Виды письменной нумерации.Системы счисления. Цель и образовательные задачи изучения нумерации

Цель всякой нумерации - изображение любого натураль­ного числа с помощью небольшого количества индивидуаль­ных знаков. Этого можно было бы достичь с помощью одного знака - 1 (единицы). Каждое натуральное число тогда запи­сывалось бы повторением символа единицы столько раз, сколь­ко в этом числе вмещается единиц. Сложение сводилось бы к простому приписыванию единиц, а вычитание - к вычерки­ванию (вытиранию) их. Идея, лежащая в основе такой систе­мы, проста, однако эта система очень неудобна. Для записи больших чисел она практически не пригодна, и ею пользуют­ся только народы, у которых счет не выходит за пределы од-ного-двух десятков.

С развитием человеческого общества увеличиваются зна­ния людей и все больше становится потребность считать и записывать результаты счета довольно больших множеств, измерения больших величин.


У первобытных людей не было письменности, не было ни букв, ни цифр, каждую вещь, каждое действие изобра­жали рисунком. Это были реальные рисунки, отображающие то или другое количество. Постепенно они упрощались, ста­новились все более удобными для записи. Речь идет о записи чисел иероглифами. Иероглифы древних египтян свидетель­ствуют о том, что искусство счета было развито у них доста­точно высоко, с помощью иероглифов изображались боль­шие числа. Однако для дальнейшего усовершенствования счета было необходимо перейти к более удобной записи, которая позволяла бы обозначать числа специальными, более удоб­ными знаками (цифрами). Происхождение цифр у каждого народа различное.

Первые цифры встречаются более чем за 2 тыс. лет до н.э. в Вавилоне. Вавилоняне писали палочками на плитах из мяг­кой глины и потом свои записи высушивали. Письменность древних вавилонян называлась клинописью. Клинышки раз­мещались и горизонтально, и вертикально в зависимости от их значения. Вертикальные клинышки обозначали единицы, а горизонтальные, так называемые десятки - единицы вто­рого разряда.

Некоторые народы для записи чисел использовали буквы. Вместо цифр писали начальные буквы слов-числительных. Такая нумерация, например, была у древних греков. По име­ни ученого, который предложил ее, она вошла в историю культуры под названием геродианова нумерация. Так, в этой нумерации число «пять» называлось «pinta» и обозначалось буквой «Р», а число десять называлось «deka» и обозначалось буквой «Д». В настоящее время этой нумерацией не пользуется никто. В отличие от нее римская нумерация сохранилась и дошла до наших дней. Хотя теперь римские цифры встречают­ся не так часто: на циферблатах часов, для обозначения глав в книгах, столетий, на старых строениях и т.д. В римской нуме­рации есть семь узловых знаков: I, V, X, L, С, D, М.

Можно предположить, как появились эти знаки. Знак (1) - единица - это иероглиф, который изображает I па­лец (каму), знак V - изображение руки (запястье руки с отставленным большим пальцем), а для числа 10 - изобра­жение вместе двух пятерок (X). Чтобы записать числа II, III, IV, пользуются теми же самыми знаками, отображая действия с ними. Так, числа II и III повторяют единицу соответствующее число раз. Для записи числа IV перед пя­тью ставится I. В этой записи единица, поставленная перед пятеркой, вычитается из V, а единицы, поставленные за V,


прибавляются к ней. И точно так же единица, записанная перед десятью (X), отнимается от десяти, а та, что стоит справа, - прибавляется к ней. Число 40 обозначается XL. В этом случае от 50 отнимается 10. Для записи числа 90 от 100 отнимается 10 и записывается ХС.

Римская нумерация весьма удобна для записи чисел, но почти не пригодна для проведения вычислений. Никаких действий в письменном виде (расчеты «столбиками» и дру­гие приемы вычислений) с римскими цифрами проделать практически невозможно. Это очень большой недостаток римской нумерации.

У некоторых народов запись чисел осуществлялась буква­ми алфавита, которыми пользовались в грамматике. Эта за­пись имела место у славян, евреев, арабов, грузин.

Алфавитная система нумерации впервые была использо­вана в Греции. Самую древнюю запись, сделанную по этой системе, относят к середине V в. до н.э. Во всех алфавитных системах числа от 1 до 9 обозначали индивидуальными сим­волами с помощью соответствующих букв алфавита. В гре­ческой и славянской нумерациях над буквами, которые обо­значали цифры, чтобы отличить числа от обычных слов, ставилась черточка «титло» (~). Например, а, б, <Г и Т -Д-Все числа от 1 до 999 записывали на основе принципа при­бавления из 27 индивидуальных знаков для цифр. Пробы записать в этой системе числа больше тысячи привели к обозначениям, которые можно рассматривать как зародыши позиционной системы. Так, для обозначения единиц тысяч использовались те же буквы, что и для единиц, но с чер­точкой слева внизу, например, @ , q ; и т.д.

Следы алфавитной системы сохранились до нашего вре­мени. Так, часто буквами мы нумеруем пункты докладов, резолюций и т.д. Однако алфавитный способ нумерации со­хранился у нас только для обозначения порядковых числи­тельных. Количественные числа мы никогда не обозначаем буквами, тем более никогда не оперируем с числами, запи­санными в алфавитной системе.

Старинная русская нумерация также была алфавитной. Славянское алфавитное обозначение чисел возникло в X в.

Сейчас существует индийская система записи чисел. Заве­зена она в Европу арабами, поэтому и получила название арабской нумерации. Арабская нумерация распространилась по всему миру, вытеснив все другие записи чисел. В этой нумера­ции для записи чисел используется 10 значков, которые на­зываются цифрами. Девять из них обозначают числа от 1 до 9.

2 Заказ 1391


Десятый значок - нуль (0) - означает отсутствие определен­ного разряда чисел. С помощью этих десяти знаков можно за­писать какие угодно большие числа. До XVIII в. на Руси пись­менные знаки, кроме нуля, назывались знамениями.

