Теорию корпускулярно волнового дуализма и понятие. Корпускулярно-волновой дуализм. Принцип дополнительности

Введение

Почти одновременно были выдвинуты две теории света: корпускулярная теория Ньютона и волновая теория Гюйгенса.

Согласно корпускулярной теории, или теории истечения, выдвинутой Ньютоном в конце 17 века, светящиеся тела испускают мельчайшие частицы (корпускулы), которые летят прямолинейно по всем направления и, попадая в глаз, вызывают световое ощущение.

Согласно волновой теории светящееся тело вызывает заполняющей все мировое пространство особой среде – мировом эфире – упругие колебания, которые распространяются в эфире подобно звуковым волнам в воздухе.

Во времена Ньютона и Гюйгенса большинство ученых придерживалось корпускулярной теории Ньютона, которая достаточно удовлетворительно объясняла все известные к тому времени световые явления. Отражение света объяснялось аналогично отражению упругих тел при ударе о плоскость. Преломление света объяснялось действием на корпускулы больших сил притяжения со стороны более плотной среды. Под действием этих сил, проявляющихся, согласно теории Ньютона, при приближении к более плотной среде, световые корпускулы получали ускорение, направленные перпендикулярно к границе этой среды, вследствие чего они изменяли направление движения и одновременно увеличивали свою скорость. Аналогично объяснялись другие световые явления.

В дальнейшем появившиеся новые наблюдения не укладывались в рамки этой теории. В частности, несостоятельность этой теории обнаружилось, когда была измерена скорость распространения света в воде. Она оказалась не больше, а меньше, чем в воздухе.

В начале 19 века волновая теория Гюйгенса, не признанная современниками, была развита и усовершенствована Юнгом и Френелем и получила всеобщее признание. В 60–х годах прошлого столетия, после того как Максвелл разработал теорию электромагнитного поля, выяснилось, что свет представляет собой электромагнитные волны. Таким образом, волновая механистическая теория света была заменена волновой электромагнитной теорией. Световые волны (видимый спектр) занимают в шкале электромагнитных волн диапазон 0,4–0,7мкм. Волновая теория света Максвелла, трактующая излучение как непрерывный процесс, оказалась не в состоянии объяснить некоторые из вновь открытых оптических явлений. Её дополнила квантовая теория света, согласно которой энергия световой волны излучается, распространяется и поглощается не непрерывно, а определенными порциями - квантами света, или фотонами, - которые зависят только от длины световой волны. Таким образом, по современным представлениям, свет обладает как волновыми так, и корпускулярными свойствами.

Интерференция света

Волны создающие в каждой точке пространства колебания с не изменяющейся со временем разностью фаз, называются когерентными. Разность фаз в этом случае имеет постоянное, но, вообще говоря, различное для разных точек пространства значение. Очевидно, что когерентными могут быть лишь волны одинаковой частоты.

При распространении в пространстве нескольких когерентных волн порождаемые этими волнами колебания в одних точках усиливают друг друга, в других – ослабляют. Это явление называется интерференцией волн. Интерферировать могут волны любой физической природы. Мы рассмотрим интерференцию световых волн.

Источники когерентных волн также называются когерентными. При освещении некоторой поверхности несколькими когерентными источниками света на этой поверхности возникают в общем случае чередующиеся светлые и темные полосы.

Два независимых источника света, например две электролампы, не когерентны. Излучаемые ими световые волны – это результат сложения большого количества волн, излучаемых отдельными атомами. Излучение волн атомами происходит беспорядочно, и поэтому нет каких - либо постоянных соотношений между фазами волн, излучаемых двумя источниками.

При освещении поверхности некогерентными источниками характерная для интерференции картина чередующихся светлых и темных полос не возникает. Освещенность в каждой точке оказывается равной сумме освещенностей, создаваемых каждым из источников в отдельности.

Когерентные волны получаются посредством разделения пучка света от одного источника на два или несколько отдельных пучков.

Интерференцию света можно наблюдать при освещении монохроматическими (одноцветными) лучами прозрачной пластинки переменной толщины, в частности клинообразной пластинки. В глаз наблюдателя будут попадать волны, отраженные как от передней, так и от задней поверхностей пластинки. Результат интерференции определяется разностью фаз тех и других волн, которая постепенно изменяется с изменением толщины

пластинки. Соответственно изменяется освещенность: если разность хода интерферирующих волн в некоторой точке поверхности пластинки равна четному числу полуволн, то в этой точке поверхность будет казаться светлой, при разности фаз в нечетное число полуволн – темной.

При освещении параллельным пучком плоскопараллельной пластинки разность фаз световых волн, отраженных от передней и задней её поверхностей, одна и та же во всех точках, - пластинка будет казаться освещенной равномерно.

Вокруг точки соприкосновения слегка выпуклого стекла с плоским при освещении монохроматическим светом наблюдаются темные и светлые кольца – так называемые кольца Ньютона. Здесь тончайшая прослойка воздуха между обоими стеклами играет роль отражающей пленки, имеющей постоянную толщину по концентрическим окружностям.

Дифракция света.

