появлению нервных импульсов в трех различных ганглиозных клетках; в мозг будут посланы три различных сообщения, и у системы будет возможность узнать о существовании трех различных объектов. Если же эти три соседних световых пятна предъявить палочкам, нервная активность от всех трех рецепторов будет объединена и передана единственной ганглиозной клетке; поэтому в мозг поступит только одно сообщение, и у системы не будет возможности узнать о существовании более чем одного объекта. Короче, способ соединения рецепторов с ганглиозными клетками объясняет различия в чувствительности и остроте палочкового и колбочкового зрения.

Еще одно следствие этих различий состоит в том, что слабый свет человек лучше обнаруживает на палочковой периферии, чем в зоне фовеа.

Так что хотя острота зрения сильнее в фовеа, чем на периферии, чувствительность на периферии выше. То, что чувствительность на периферии выше, можно установить, измерив абсолютный порог испытуемого при предъявлении ему вспышек света в темной комнате. Порог будет ниже (что означает большую чувствительность), если испытуемый смотрит немного в сторону, так чтобы видеть вспышки периферическим зрением, чем если он смотрит на вспышки прямо и свет попадает в фовеа. Мы уже видели одно из последствий того, что на периферии расположено меньшее количество колбочек (см. рис. 4.9). Последствия распределения палочек могут быть обнаружены, когда мы смотрим на звезды ночью. Возможно, вы замечали, что для того чтобы увидеть слабую звезду как можно более отчетливо, необходимо слегка изменить направление взгляда на один край звезды. Благодаря этому светом звезды активизируется максимально возможное число палочек.

Световая адаптация. До сих пор мы подчеркивали, что человек чувствителен к изменениям стимуляции. Другой стороной медали является то, что если в стимуле не происходит изменений, человек к нему адаптируется. Хороший пример световой адаптации можно увидеть, войдя в темный кинотеатр с освещенной солнцем улицы. Сначала вы почти ничего не различаете в слабом свете, отраженном от экрана. Однако через несколько минут вы уже видите достаточно хорошо, чтобы найти себе место. Еще через какое-то время вы можете различать лица при слабом свете. Когда вы опять выходите на ярко освещенную улицу, почти все выглядит сначала болезненно ярким, и в этом ярком свете невозможно что-либо различить. Все, однако, возвращается в норму меньше чем за минуту, поскольку адаптация к более яркому свету происходит быстрее. На рис. 4.12 показано, как снижается абсолютный порог со временем пребывания в темноте. Кривая состоит из двух ветвей. Верхняя ветвь связана с работой колбочек, а нижняя - палочек. Палочковая система адаптируется намного дольше, но она чувствительна к гораздо более слабому свету.

Похожие статьи