Итак, у народов разных стран была различная письмен­ная нумерация: иероглифическая - у египтян; клинопис­ная - у вавилонян; геродианова - у древних греков, фи­никийцев; алфавитная - у греков и славян; римская - в западных странах Европы; арабская - на Ближнем Востоке. Следует сказать, что теперь почти везде используется араб­ская нумерация.

Анализируя системы записи чисел (нумерации), которые имели место в истории культур разных народов, можно сде­лать вывод о том, что все письменные системы делятся на две большие группы: позиционные и непозици­онные системы счисления.

К непозиционным системам счисления принад­лежат: запись чисел иероглифами, алфавитная, римская и некоторые другие системы. Непозиционная система счисле­ния - это такая система записи чисел, когда содержание каждого символа не зависит от места, на котором он напи­сан. Эти символы являются как бы узловыми числами, а алгорифмические числа комбинируются из этих символов. Например, число 33 в непозиционной римской нумерации записывается так: XXXIII. Здесь знаки X (десять) и I (еди­ница) используются в записи числа каждый по три раза. Причем каждый раз этот знак обозначает ту же самую вели­чину: X - десять единиц, I - единица, независимо от мес­та, на котором они стоят в ряду других знаков.

В позиционных системах каждый знак имеет раз­ное значение в зависимости от того, на котором месте в записи числа он стоит. Например, в числе 222 цифра «2» повторяется трижды, но первая цифра справа обозначает две единицы, вторая - два десятка, а третья - две сотни. В этом случае мы имеем в виду десятичную систему счисления. Наря­ду с десятичной системой счисления в истории развития математики имели место двоичная, пятиричная, двадцати­ричная и др.

Позиционные системы счисления удобны тем, что они дают возможность записывать большие числа с помощью сравнительно небольшого количества знаков. Важное пре­имущество позиционных систем - простота и легкость вы­полнения арифметических операций над числами, записан­ными в этих системах.


Появление позиционных систем обозначения чисел было одной из основных вех в истории культуры. Следует сказать, что это произошло не случайно, а как закономерная ступень в культурном развитии народов. Подтверждением этого яв­ляется самостоятельное возникновение позиционных систем у разных народов: у вавилонян - более чем за 2 тыс. лет до н.э.; у племен майя (центральная Америка) - в начале но-вой"эры; у индусов - в IV-VI в. н.э.

Происхождение позиционного принципа прежде всего следует пояснить появлением мультипликативной формы за­писи. Мультипликативная запись - это запись с помощью умножения. Кстати, эта запись появилась одновременно с изобретением первого счетного прибора, который у славян назывался абак. Так, в мультипликативной записи число 154 можно записать: 1хЮ 2 +5х10+4. Как видим, в этой записи отображается тот факт, что при счете некоторые количества единиц первого разряда, в данном случае десять единиц, бе­рутся за одну единицу следующего разряда, определенное количество единиц второго разряда берется, в свою очередь, за единицу третьего разряда и т.д. Это позволяет для изобра­жения количества единиц разных разрядов использовать одни и те же числовые символы. Эта же запись возможна при счете любых элементов конечных множеств.

В пятиричной системе счет осуществляется «пятками» - по пять. Так, африканские негры считают на камушках или орехах и складывают их в кучи по пять предметов в каждой. Пять таких куч они объединяют в новую кучку и т.д. При этом сначала пересчитывают камушки, потом кучки, потом большие кучи. При таком способе счета подчеркивается то обстоятельство, что с кучами камешков следует произво­дить те же самые операции, что и с отдельными камешками. Технику счета по этой системе иллюстрирует русский пу­тешественник Миклухо-Маклай. Так, характеризуя процесс пересчитывания товара туземцами Новой Гвинеи, он пишет, что чтобы посчитать количество полосок бумаги, которые обозначали число дней до возвращения корвета «Витязь», папуасы делали следующее: первый, раскладывая полоски бумаги на коленях, при каждом откладывании повторял «каре» (один), «каре» (два) и так до десяти, второй повто­рял это же слово, но при этом загибал пальцы сначала на одной, потом на другой руке. Досчитав до десяти и загнувши пальцы обеих рук, папуас опускал оба кулака на колени, проговаривая «ибен каре» - две руки. Третий папуас при этом загибал один палец на руке. С другим десятком было


выполнено то же самое, причем третий папуас загибал вто­рой палец, а для третьего десятка - третий палец и т.д. По­добный счет имел место и у других народов. Для такого счета необходимы были не менее чем три человека. Один считал единицы, другой - десятки, третий - сотни. Если же заме­нить пальцы тех, кто считал, камушками, помещенными в разные выемки глиняной доски или нанизанными на прути­ки, то получился бы самый простой счетный прибор.

Со временем названия разрядов при записи чисел начали пропускать. Однако для завершения позиционной системы недоставало последнего шага - введения нуля. При сравни­тельно небольшой основе счета, какой было число 10, и оперировании сравнительно большими числами, особенно после того как названия разрядных единиц начали пропус­кать, введение нуля стало просто необходимым. Символ нуля сначала мог быть изображением пустого жетона абака или видоизмененной простой точки, которую могли поставить на месте пропущенного разряда. Так или иначе, однако вве­дение нуля было совершенно неизбежным этапом законо­мерного процесса развития, который и привел к созданию современной позиционной системы.

В основе системы счисления может быть любое число, кро­ме 1 (единицы) и 0 (нуля). В Вавилоне, например, было число 60. Если за основу системы счисления берется большое число, то запись числа будет очень короткой, однако выполнение арифметических действий будет более сложным. Если же, на­оборот, взять число 2 или 3, то арифметические действия выполняются очень легко, но сама запись станет громоздкой. Можно было бы заменить десятичную систему на более удоб­ную, но переход к ней был бы связан с большими трудно­стями: прежде всего довелось бы перепечатывать заново все научные книги, переделывать все счетные приборы и маши­ны. Вряд ли такая замена была бы целесообразной. Десятичная система стала привычной, а значит, и удобной.