У световой волны не происходит изменения геометрической формы фронта при распространении в однородной среде. Однако если распространение света осуществляется в неоднородной среде, в которой, например, находятся не прозрачные экраны, области пространства со сравнительно резким изменением показателя преломления и т. п., то наблюдается искажение фронта волны. В этом случае происходит перераспределение интенсивности световой волны в пространстве. При освещении, например, непрозрачных экранов точечным источником света на границе тени, где согласно законам геометрической оптики должен был бы проходить скачкообразный переход от тени к свету, наблюдается ряд тёмных и светлых полос, часть света проникает в область геометрической тени. Эти явления относятся к дифракции света.

Итак, дифракция света в узком смысле - явление огибания светом контура непрозрачных тел и попадание света в область геометрической тени; в широком смысле - всякое отклонение при распространении света от законов геометрической оптики.

Определение Зоммерфельда: под дифракцией света понимают всякое отклонение от прямолинейного распространения, если оно не может быть объяснено как результат отражения, преломления или изгибания световых лучей в средах с непрерывно меняющимся показателем преломления.

Если в среде имеются мельчайшие частицы (туман) или показатель преломления заметно меняется на расстояниях порядка длины волны, то в этих случаях говорят о рассеянии света и термин «дифракция» не употребляется.

Различают два вида дифракции света. Изучая дифракционную картину в точке наблюдения, находящейся на конечном расстоянии от препятствия, мы имеем дело с дифракцией Френеля. Если точка наблюдения и источник света расположены от препятствия так далеко, что лучи, падающие на препятствие, и лучи, идущие в точку наблюдения, можно считать параллельными пучками, то говорят о дифракции в параллельных лучах – дифракции Фраунгофера.

Теория дифракции рассматривает волновые процессы в тех случаях, когда на пути распространения волны имеются какие – либо препятствия.

С помощью теории дифракции решают такие проблемы, как защита от шумов с помощью акустических экранов, распространение радиоволн над поверхностью Земли, работа оптических приборов (так как изображение, даваемое объективом, - всегда дифракционная картина), измерения качества поверхности, изучение строения вещества и многие другие.

Поляризация света

Явления интерференции и дифракции, послужившие для обоснования волновой природы света, не дают еще полного представления о характере световых волн. Новые черты открывает нам опыт над прохождением света через кристаллы, в частности через турмалин.

Возьмем две одинаковые прямоугольные пластинки турмалина, вырезанные так, что одна из сторон прямоугольника совпадает с определенным направлением внутри кристалла, носящим название оптической оси. Наложим одну пластинку на другую так, чтобы оси их совпадали по направлению, и пропустим через сложенную пару пластинок узкий пучок света от фонаря или солнца. Так как турмалин представляет собой кристалл буро – зеленого цвета, то след прошедшего пучка на экране представится в виде тёмно – зеленого пятнышка. Начнем поворачивать одну из пластинок вокруг пучка, оставляя вторую неподвижной. Мы обнаружим, что след пучка становится слабее, и когда пластинка повернётся на 90 0 , он совсем исчезнет. При дальнейшем вращении пластинки проходящий пучок вновь начнет усиливаться и дойдет до прежней интенсивности, когда пластинка повернется на 180 0 , т.е. когда оптические оси пластинок вновь расположатся параллельно. При дальнейшем вращении турмалина пучок вновь слабеет.

Можно объяснить все наблюдающиеся явления, если сделать следующие выводы.

1) Световые колебания в пучке направлены перпендикулярно к линии распространения света (световые волны поперечны).

2) Турмалин способен пропускать световые колебания только в том случае, когда они направлены определенным образом относительно его оси.

3) В свете фонаря(солнца) представлены поперечные колебания любого направления и притом в одинаковой доле, так что ни одно направление не является преимущественным.

Так и с помощью формализма, основанного на представлении об объекте как о частице или как о системе частиц. В частности, волновое уравнение Шрёдингера не накладывает ограничений на массу описываемых им частиц, и следовательно, любой частице, как микро-, так и макро-, может быть поставлена в соответствие волна де Бройля . В этом смысле любой объект может проявлять как волновые , так и корпускулярные (квантовые) свойства .

Идея о корпускулярно-волновом дуализме была использована при разработке квантовой механики для интерпретации явлений, наблюдаемых в микромире, с точки зрения классических концепций. В соответствии с теоремой Эренфеста квантовые аналоги системы канонических уравнений Гамильтона для макрочастиц приводят к обычным уравнениям классической механики. Дальнейшим развитием принципа корпускулярно-волнового дуализма стала концепция квантованных полей в квантовой теории поля .

Тем не менее, эксперимент показывает, что фотон не есть короткий импульс электромагнитного излучения, например, он не может быть разделён на несколько пучков оптическими делителями лучей, что наглядно показал эксперимент, проведённый французскими физиками Гранжье, Роже и Аспэ в 1986 году . Корпускулярные свойства света проявляются при фотоэффекте и в эффекте Комптона . Фотон ведёт себя и как частица, которая излучается или поглощается целиком объектами, размеры которых много меньше его длины волны (например, атомными ядрами), или вообще могут считаться точечными (например, электрон).

Сейчас концепция корпускулярно-волнового дуализма представляет лишь исторический интерес, так как, во-первых, некорректно сравнивать и/или противопоставлять материальный объект (электромагнитное излучение, например) и способ его описания (корпускулярный или волновой); и, во-вторых, число способов описания материального объекта может быть больше двух (корпускулярный, волновой, термодинамический, …), так что сам термин «дуализм » становится неверным. На момент своего возникновения концепция корпускулярно-волнового дуализма служила способом интерпретировать поведение квантовых объектов, подбирая аналогии из классической физики. На деле квантовые объекты не являются ни классическими волнами, ни классическими частицами, приобретая свойства первых или вторых лишь в некотором приближении. Методологически более корректной является формулировка квантовой теории через интегралы по траекториям (пропагаторная), свободная от использования классических понятий.

Энциклопедичный YouTube

  • 1 / 5

    Такие явления, как интерференция и дифракция света, убедительно свидетельствуют о волновой природе света. В то же время закономерности равновесного теплового излучения, фотоэффекта и эффекта Комптона можно успешно истолковать с классической точки зрения только на основе представлений о свете, как о потоке дискретных фотонов. Однако волновой и корпускулярный способы описания света не противоречат, а взаимно дополняют друг друга, так как свет одновременно обладает и волновыми, и корпускулярными свойствами.

    Волновые свойства света играют определяющую роль в закономерностях его интерференции, дифракции, поляризации, а корпускулярные - в процессах взаимодействия света с веществом. Чем больше длина волны света, тем меньше импульс и энергия фотона и тем труднее обнаружить корпускулярные свойства света. Например, внешний фотоэффект происходит только при энергиях фотонов, больших или равных работе выхода электрона из вещества. Чем меньше длина волны электромагнитного излучения, тем больше энергия и импульс фотонов и тем труднее обнаружить волновые свойства этого излучения. Например, рентгеновское излучение дифрагирует только на очень «тонкой» дифракционной решётке - кристаллической решётке твёрдого тела. В 1909 году английский учёный Джеффри Инграм Тейлор провёл опыт с использованием чрезвычайно слабого источника света и установил, что волновое поведение присуще отдельным фотонам.

    Волны де Бройля

    p = h 2 π k = ℏ k , {\displaystyle \mathbf {p} ={\frac {h}{2\pi }}\mathbf {k} =\hbar \mathbf {k} ,}

    где k = 2 π λ n {\displaystyle \mathbf {k} ={\frac {2\pi }{\lambda }}\mathbf {n} } - волновой вектор, модуль которого k = 2 π λ {\displaystyle k={\frac {2\pi }{\lambda }}} - волновое число - есть число длин волн, укладывающихся на 2 π {\displaystyle 2\pi } единицах длины, n {\displaystyle \mathbf {n} } - единичный вектор в направлении распространения волны, ℏ = h 2 π = 1 , 05 ⋅ 10 − 34 {\displaystyle \hbar ={\frac {h}{2\pi }}=1{,}05\cdot 10^{-34}} Дж·с.

    Длина волны де Бройля для нерелятивистской частицы с массой m {\displaystyle m} , имеющей кинетическую энергию W k {\displaystyle W_{k}}

    λ = h 2 m W k . {\displaystyle \lambda ={\frac {h}{\sqrt {2mW_{k}}}}.}

    В частности, для электрона, ускоряющегося в электрическом поле с разностью потенциалов Δ φ {\displaystyle \Delta \varphi } вольт

    λ = 12 , 25 Δ φ A ∘ . {\displaystyle \lambda ={\frac {12{,}25}{\sqrt {\Delta \varphi }}}\;{\overset {\circ }{\mathrm {A} }}.}

    Формула де Бройля экспериментально подтверждается опытами по рассеянию электронов и других частиц на кристаллах и по прохождению частиц сквозь вещества. Признаком волнового процесса во всех таких опытах является дифракционная картина распределения электронов (или других частиц) в приёмниках частиц.

    Волновые свойства не проявляются у макроскопических тел. Длины волн де Бройля для таких тел настолько малы, что обнаружение волновых свойств оказывается невозможным. Впрочем, наблюдать квантовые эффекты можно и в макроскопическом масштабе, особенно ярким примером этому служат - циклическая частота, W {\displaystyle W} - кинетическая энергия свободной частицы, E {\displaystyle E} - полная (релятивистская) энергия частицы, p = m v 1 − v 2 c 2 {\displaystyle p={\frac {mv}{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}}} - импульс частицы, m {\displaystyle m} v f {\displaystyle v_{f}} волны де Бройля хотя и больше скорости света, но относится к числу величин, принципиально неспособных переносить информацию (является чисто математическим объектом).

    Групповая скорость волны де Бройля u {\displaystyle u} равна скорости частицы v {\displaystyle v} :

    u = d ω d k = d E d p = v {\displaystyle u={\frac {d\omega }{dk}}={\frac {dE}{dp}}=v} .

    Связь между энергией частицы E {\displaystyle E} и частотой ν {\displaystyle \nu } волны де Бройля

    E = h ν = ℏ ω , {\displaystyle E=h\nu =\hbar \omega ,} волны де Бройля оказывается наибольшей. Частицы не обнаруживаются в тех местах, где, согласно статистической интерпретации , квадрат модуля амплитуды «волны вероятности» обращается в нуль.

    Термин «дуализм» в физике в широком смысле означает:

    1) существование противоположных свойств у физических объектов;

    2) использование противоположных понятий при описании и объяснении физических явлений;

    3) наличие противоположных (взаимоисключающих) утверждений в формулировке законов, управляющих физическими явлениями.