Упражнения для самопроверка

Последовательный ряд чисел опреде-

алгорифмических

операция

вычитание

Для записи чисел разные народы изобретали различные.... Так, до наших

дней дошли такие виды записи: ....... ,


геродианова, ..., римская и др.


И в настоящее время люди иногда
пользуются алфавитной и.., нумерациями, римской

чаще всего при обозначении порядковых числительных.

В современном обществе большинство
народов пользуется арабской (...) нумера- индусской

Письменные нумерации (системы) де­
лятся на две большие группы: позицион­
ные и... системы счисления. непозиционные

§ 6. Счетные приборы

Самыми древними приборами для облегчения счета и вы­числений были человеческая рука и камешки. Благодаря сче­ту на пальцах возникли пятиричная и десятиричная (деся­тичная) системы счисления. Верно подмечено ученым мате­матиком Н.Н.Лузиным, что «преимущества десятичной системы не математические, а зоологические. Если бы у нас на руках было не десять пальцев, а восемь, то человечество пользовалось бы восьмиричной системой».

В практической деятельности при счете предметов люди использовали камушки, бирки с зарубками, веревки с узел­ками и др. Первым и более усовершенствованным устрой­ством, специально предназначенным для вычислений, был простой абак, с которого и началось развитие вычислитель­ной техники. Счет с помощью абака, известный уже в Ки­тае, Древнем Египте и Древней Греции задолго до нашей эры, просуществовал многие тысячелетия, когда на смену абаку пришли письменные вычисления. При этом следует заметить, что абак служил не столько для облегчения соб­ственно вычислений, сколько для запоминания промежу­точных результатов.

Известно несколько разновидностей абака: греческий, ко­торый был выполнен в виде глиняной дощечки, на которой твердым предметом проводили линии и в получившиеся уг­лубления (бороздки) клали камешки. Еще более простым был римский абак, на котором камешки могли передвигаться не по желобам, а просто по линиям, нанесенным на доске.

В Китае похожий на абак прибор называли суан-пан, а в Японии - соробан. Основой для этих приборов были шари-


ки, нанизанные на прутики; счетные таблицы, состоящие из горизонтальных линий, соответствующих единицам, де­сяткам, сотням и т.д., и вертикальных, предназначенных для отдельных слагаемых и сомножителей. На эти линии вык­ладывались жетоны - до четырех.

У наших предков тоже был абак - русские счеты. Они появились в XVI-XVII вв., ими пользуются и в наши дни. Основная заслуга изобретателей абака состоит в использова­нии позиционной системы счисления.

Следующим важным этапом в развитии вычислительной техники было создание суммирующих машин и арифмомет­ров. Такие машины были сконструированы независимо друг от друга разными изобретателями.

В рукописях итальянского ученого Леонардо да Винчи (1452-1519) имеется эскиз 13-разрядного суммирующего устройства. Немецким ученым В.Шикардом (1592-1636) был разработан 6-разрядный эскиз, а сама машина была построена примерно в 1623 году. Следует отметить, что эти изобретения стали известны только в середине XX в., по­этому никакого влияния на развитие вычислительной тех­ники они не оказали. Считалось, что первую суммирую­щую машину (8-разрядную) сконструировал в 1641 году, а построил в 1645 году Б.Паскаль. По этому проекту было налажено их серийное производство. Несколько экземпля­ров этих машин сохранилось до наших дней. Достоинством их было то, что они позволяли выполнять все четыре ариф­метических действия: сложение, вычитание, умножение и деление.

Под термином «вычислительная техника» понимают со­вокупность технических систем, т.е. вычислительных машин, математических средств, методов и приемов, используемых для облегчения и ускорения решения трудоемких задач, свя­занных с обработкой информации (вычислениями), а также отрасль техники, занимающейся разработкой и эксплуата­цией вычислительных машин. Основные функциональные элементы современных вычислительных машин, или ком­пьютеров, выполнены на электронных приборах, поэтому их называют электронными вычислительными машинами - ЭВМ. По способу представления информации вычислитель­ные машины делят на три группы;

Аналоговые вычислительные машины (АВМ), в кото­рых информация предстаатяется в виде непрерывно изменя­ющихся переменных, выраженных какими-либо физичес­кими величинами;


Цифровые вычислительные машины (ЦВМ), в которых
информация представляется в виде дискретных значений пе­
ременных (чисел), выраженных комбинацией дискретных зна­
чений какой-либо физической величины (цифры);

Гибридные вычислительные машины (ГВМ), в кото­
рых используются оба способа представления информации.

Первое аналоговое вычислительное устройство появилось в XVII в. Это была логарифмическая линейка.

В XVIII-XIX вв. продолжалось совершенствование меха­нических арифмометров с электрическим приводом. Это усо­вершенствование носило чисто механический характер и с переходом на электронику утратило свое значение. Исклю­чение составляют лишь машины английского ученого Ч.Бе-биджа: разностные (1822) и аналитические (1830).

Разностная машина предназначалась для табулирования многочленов и с современной точки зрения была специали­зированной вычислительной машиной с фиксированной (же­сткой) программой. Машина имела «память» - несколько регистров для хранения чисел. При выполнении заданного числа шагов вычислений срабатывал счетчик числа опера­ций - раздавался звонок. Результаты выводились на печать - печатающее устройство. Причем по времени эта операция совмещалась с вычислениями.

При работе над разностной машиной Бебидж пришел к идее создания цифровой вычислительной машины для вы­полнения разнообразных научных и технических расчетов. Работая автоматически, эта машина выполняла заданную программу. Автор назвал эту машину аналитической. Данная машина - прообраз современных ЭВМ. Аналитическая ма­шина Бебиджа включала в себя следующие устройства:

Для хранения цифровой информации (теперь это назы­
вается запоминающим устройством);

Для выполнения операций над числами (теперь это
арифметическое устройство);

Устройство, для которого Бебидж не придумал назва­
ния и которое управляло последовательностью действий ма­
шины (сейчас это устройство управления);

Для ввода и вывода информации.

В качестве носителей информации при вводе и выводе Бе­бидж предполагал использовать перфорированные карточки (перфокарты) типа тех, которые применяются в управле­нии ткацким станком. Бебидж предусмотрел ввод в машину таблиц значений функций с контролем. Выходная информа­ция могла печататься, а также пробиваться на перфокартах,


что давало возможность при необходимости снова вводить ее в машину.

Таким образом, аналитическая машина Бебиджа была пер­вой в мире программно-управляемой вычислительной ма­шиной. Для этой машины были составлены и первые в мире программы. Первым программистом была дочь английского поэта Байрона - Августа Ада Лавлейс (1815-1852). В ее честь один из современных языков профаммирования называется «Ада».

Первой электронно-вычислительной машиной принято считать машину, разработанную в Пенсинвальском универ­ситете США. Эта машина ЭНИАК была построена в 1945 году, имела автоматическое программное управление. Недо­статком этой машины было отсутствие запоминающего уст­ройства для хранения команд.

Первой ЭВМ, обладающей всеми компонентами совре­менных машин, была английская машина ЭДСАК, постро­енная в 1949 году в Кембриджском университете. В запоми­нающем устройстве этой машины размещаются числа (запи­санные в двоичном коде) и сама программа. Благодаря числовой форме записи команд программы машина может производить различные операции.

Под руководством С.А.Лебедева (1902-1974) была раз­работана первая отечественная ЭВМ (электронная вычисли­тельная машина). МЭСМ выполняла всего 12 команд, номинальная скорость действий - 50 операций в секунду. Оперативная память МЭСМ могла хранить 31 семнадцати­разрядное двоичное число и 64 двадцатиразрядные команды. Кроме этого, имелись внешние запоминающие устройства. В 1966 году под руководством этого же конструктора была разработана большая электронно-счетная машина (БЭСМ).

Электронно-вычислительные машины используют раз­личные языки программирования - это система обозначе­ний для описания данных информации и программ (алго­ритмов).

Профамма на машинном языке имеет вид таблицы из цифр, каждая ее строчка соответствует одному оператору - машинной команде. При этом в команде, например, пер­вые несколько цифр являются кодом операции, т.е. указы­вают машине, что надо делать (складывать, умножать и т.д.), а остальные цифры указывают, где именно в памяти машины находятся нужные числа (слагаемые, сомножите­ли) и где следует запомнить результат операций (сумму произведений и т.д.).


Язык программирования задается тремя компонентами: алфавитом, синтаксисом и семантикой.

Большинство языков программирования (БЕЙСИК, ФОРТРАН, ПАСКАЛЬ, АДА, КОБОЛ, ЛИСП), разрабо­танных к настоящему времени, являются последовательны­ми. Профаммы, написанные на них, представляют собой последовательность приказов (инструкций). Они последова­тельно, один за другим, обрабатываются на машине при по­мощи так называемых трансляторов.

Производительность вычислительных машин будет повы­шаться за счет параллельного (одновременного) выполне­ния операций, тогда как большинство существующих язы­ков программирования рассчитано на последовательное вы­полнение операций. Поэтому будущее, видимо, за такими языками программирования, которые позволят описывать саму решаемую задачу, а не последовательность выполнения операторов.

Упражнения для самопроверки

Развитие... приборов в истории мате- счетных
матики происходило постепенно. От ис­
пользования частей собственного тела - пальцев руки
...
- к использованию различных специ- абак
ально создаваемых устройств: ... линей- логарифмическая
ка, счеты, ... , аналитическая машина и вычислительная
электронно- ... машина.

Программами для... машин являются электронно-вычисли-

таблицы из цифр. тельных

Компонентами языков программирова­
ния являются алфавит, ... и семантика. синтаксис

§ 7. Становление, современное состояние и перспективы

развитая методики обучения элементам математики детей

дошкольного возраста

Вопросы математического развития детей дошкольного возраста своими корнями уходят в классическую и народ­ную педагогику. Различные считалки, пословицы, поговор­ки, загадки, потешки были хорошим материалом в обуче­нии детей счету, позволяли сформировать у ребенка поня­тия о числах, форме, величине, пространстве и времени. Например,


Этому дала, Этому дала И этому дала, А этому не дала:

Ты воды не носил, Дрова не рубил, Кашу не варил - Нет тебе ничего.

Первая печатная учебная книжка И.Федорова «Букварь» (1574 г.) включала мысли о необходимости обучения детей счету в процессе различных упражнений. Вопросы содержа­ния методов обучения математике детей дошкольного воз­раста и формирования у них знаний о размере, измерении, о времени и пространстве можно найти в педагогических тру­дах Я.А. Коменского, М.Г.Песталоцци, К.Д.Ушинского, Ф.Фребеля, Л.Н.Толстого и других.

Так, Я.А.Коменский (1592-1670) в книге «Материнская школа» рекомендует еще до школы обучать ребенка счету в пределах двадцати, умению различать числа большие-мень­шие, четные-нечетные, сравнивать предметы по величине, узнавать и называть некоторые геометрические фигуры, пользоваться в практической деятельности единицами изме­рения: дюйм, пядь, шаг, фунт и др.

В классических системах сенсорного обучения Ф.Фребеля (1782-1852) и М.Монтессори (1870-1952) представлена методика ознакомления детей с геометрическими фигура­ми, величинами, измерением и счетом. Созданные Фребелем «дары» и в настоящее время используются в качестве дидак­тического материала для ознакомления детей с числом, фор­мой, величиной и пространственными отношениями.

О значении обучения детей счету до школы неоднократ­но писал К.Д.Ушинский (1824-1871). Он считал важным научить ребенка считать отдельные предметы и их группы, выполнять действия сложения и вычитания, формировать понятие о десятке как единице счета. Однако все это было лишь пожеланиями, не имеющими никакого научного обо­снования.