    Наиболее фундаментальными проявлениями дуализма являются:

    1) корпускулярно-волновой дуализм в свойствах элементарных частиц;

    2) наличие в природе частиц и античастиц, противоположных электрических зарядов, различного знака лептонных и барионных чисел (см. ч. IV, § 23) и др.;

    3) противоположные свойства у частиц вещества и у силовых полей, т. е. у «корпускулярной» и «полевой» материи;

    4) использование понятий «энергия» и «работа»;

    5) существование в физических системах сил отталкивания и сил притяжения, одновременное действие которых определяет свойства физических систем;

    6) связь между количественными и качественными изменениями в свойствах физических систем;

    7) однозначность и вероятность в законах физики;

    8) дискретность и непрерывность в природе, связь между ними и т. д.

    Сущность дуализма (т. е. содержание терминов «противоположные свойства», «понятия», «утверждения») может быть показана на примере сочетания корпускулярных и волновых свойств у элементарных частиц (фотонов, электронов и т. д.). В тексте (см. ч. IV, § 10-12) было показано, что:

    1) корпускулярные и волновые свойства частиц неотделимы друг от друга. Каждая частица имеет оба эти свойства в единстве и

    взаимной обусловленности, причем нет никакой возможности лишить частицу одного из этих свойств. По-видимому, не существуют частицы, обладающие только корпускулярными или только волновыми свойствами;

    2) корпускулярные и волновые свойства несводимы друг к другу. Это означает, что волновые свойства частицы нельзя объяснить через корпускулярные, и наоборот;

    3) корпускулярные и волновые свойства неразрывно связаны между собой.

    Корпускулярно-волновой дуализм лежит в основе квантовой физики, описывающей микрофизические системы и процессы. Таким образом, один из важнейших разделов современной физики является дуалистическим по своему характеру и содержанию. Непрерывная волновая функция частиц и физических систем, с одной стороны, корпускулярные свойства этих же частиц и систем - с другой, существуют в квантовой физике в единстве и взаимной связи. Все попытки устранить этот дуализм успеха не имели. Поэтому можно утверждать, что дуализм в квантовой теории есть не временное, случайное, побочное явление, вызванное, например, трудностями описания микрофизических систем, а отражение господствующего в природе объективного дуализма.

    Рассмотрим другое проявление дуализма в природе - наличие частиц и античастиц. Предварительно заметим, что физические свойства частиц можно условно разделить на две группы:

    1) свойства, которые у различных частиц отличаются только по величине; к важнейшим из них относится инертная масса. Заметим, что масса не является аддитивным свойством (масса физической системы меньше суммы масс составных частиц, измеренных в свободном состоянии), зависит от состояния частицы (скорости движения) и от условий, в которых находится частица (масса нуклонов в поле ядерных сил отличается от их масс вне ядра);

    2) свойства, отличающиеся качественно, например противоположные электрические заряды. Заметим, что заряды обладают аддитивностью, не зависят от скорости движения и от условий, в которых находятся заряженные частицы. Это означает, что заряды (а также и лептонные и барионные числа) являются более фундаментальными свойствами частиц, чем инертная масса.

    Элементарные частицы могут сортироваться по набору присущих им фундаментальных свойств. В зависимости от характера и числа этих свойств определяется содержание таких понятий, как «одинаковые» или «различные» частицы. Очевидно, что тождественность частиц (или вообще физических объектов) есть предельный случай одинаковости, когда между объектами нет никакого различия: ни в наборе присущих им свойств, ни в их структуре, состоянии и поведении в различных условиях (такими тождественными объектами являются элементарные частицы определенного сорта, находящиеся в одинаковых условиях). Противоположность физических объектов следует рассматривать как предельный случай различия, когда это различие является полным, т. е. объекты не имеют никаких одинаковых свойств.

    Заметим, что частицы и античастицы в этом смысле не являются противоположностями, так как они имеют кроме различных еще и одинаковые свойства (так, например, электрон и позитрон имеют различные заряды, но одинаковые по величине спины и массы покоя). Таким образом, частицы и античастицы являются полярными, но не противоположными объектами.

    В связи с изложенным возникают следующие вопросы:

    1) существуют ли в природе «противоположные объекты»;

    2) возможно ли взаимодействие между ними, каковы особенности этого взаимодействия и значение в природе;

    3) чем отличаются взаимодействия между одинаковыми, полярными и противоположными объектами.

    Обсуждение этих вопросов имеет важное мировоззренческое значение; положительные результаты этого обсуждения позволят уточнить наши представления о том, как устроена окружающая нас природа. Такое обсуждение должно проводиться на основе определенной философской системы и затронет все разделы физики. В частности, можно полагать, что противоположными объектами в природе являются «вещество» и «поля». Под «веществом» обычно понимаются элементарные частицы и системы, составленные из них: атомные ядра, атомы, молекулы и т. д.; под «полем» понимаются различные силовые поля: гравитационные, электромагнитные, ядерные и т. д. Существуют два представления о полях. В одном из них предполагается, что поля непрерывно заполняют пространство вокруг частиц вещества и, будучи «особым образом» связаны с ними, определяют характер и интенсивность взаимодействия между ними. В другом представлении предполагается, что каждое поле состоит из «особых частиц поля», которые испускаются и поглощаются частицами вещества и тем самым вызывают силы взаимодействия между ними. Например, электромагнитное поле считается состоящим из фотонов («фотонный газ»); если их число в единице объема очень велико, то электромагнитное поле будет вести себя как непрерывная среда; если же это число мало и изучаются процессы, в которых участвуют отдельные фотоны, то понятие электромагнитного поля как непрерывной среды теряет смысл.