Особое значение вопросы методики математического раз­вития приобретают в педагогической литературе начальной школы на рубеже XIX-XX ст. Авторами методических реко­мендаций тогда были передовые учителя и методисты. Опыт практических работников не всегда был научно обоснован-


ным, зато был проверен на практике. Со временем он усовер­шенствовался, сильнее и полнее в нем выявилась прогрессив­ная педагогическая мысль. В конце XIX - в начале XX столе­тия у методистов возникла потребность в разработке научного фундамента методики арифметики. Значительный вклад в раз­работку методики сделали передовые русские учителя и мето­дисты П.С.Гурьев, А.И.Гольденберг, Д.Ф.Егоров, ВАЕвту-шевский, ДД.Галанин и другие.

Первые методические пособия по методике обучения дош­кольников счету, как правило, были адресованы одновре­менно учителям, родителям и воспитателям. На основе опы­та практической работы с детьми В.А.Кемниц издала мето­дическое пособие «Математика в детском саду» (Киев, 1912), где основными методами работы с детьми предлагаются бе­седы, игры, практические упражнения. Автор считает необ­ходимым знакомить детей с такими понятиями, как: один, много, несколько, пара, больше, меньше, столько же, поровну, равный, такой же и др. Основной задачей является изучение чисел от 1 до 10, причем каждое число рассматривается от­дельно. Одновременно дети усваивают действия над этими числами. Широко используется наглядный материал.

В ходе бесед и занятий дети получают знания о форме, пространстве и времени, о делении целого на части, о вели­чинах и их измерении.

Вопросы о методах, содержании обучения детей счету и математическом развитии в целом, которые могли бы стать основой для успешного дальнейшего обучения их в школе, особенно остро дебатировались в дошкольной педагогике с момента создания широкой сети общественного дошкольно­го воспитания.

Наиболее крайняя позиция сводилась к запрещению лю­бого целенаправленного обучения математике. Наиболее чет­ко она отражена в работах К.ФЛебединцева. В книге «Разви­тие числовых представлений в раннем детстве» (Киев, 1923) автор пришел к выводу, что первые представления о числах в пределах 5 возникают у детей на основе различения групп предметов, восприятия множеств. А дальше, за пределами этих небольших совокупностей, основная роль в формиро­вании понятия числа принадлежит счету, который вытесня­ет симультанное (целостное) восприятие множеств. При этом он считал желательным, чтобы ребенок добывал знания в этот период «незаметно», самостоятельно. К такому выводу К.Ф.Лебединцев пришел на основе наблюдений за усвоени­ем детьми первых числовых представлений и овладением ими


счетом. Дети на самом деле очень рано начинают выделять некоторые небольшие группы однородных предметов и, под­ражая взрослым, называть это числом. Но эти знания еще неглубоки, не достаточно осознанны. Умения детей называть числа не всегда являются объективным показателем матема­тических способностей. И все-таки в 20-е годы многие мето­дисты, воспитатели приняли точку зрения К.Ф.Лебединце-ва. По их мнению, числовые представления возникают у ребенка главным образом благодаря целостному восприятию небольших групп однородных предметов, находящихся в окружающей среде (руки, ноги, ножки стола, колеса у ма­шины и т.д.). На этом основании считалось необязательным обучать детей счету.

Однако передовые педагоги-«дошкольники» в 20-30-е годы (Е.И.Тихеева, Л.К.Шлегер и др.) отмечали, что про­цесс формирования числовых представлений у детей очень сложный, и поэтому необходимо целенаправленно обучать их счету. Основным способом обучения детей счету призна­валась игра. Так, авторы книги «Живые числа, живые мысли и руки за работой» (Киев, 1920) Е.Горбунов-Пасадов и И.Цунзер писали, что в свою деятельность - игру ребенок пытается внедрить то, что ему интересно в данный момент. Поэтому ознакомление с элементами математики должно основызаться на активной деятельности ребенка. Считалось, что, играя, дети лучше усваивают счет, лучше знакомятся с числами и действиями над ними.

Большинство педагогов 20-30-х годов отрицательно от­носились к необходимости создания программ для детского сада, к целенаправленному обучению. В частности, Л.К.Шле­гер утверждала, что дети должны свободно выбирать себе занятия, по собственному желанию, т.е. каждый может де­лать то, что он задумал, выбирать соответствующий матери­ал, ставить себе цели и достигать их. Эта программа, по ее мнению, должна опираться на естественные наклонности и стремления детей. Роль воспитателя заключалась бы только в создании условий, способствующих самообучению детей. Л.К.Шлегер считала, что счет следует соединять с различ­ными видами деятельности ребенка, а воспитатель должен использовать различные моменты из жизни детей для уп­ражнений их в счете.

  • AFTER-POSTMODERNISM - современная (по­здняя) версия развития постмодернистской философии-в от­личие от постмодернистской классики деконструктивизма 2 страница

  • Билет 19

    Вопрос 1. Методика обучения устной и письменной нумерации чисел в пределах 1000.

    I. Устная нумерация

    Задачи:

    1) Введение новой счётной единицы сотни;

    2) Введение новых разрядных чисел;

    3) Введение неразрядных трёхзначных чисел:

    Путём присчитывания 1;

    Путём образования из сотен, десятков и единиц;

    4) Установление общего числа единиц какого-либо разряда во всём числе.

    Введение новой счётной единицы сотни:

    С помощью палочек или моделей разрядных единиц под руководством учителя дети повторяют известные разрядные единицы, а затем связывают по 10 десятков в пучок и слушают ее название – сотня. Далее ведётся счёт сотнями (1 сотня, 2 сотни… 10 сотен или тысяча). На доске появляется запись и рисунки разрядных единиц

    1 ед 1 см
    10 ед. = 1 дес. 10 см = 1 дм

    10 дес. = 1 сот. 10 дм = 1 м

    Далее полезно с детьми сопоставить единицы счёта – разрядные единицы с мерами длины и ввести ленту тысячи. В роли простой единицы на ленте выступает 1 см, в роли десятка – 1 дм, в роли сотни – 1 м. По ленте можно повторить счёт сотен и отметить на ленте сотни флажками или яркими ленточками.

    Введение новых разрядных чисел (чисел третьего разряда – круглых сотен), их образование и название, знакомство с новыми числительными: сто, двести…девятьсот, тысяча.

    Наглядность: модели разрядных единиц (большие квадраты) и лента 1000.

    Введение неразрядных трёхзначных чисел:

    а) Путём присчитывания по 1 к предыдущему, выход за 100: 100 и 1- 101..

    б) Путем образования из сотен, десятков и единиц. Тут же выполняется обратная задача – разложить числа на разрядные слагаемые, выяснение десятичного состава числа.

    II. Письменная нумерация

    Задачи:

    1) Обозначение чисел цифрами в таблице разрядов. Выяснение поместного значения цифр;

    2) Чтение и запись чисел, записанные вне таблицы;

    3) Закрепление знаний нумерации.

    1.Обозначение чисел цифрами в таблице разрядов. Обучение чтению чисел с помощью нумерационной таблицы. Наглядность: нумерационная таблица, вертикальные и горизонтальные счеты.

    В результате наблюдений на этом этапе детей подводят к выводу, что сотни – единицы третьего разряда, пишется в числе на третьем месте, считая справа налево. Здесь же вводится понятие трёхзначного числа и что ноль обозначает отсутствие единиц какого-либо разряда.

    2. Чтение трёхзначных чисел, записанных вне таблицы и их запись на основе знаний поместного значения цифр.

    Виды упражнений:

    1) Из данных чисел записать только те, в которых цифра 7 обозначает дес, ед, сот.

    2) С помощью цифр 3, 0, 1 записать все трёхзначные числа (цифры в числе не повторяется)

    3) Что обозначает цифра 0 в записях этих чисел?

    3. Закрепление знаний нумерации:

    а) В процессе изучения письменной нумерации продолжается работа по усвоению десятичного состава чисел. С этой целью теперь используются карточки с разрядными числами. (Наложением образуются числа и наоборот)

    б) Ведётся также работа и по усвоению натурального следования, но теперь используют и письменные упр: запись предыдущего и последующего; прибавь 1, вычти 1; заполни промежуток – записать числа от … до …

    в) Выявление наибольшего и наименьшего среди однозначных, двузначных и трёхзначные чисел.

    Обратить снимание, что наименьшее записывается 1 и нулями, а наибольшее десятками.

    г) При изучении нумерации дети учатся определять общее число единиц какого-либо разряда во всём числа, а не только в соответствующем разряде.

    Наглядность: модели разрядных единиц.

    Целью всякой нумерации является изображение любого натурального числа с помощью небольшого количества индивидуальных знаков. Этого можно было бы достичь с помощью одного знака - 1 (единицы). Каждое натуральное число тогда записывалось бы повторением символа единицы столько раз, сколько в этом числе вмещается единиц. Сложение сводилось бы к простому приписыванию единиц, а вычитание - к вычеркиванию (вытиранию) их. Идея, которая лежит в основе такой системы, проста, однако эта система очень неудобна. Для записи больших чисел она практически непригодна, и ею пользуются только народы, счет которых не выходит за пределы одного-двух десятков.

    С развитием человеческого общества увеличиваются знания людей и все значительнее становится потребность в счете и записи результатов счета довольно больших множеств, в измерении больших величин.

    У первобытных людей не было письменности, не было ни букв, ни цифр; каждую вещь, каждое действие изображали рисунком. Это были реальные рисунки, которые отображали то или другое количество. Постепенно они упрощались, становились все более удобными для записи. Речь идет о записи чисел иероглифами. Иероглифы древних египтян свидетельствуют о том, что искусство счета было развито у них достаточно высоко, с помощью иероглифов изображались большие числа. Однако для дальнейшего усовершенствования счета было необходимо перейти к более удобной записи, которая позволяла бы обозначать числа специальными, более удобными знаками (цифрами). Происхождение цифр у каждого народа различное.

    Первые цифры встречаются более чем за 2 тыс. лет до н. э. в Вавилоне. Вавилоняне писали палочками на плитах из мягкой глины и потом свои записи высушивали. Письменность древних вавилонян называлась клинописью. Клинышки размещались и горизонтально и вертикально, в зависимости от их значения. Вертикальные клинышки обозначали единицы, а горизонтальные - так называемые «десятки» - единицы второго разряда.

    В начальном курсе математики под нумерацией будем понимать совокупность приемов обозначения и наименования натуральных чисел.

    Натуральные числа изучаются по концентрам. Концентр - это объединенная по общим признакам область рассматриваемых чисел. В начальном курсе выделяют следующие концентры: десяток, сотня (2 этапа - от 11 до 20; от 21 до 100); тысяча, многозначные числа.

    Конечная цель изучения нумерации - усвоение ряда общих принципов, лежащих в основе десятичной системы счисления, устной и письменной нумерации, подведение учащихся к систематическим обобщениям, умение выделять и подчеркивать то общее, что обнаруживается в новой области чисел, и рассмотрение нового на основе и в сравнении с ранее изученным.

    Основными образовательными задачами изучения нумерации можно назвать:

    1. Сформировать систему знаний:

    О натуральном числе и числе «0»;

    О натуральной последовательности;

    Об устной и письменной нумерации.

    2. Ознакомить с вычислительными приемами, основанными на знании нумерации.

    При изучении данной темы у учащихся должны быть сформированы следующие умения:

    Обозначать число письменно;

    Сравнивать любые числа разными способами;

    Заменять число суммой разрядных слагаемых;

    Дать характеристику любого числа.

    Рассмотрим методику ознакомления с основными математическими понятиями, изучаемыми в данной теме.

    Понятие натурального числа дается на эмпирическом уровне.

    Число обозначается в порядке установления взаимно-однозначного соответствия между предметами данной совокупности и словами - числительными.