    Здесь необходимо подчеркнуть, что существующие в настоящее время представления о веществе и полях не следует полагать окончательными. Развитие экспериментальной и теоретической физики может привести не только к уточнению, но и к радикальным изменениям наших представлений о природе и о сущности происходящих в ней явлений. Возможно, что в будущем восторжествуют монистические мировоззрения, согласно которым природа состоит: 1) либо только из частиц вещества, а поле есть лишь способ описания взаимодействия между ними; 2) либо только из различных полей, а частицы вещества есть лишь их «особые точки». Однако не исключено, что все известные опытные данные получат удовлетворительное объяснение и на основе дуалистического мировоззрения, в котором вещество и поля полагаются противоположными объектами, несводимыми и неотделимыми друг от друга, неразрывное взаимодействие которых является основой всех наблюдаемых нами явлений природы.

    Дуализм обнаруживается и в одновременном существовании вероятностного и однозначного описания физических явлений. Классическое, строго детерминированное описание невозможно исключить из физики; оно необходимо для описания наивероятного течения физических явлений. С другой стороны, всегда существует разброс состояний изучаемых объектов (и физических величин, описывающих эти состояния), и этот разброс носит вероятностный характер. В настоящее время объективное существование вероятностных процессов в природе считается обоснованным теоретически и экспериментально; в квантовой физике (см. ч. IV, § 10, 11) вообще отрицается однозначность в поведении элементарных частиц и микросистем. Это означает не полное отрицание однозначности (детерминированности) в природе, а лишь ограничение области действия. Однозначность и вероятность являются дуалистическими понятиями; они неотделимы (вероятностный разброс существует вокруг наивероятных значений, входящих в однозначные законы), несводимы (невозможно ограничиться только одним способом описания физических явлений), а их взаимную связь можно заметить почти во всех разделах физики.

    Дуализм у элементарных частиц имеет существенно важное значение в формировании свойств физических систем, образованных из этих частиц. Рассматривая известные микрофизические системы, можно заметить, что они образованы в конечном счете из различных частиц. Одинаковые частицы либо не взаимодействуют, либо же отталкиваются друг от друга и физической системы с качественно новыми свойствами не образуют. Так, например, протоны, нейтроны и электроны в отдельности не образуют физических систем, но, соединяясь вместе, образуют ядра и атомы различных веществ. Можно утверждать, что в совокупности одинаковых элементарных частиц всегда происходит простое (аддитивное) сложение их свойств. Только при взаимодействии частиц, обладающих противоположными свойствами, происходит особый (качественный) синтез этих свойств, благодаря чему физические системы приобретают новые свойства. Таким образом, можно утверждать, что появление качественно новых свойств возможно только при взаимодействии суьцественно различных частиц.

    Объективный дуализм природы находит свое отражение и в важнейших физических понятиях. Типичным примером являются понятия дискретности и непрерывности. Они несводимы друг к другу; в противном случае можно было бы ограничиться использованием только одного из этих понятий. В истории физики известны попытки исключить дискретность или непрерывность из описания явлений, но они успеха не имели. Они неотделимы друг от друга и неразрывно взаимосвязаны во всех физических явлениях, так как в них обязательно участвуют частицы и поля, вносящие своими фундаментальными свойствами элементы дискретности и непрерывности.

    В заключение заметим, что и сама физика как наука развивается на основе взаимодействия двух противоположных частей - теоретической и экспериментальной, которые неотделимы и взаимосвязаны, несводимы друг к другу и взаимодействуют, определяя направление и ход развития физических наук.

    Обнаружение корпускулярных свойств света в опытах по фотоэффекту, в опыте Комптона и в ряде других экспериментов не может отменить твердо установленных фактов наличия у света волновых свойств, обнаруживаемых при наблюдении явлений интерференции, дифракции, поляризации. Тот факт, что свет обладает как волновыми, так и корпускулярными свойствами, называют корпускулярно-волновым дуализмом.

    Противоположность свойств волн и частиц в классической физике делает неправомерным утверждение, что свет является одновременно и волной, и потоком частиц. Свет не является ни волной, ни потоком частиц. Природа света более сложна и не может быть без внутренних противоречий описана с применением наглядных образов классической физики. Смысл корпускулярноволнового дуализма свойств света заключается в том, что в зависимости от условий эксперимента природа света может быть приближенно описана с применением либо волновых, либо корпускулярных представлений.