    В начальной школе:

      Число - это количественная характеристика класса эквивалентных множеств.

      Число - это элемент упорядоченного множества, член натуральной последовательности.

      При изучении действий число выступает как объект, над которым выполняется арифметическое действие.

    У учащихся необходимо сформировать следующие знания и умения:

    Выделить число из других понятий;

    Правильно назвать число;

    Знать способы образования числа (в результате счета; в результате измерения; в результате выполнения арифметических действий);

    Знать способы обозначения чисел с помощью цифр; цифра - это знак для обозначения числа;

    Знать различные функции числа (количественная функция, функция порядка, измерительная функция).

    Число и цифра «0».

    Нуль рассматриваем как количественную характеристику класса пустых множеств (2-2, 4-4), т.е. множества, не содержащего ни одного элемента.

    Нуль рассматриваем как цифру, обозначающую на линейке начало измерения (отмеривания).

    Нуль рассматриваем как компонент действий I и II ступени (5+0, 05).

    4. Число нуль используется в том случае, если отсутствуют единицы какого-либо разряда (но не отсутствует разряд).

    Например, в числе 300 отсутствуют единицы I и II разряда, т.е. единицы и десятки, обозначим число единиц и десятков нулями.

    Натуральная последовательность чисел.

    По традиционной программе натуральная последовательность вводится как ряд чисел, по которому ведется счет.

    Свойства отрезка натурального ряда:

      Натуральный ряд чисел начинается с единицы.

      Каждое число имеет свое место. Каждое следующее число на единицу больше предыдущего; каждое предыдущее на единицу меньше последующего.

      Все числа, стоящие до выделенного числа, меньше его; стоящие после - больше изученного числа.

      Бесконечность натурального ряда чисел.

    В натуральном ряду чисел учащиеся должны уметь выделить конечные последовательности: однозначных, двузначных, n-значных чисел.

    9, 99, 999, 9999… - наибольшие однозначное, двузначное, трехзначное, четырехзначное, n-значное числа.

    Почему? Если прибавим к каждому из них 1, то получим наименьшее число следующей последовательности.

    10, 100, 1000, 10000 … - наименьшее двузначное, трехзначное, n-знач­ное число, т.к. при вычитании из каждого единицы получим наибольшее число предыдущей последовательности.

    Различают устную и письменную нумерацию.

    Устная нумерация - совокупность правил, дающих возможность с помощью немногих слов составлять названия для многих чисел. В ходе изучения устной нумерации необходимо раскрыть правила счета, чтения, образования чисел; знать цифры от 0 до 9, слова-числительные - сорок, девяносто, сто, тысяча, миллион, миллиард. Правила счета:

      Конечное число при счете относить ко всему множеству.

    Правила образования названий и чтения чисел.

    1. Названия чисел от 10 до 20 образуются с использованием названий, принятых для первых десяти чисел, но имеет свою особенность - при чтении сначала называется нижний разряд, затем остальные (один-на-дцать; две-на-дцать).

    2. Остальные названия чисел образуются по принципу поразрядности; чтение чисел начинается с единиц высшего разряда.

    3. При образовании и чтении многозначных чисел соблюдается принцип чтения по классам.

    Письменная нумерация - это совокупность правил, дающих возможность с помощью немногих знаков обозначать любые числа.

    В ходе изучения письменной нумерации вводится понятие «цифры».

    Цифра - это знак для обозначения числа. Проводится целенаправленная систематическая работа по различению понятий «число» и «цифра».

    Вводятся знаки (цифры) для обозначения первых девяти чисел. Запись всех остальных чисел выполняется с использованием тех же десяти цифр (от 0 до 9), но с помощью двух или более цифр, значение которых зависит от места, занимаемое цифрой в записи числа (т.е. поместное значение цифры или позиционный принцип записи чисел).

    Устная и письменная нумерация чисел опирается на знание десятичной системы счисления. В математике системой счисления называют набор знаков, правил операций и порядка записи этих знаков при образовании числа. Различают два типа систем счисления:

      Непозиционная система, которая характеризуется тем, что каждому знаку независимо от формы записи числа приписывается одно вполне определенное значение (например, римская нумерация).

      Позиционная система (например, десятичная система счисления), которая характеризуется следующими свойствами:

      Каждая цифра принимает различные значения в зависимости от ее положения в записи числа (позиционный принцип записи).

      Каждая цифра в зависимости от ее положения называется разрядной единицей; разрядные единицы следующие: единицы, десятки, сотни и т.д.

      10 единиц одного разряда составляют одну единицу следующего разряда, т.е. соотношение разрядных единиц равно десяти (10 ед. = 1 дес.; 10 дес. = 1 сот. и т.д.).

      Начиная справа налево и подряд, каждые 3 разрядные единицы образуют разрядные классы (единиц, тысяч, миллионов и др.).

      Прибавление к девяти единицам еще одной единицы данного разряда дает единицу следующего, более высшего (старшего) разряда.

    Следует выделить основные понятия десятичной системы счисления:

      Счетная единица - то, что берем за основу счета. Каждая следующая счетная единица больше предшествующей в 10 раз.

      Разряд - место цифры в записи числа.

    3. Единицы I, II, III разрядов и т.д. - единицы, стоящие на первом (единицы), втором (десятки), третьем (сотни) месте в записи числа, считая справа налево.

    4. Разрядное число - число, состоящее из единиц одного разряда.

    5. Неразрядное число - число, состоящее из единиц разных разрядов.

    6. Класс - объединение по определенным признакам единиц трех разрядов. Каждая единица следующего класса больше предшествующей в тысячу раз. (Так, первая единица класса единиц меньше в 1000 раз первой единицы класса тысяч и т.д.)

    Порядок изучения нумерации можно отразить в таблице:

    Методика изучения нумерации целых неотрицательных чисел предполагает возможность различных подходов.

    В методике начального обучения традиционно изучение нумерации по концентрам. Этот подход отражен в учебниках математики, разработанных Бантовой М.А., Бельтюковой Г.В. и др.

    Постепенное расширение числовой области создает хорошие условия для формирования знаний, умений, навыков по нумерации: постепенно обогащаются знания о числах и способах их обозначения; усложняются практические действия с числами (образование, название, запись, сравнение, преобразование и др.).

    Выделяются три основных этапа изучения нумерации: подготовительный, ознакомление с новым материалом, закрепление знаний и умений.

    На подготовительном этапе необходимо сформировать у учащихся психологическую установку на изучение нумерации, активизировать их предшествующий опыт и имеющиеся знания, вызвать интерес к новым числам. С этой целью предлагается заранее включать упражнения на повторение основных вопросов нумерации чисел предыдущего концентра: соотношение изученных счетных единиц, десятичный состав чисел, натуральная последовательность, правила записи и способы сравнения чисел; приемы сложения и вычитания, основанные на знании нумерации. Также разработаны упражнения в счете предметов или в назывании чисел натуральной последовательности с выходом в новый концентр, это помогает учащимся понять, что существуют числа и за пределами изученного концентра и что они чем-то похожи на уже знакомые детям числа.

    При ознакомлении с нумерацией упражнения помогают учащимся выделить существенные признаки формируемых понятий, овладеть способами изучаемых действий.

    Проведен отбор вопросов и определен порядок изучения в каждом концентре:

      сначала рассматривается образование счетной единицы, ведется счет предметов с помощью этой счетной единицы;

      на основе счета вводятся новые разрядные числа, раскрывается их образование и названия;

      на основе счета с помощью всех известных счетных единиц показывается образование и устное обозначение неразрядных чисел; их состав из разрядных;

      включаются упражнения в счете предметов с использованием новых чисел; усваивается натуральная последовательность чисел;

      на основе знания десятичного состава и поместного значения цифр раскрывается письменная нумерация чисел;

      во всех концентрах наряду со счетом рассматривается измерение таких величин, как длина, масса, стоимость; единицы измерения этих величин и их соотношение изучаются в сопоставлении с соответствующими счетными единицами и помогают их усвоению, (например, 1 дм = 10 см; 1 р. = 100 к.; 1 кг = 1000 г и т.д.);

      вводятся способы сравнения чисел на основе:

      принципа образования натуральной последовательности;

      установления взаимно-однозначного соответствия между элементами множеств;

      знания разрядного состава чисел;

      знания классового состава;

      в каждом концентре вводятся вычислительные приемы, основанные на знании нумерации:

    а) принципа образования натуральной последовательности вводятся случаи вида а + 1, где а - любое натуральное число;

    б) разрядного состава чисел (упражнения в сложении разрядных чисел и обратные упражнения в замене неразрядных чисел суммой разрядных, а также в вычитании из неразрядных чисел отдельных, составляющих их разрядных чисел) например:

    400+70+3=473; 506=500+6; 842-40=802;

    842-800=42; 842-2=840.

    При ознакомлении с нумерацией необходимо опираться на предметные действия учащихся. Для этого предлагается использовать различные средства обучения: счетный материал, на котором легко иллюстрировать десятичную группировку предметов при счете (палочки, пучки палочек, квадраты, полоски квадратов, треугольники с 10-ю кружками); наглядные пособия, формирующие представления о натуральной последовательности чисел (линейки, рулетки, ленты с выделенными сантиметрами, дециметрами, метрами); наглядные пособия, помогающие осознать позиционный принцип записи чисел (нумерационные таблицы разрядов и классов, абаки).

    После введения проводится целенаправленная работа на закрепление знаний и отработку умений. Тренировочные упражнения сочетаются с упражнениями творческого характера.

    Даются задания на анализ типичных ошибок, на сравнение, классификацию, обобщение, для характеристики любого числа. Схема (план) разбора чисел, начиная с однозначного, до многозначного будет постепенно расширяться, углубляться, обогащаться новым теоретическим материалом. На начальном этапе она может составляться на основе обобщения сформулированных ответов учащихся и включать следующие вопросы:

      Чтение числа.

      Место числа при счете.

      Десятичный состав.

      Запись числа с помощью цифр.

    При изучении нумерации многозначных чисел схема разбора будет включать большее количество заданий.

    Эта работа позволит обобщить и систематизировать знания учащихся по нумерации целых неотрицательных чисел.

    Возможен другой подход к изучению нумерации чисел, который нашел отражение в программе и учебниках, разработанных Истоминой Н.Б.

    В связи с тематическим построением курса в нем выделяются не концентры, а темы: «Однозначные числа», «Двузначные числа», «Трехзначные числа», «Четырехзначные числа», «Пятизначные и шестизначные числа», в процессе изучения которых у детей формируются сознательные навыки чтения и записи чисел.

    Выделение тем, названия которых сориентированы на количество знаков в числе, способствует пониманию детьми различий между числом и цифрой.

    На первом этапе в теме «Однозначные числа» у учащихся формируются представления о количественном и порядковом числе, навыки счета; они знакомятся с записью чисел и с отрезком натурального ряда однозначных чисел. Затем они усваивают смысл сложения и вычитания и состав однозначных чисел. Работа по усвоению нумерации начинается с осознания того, что двузначное число состоит из десятков и единиц.

    Последующая работа, направленная на усвоение десятичной системы счисления и на формирование навыка читать и записывать двузначные числа, связана с установлением соответствия между предметной моделью числа и его символической записью. В качестве предметной модели десятка используется наглядное пособие в виде треугольника с 10-ю кружками.

    Предлагаются задания:

    На выявление признаков сходства и различия двузначных и трехзначных чисел;

    На запись чисел определенными цифрами;

    На сравнение чисел;

    На выявление правила (закономерности) построения ряда чисел.

    Перечисленные виды заданий используются и при изучении других тем.

    Задание: Сравните упражнения в процессе выполнения, которых учащиеся усваивают устную и письменную нумерацию чисел в различных учебниках математики для начальных классов. Каковы особенности этих упражнений в каждом учебнике?

    Похожие статьи