    Одним из вариантов сведения сложной природы света к более простой является попытка представления фотона в виде ограниченного в пространстве и во времени цуга электромагнитных волн, получившегося в результате сложения большого числа гармонических электромагнитных волн. Если бы такое представление о фотоне соответствовало действительности, то при прохождении пучка света через пластину с полупрозрачным зеркальным покрытием половина каждого цуга проходила бы, а половина отражалась. Разделение каждого фотона на два можно было бы обнаружить по одновременному срабатыванию приборов, поставленных на пути проходящего и отраженного пучков света. Однако опыт показывает, что приборы не срабатывают одновременно. Срабатывает либо первый из них, либо второй в отдельности. Это значит, что каждый фотон не разделяется пластиной с полупрозрачным покрытием на два, а с равной вероятностью либо

    отражается, либо проходит сквозь пластину как единое целое.

    Ограниченная применимость образов классической физики для описания свойств света выражается не только в том, что для описания результатов одних опытов оказываются пригодными волновые представления, а для других - корпускулярные, но и в условности применения этих образов в каждом случае. Используя корпускулярные представления при описании фотоэлектрического эффекта и комптоновского рассеяния, нельзя забывать о существенных отличиях свойств фотона от свойств частиц в классической физике. Масса покоя фотона равна нулю, скорость его движения в любой инерциальной системе отсчета одинакова, и нет такой системы отсчета, в которой его скорость была бы равна нулю. Рассматривая свет как поток частиц - фотонов, мы должны для определения массы фотона использовать чисто волновую характеристику света - частоту. При исследовании таких волновых явлений, как интерференция и дифракция света, для регистрации интерференционной или дифракционной картины необходимо применять фотоэлемент или фотопластинку, т. е. использовать квантовые свойства света для обнаружения его волновых свойств.

    1. Какие закономерности явления фотоэффекта невозможно объяснить на основе волновой теории света?

    2. Объясните, почему из волновой теории следует запаздывание фотоэффекта.

    3. Одинакова ли кинетическая энергия электронов, освобождаемых из металла под действием фотонов одинаковой частоты?

    4. Можно ли наблюдать явление комптоновского рассеяния фотонов видимого света?

    5. Можно ли выполнить опыт Боте, используя в качестве источника фотонов лампочку карманного фонаря и счетчики фотонов видимого света?

    Содержание.

    1. Введение.
    2. Волновые свойства света.

    а) Дисперсия.

    б) Дифракция.

    в) Поляризация

    1. Квантовые свойства света.

    а) Фотоэффект.

    б) Эффект Комптона.

    5. Заключение.

    6. Список использованной литературы.

    Введение.

    Уже в древности наметились три основных подхода к решению вопроса о природе света. Эти три подхода в последующем оформились в две конкурирующие теории - корпускулярную и волновую теории света.

    Подавляющее большинство древних философов и ученых рассматривало свет как некие лучи, соединяющие светящееся тело и человеческий глаз. При этом одни из них полагали, что лучи исходят из глаз человека, они как бы ощупывают рассматриваемый предмет. Эта точка зрения имела большое число последователей, среди которых был Эвклид. Формулируя первый закон геометрической оптики, закон прямолинейного распространения света, Эвклид писал: “Испускаемые глазами лучи распространяются по прямому пути”. Такого же взгляда придерживался Птолемей и многие другие ученые и философы.

    Однако позже, уже в средние века, такое представление о природе света теряет свое значение. Все меньше становится ученых, следующих этим взглядам. И к началу XVII в. эту точку зрения можно считать уже забытой. Другие, наоборот, считали, что лучи испускаются светящимся телом и, достигая человеческого глаза, несут на себе отпечаток светящегося предмета. Такой точки зрения придерживались атомисты Демокрит, Эпикур, Лукреций.

    Последняя точка зрения на природу света уже позже, в XVII в., оформилась в корпускулярную теорию света, согласно которой свет есть поток каких-то частиц, испускаемых светящимся телом.

    Третья точка зрения на природу света была высказана Аристотелем. Он рассматривал свет как распространяющееся в пространстве (в среде) действие или движение. Мнение Аристотеля в его время мало кто разделял. Но в дальнейшем, опять же в XVII в., его точка зрения получила развитие и положила начало волновой теории света.

    К середине XVII века накопились факты, которые толкали научную мысль за пределы геометрической оптики. Одним из первых ученых, подтолкнувшим научную мысль к теории волновой природы света, был чешский ученый Марци. Его работы известны не только в области оптики, но также и в области механики и даже медицины. В 1648 им открыто явление дисперсии света.

    В XVII в. в связи с развитием оптики вопрос о природе света стал вызывать все больший и больший интерес. При этом постепенно происходит образование двух противоположных теорий света: корпускулярной и волновой. Для развития корпускулярной теории света была более благоприятная почва. Действительно, для геометрической оптики представление о том, что свет есть поток особых частиц, было вполне естественным. Прямолинейное распространение света, а также законы отражения и преломления хорошо объяснялись с точки зрения этой теории.

    Общее представление о строении вещества также не вступало в противоречие с корпускулярной теорией света. В то время в основе взглядов на строение вещества лежала атомистика. Все тела состоят из атомов. Между атомами существует пустое пространство. В частности, тогда считали, что межпланетное пространство является пустым. В нем и распространяется свет от небесных тел в виде потоков световых частиц. Поэтому вполне естественно, что в XVII в. было много физиков, которые придерживались корпускулярной теории света. В это же время начинает развиваться и представление о волновой природе света. Родоначальником волновой теории света можно считать Декарта.

    Единство корпускулярных и волновых свойств электромагнитного излучения.

    Рассмотренные в данном разделе явления- излучение чёрного тела, фотоэффекта, эффект Комптона- служат доказательством квантовых(корпускулярных) представлений о свете как о потоке фотонов. С другой стороны, такие явления, как интерференция, дифракция и поляризация света, убедительно подтверждают волновую (электромагнитную) природу света. Наконец, давление и преломление света объясняются как волновой, так и квантовой теориями. Таким образом, электромагнитное излучение обнаруживает удивительное единство, казалось бы, взаимоисключающих свойств- непрерывных(волны) и дискретных(фотоны), которые взаимно дополняют друг друга.

    Более детальное рассмотрение оптических явлений приводит к выводу, что свойства непрерывности, характерные для электромагнитного поля световой волны, не следует противопоставлять свойствам дискретности, характерным для фотона. Свет, обладая одновременно корпускулярными и волновыми свойствами, обнаруживает определённые закономерности в их проявлении. Так, волновые свойства света проявляются в закономерностях его распространения, интерференции, дифракции, поляризации, а корпускулярные - в процессах взаимодействия света с веществом. Чем больше длина волны, тем меньше энергия и импульс фотона и тем труднее обнаруживаются квантовые свойства света (с этим связано, например, существование красной границы фотоэффекта). Наоборот, чем меньше длина волны, тем больше энергия и импульс фотона и тем труднее обнаруживается волновые свойства (например, волновые свойства (дифракция) рентгеновского излучения обнаружены лишь после применения в качестве дифракционной решётки кристаллов).

    Взаимосвязь между двойственными корпускулярно-волновыми свойствами света можно объяснить, если использовать, как это делает квантовая оптика, статистический подход к рассмотрению закономерностей рассмотрения света. Например, дифракция света на щели состоит в том, что при прохождении света через щель происходит перераспределение фотонов в пространстве. Так как вероятность попадания фотонов в различные точки экрана неодинакова, то и возникает дифракционная картина. Освещённость экрана пропорциональна вероятности попадания фотонов на единицу площади экрана. С другой стороны, по волновой теории, освещённость пропорциональна квадрату амплитуды световой волнытой же точке экрана. Следовательно, квадрат амплитуды световой волны в данной точке пространства является мерой вероятности попадания фотонов в данную точку.

    Волновые свойства света.

    1.1 Дисперсия.

    Ньютон обратился к исследованию цветов, наблюдаемых при преломлении света, в связи с попытками усовершенствования телескопов. Стремясь получить линзы возможно лучшего качества, Ньютон убедился, что главным недостатком изображений является наличие окрашенных краёв. Исследуя окрашивание при преломлении, Ньютон сделал свои величайшие оптические открытия.

    Сущность открытий Ньютона поясняется следующими опытами (рис.1) свет от фонаря освещает узкое отверстие S (щель). При помощи линзы L изображение щели получается на экране MN в виде короткого белого прямоугольника S `. Поместив на пути призму P , ребро которой параллельно щели, обнаружим, что изображение щели сместится и превратится в окрашенную полоску, переходы цветов, в которой от красного к фиолетовому подобны наблюдаемым в радуге. Это радужное изображение Ньютон назвал спектром.

    Если прикрыть щель цветным стеклом, т.е. если направлять на призму вместо белого света цветной, изображение щели сведется к цветному прямоугольнику, располагающему на соответствующем месте спектра, т.е. в зависимости от цвета свет будет отклоняться на различные углы от первоначального изображения S `. Описанное наблюдения показывает, что лучи разного цвета различно преломляются призмой.

    Это важное заключение Ньютон проверил многими опытами. Важнейший из них состоял в определении и показателя преломления лучей различного цвета, выделенных из спектра. Для этой цели в экране MN , на котором получается спектр, прорезалось отверстие; перемещая экран, можно было выпустить через отверстие узкий пучок лучей того или иного цвета. Такой способ выделения однородных лучей более совершенен, чем выделение при помощи цветного стекла. Опыты обнаружили, что такой выделенный пучок, преломляясь во второй призме, уже не растягивает полоску. Такому пучку соответствует определенный показатель преломления, значение которого зависит от цвета выделенного пучка.

    Описанные опыты показывают, что для узкого цветного пучка, выделенного из спектра, показатель преломления имеет вполне определенное значение, тогда как преломление белого света можно только приблизительно охарактеризовать одним каким то значением этого показателя. Сопоставляя подобные наблюдения, Ньютон сделал вывод, что существуют простые цвета, не разлагающиеся при прохождении через призму, и сложные, представляющие совокупность простых, имеющих разные показатели преломления. В частности, солнечный свет есть такая совокупность цветов, которая при помощи призмы разлагается, давая спектральное изображение щели.

    Таким образом, в основных опытах Ньютона заключались два важных открытия:

    1)Свет различного цвета характеризуется различными показателями преломления в данном веществе (дисперсия).

    2)Белый цвет есть совокупность простых цветов.

    Мы знаем внастоящее время, что разным цветам соответствуют различные длины световых волн. Поэтому первое открытие Ньютона можно сформулировать следующим образом:

    Показатель преломления вещества зависит от длины световой волны.

    Обычно он увеличивается по мере уменьшения длины волны.

    1.2 Дифракция.

    У световой волны не происходит изменения геометрической формы фронта при распространении в однородной среде. Однако если распространение света осуществляется в неоднородной среде, в которой, например, находятся не прозрачные экраны, области пространства со сравнительно резким изменением показателя преломления и т. п., то наблюдаетсяискажение фронта волны. В этом случае происходит перераспределение интенсивности световой волны в пространстве. При освещении, например, непрозрачных экранов точечным источником света на границе тени, гдесогласно законам геометрической оптики должен был бы проходить скачкообразный переход от тени к свету, наблюдается ряд тёмных и светлых полос, часть света проникает в область геометрической тени. Эти явления относятся к дифракции света.

    Итак, дифракция света в узком смысле - явление огибания светом контура непрозрачных тел и попадание света в область геометрической тени; в широком смысле - всякое отклонение при распространении света от законов геометрической оптики.

    Определение Зоммерфельда: под дифракцией света понимают всякое отклонениеот прямолинейного распространения, если оно не может быть объясненокак результат отражения, преломления или изгибания световых лучей в средах с непрерывно меняющимся показателем преломления.

    Если в среде имеются мельчайшие частицы (туман) или показатель преломления заметно меняется на расстояниях порядка длины волны, то в этих случаях говорят о рассеянии света и термин «дифракция» не употребляется.

    Различают два вида дифракции света. Изучая дифракционную картину в точке наблюдения, находящейся на конечном расстоянии от препятствия, мы имеем дело с дифракциейФренеля. Если точка наблюдения и источник света расположены от препятствия так далеко, что лучи, падающие на препятствие, и лучи, идущие в точку наблюдения, можно считать параллельными пучками, то говорят о дифракции в параллельных лучах - дифракции Фраунгофера.

    Теория дифракции рассматривает волновые процессы в тех случаях, когда на пути распространения волны имеются какие - либо препятствия.

    С помощью теории дифракции решают такие проблемы, как защита от шумов с помощью акустических экранов, распространение радиоволн над поверхностью Земли, работа оптических приборов (так как изображение, даваемое объективом, - всегда дифракционная картина), измерения качества поверхности, изучение строения вещества и многие другие.

    1.3 Поляризация

    Явления интерференции и дифракции, послужившие для обоснования волновой природы света, не дают еще полного представления о характере световых волн. Новые черты открывает нам опыт над прохождением света через кристаллы, в частности через турмалин.

    Возьмем две одинаковые прямоугольные пластинки турмалина, вырезанные так, что одна из сторон прямоугольника совпадает с определенным направлением внутри кристалла, носящим название оптической оси. Наложим одну пластинку на другую так, чтобы оси их совпадали по направлению, и пропустим через сложенную пару пластинок узкий пучок света от фонаря или солнца. Так как турмалин представляет собой кристалл буро - зеленого цвета, то след прошедшего пучка на экране представится в виде тёмно - зеленого пятнышка. Начнем поворачивать одну из пластинок вокруг пучка, оставляя вторую неподвижной. Мы обнаружим, что след пучка становится слабее, и когда пластинка повернётся на 90 0 , он совсем исчезнет. При дальнейшем вращении пластинки проходящий пучок вновь начнет усиливаться и дойдет до прежней интенсивности, когда пластинка повернется на 180 0 , т.е. когда оптические оси пластинок вновь расположатся параллельно. При дальнейшем вращении турмалина пучок вновь слабеет.

    Можно объяснить все наблюдающиеся явления, если сделать следующие выводы.

    Световые колебания в пучке направлены перпендикулярно к линии распространения света (световые волны поперечны).

    Турмалин способен пропускать световые колебания только в том случае, когда они направлены определенным образом относительно его оси.

    В свете фонаря(солнца) представлены поперечные колебания любого направления и притом в одинаковой доле, так что ни одно направление не является преимущественным.

    Вывод 3 объясняет, почему естественный свет в одинаковой степени проходит через турмалин при любой его ориентации, хотя турмалин, согласно выводу 2, способен пропускать световые колебания только определенного направления. Прохождение естественного света через турмалин приводит к тому, что из поперечных колебаний отбираются только те, которые могут пропускаться турмалином. Поэтому свет, прошедший через турмалин, будет представлять собой совокупность поперечных колебаний одного направления, определяемого ориентацией оси турмалина. Такой свет мы будем называть линейно поляризованным, а плоскость, содержащую направление колебаний и ось светового пучка, - плоскостью поляризации.

    Теперь становится понятным опыт с прохождением света через две последовательно поставленные пластинки турмалина. Первая пластинка поляризует проходящий через неё пучок света, оставляя в нем колебания только одного направления. Эти колебания могут пройти через второй турмалин полностью только в том случае, когда направление их совпадает с направлением колебаний, пропускаемых вторым турмалином, т.е. когда его ось параллельна оси первого. Если же направление колебаний в поляризованном свете перпендикулярно к направлению колебаний, пропускаемых вторым турмалином, то свет будет полностью задержан. Если направление колебаний в поляризованном свете составляет острый угол с направлением, пропускаемым турмалином, то колебания будут пропущены лишь частично.

    Квантовые свойства света.

    2.1 Фотоэффект.

    Гипотеза Планка о квантах послужила основой для объяснения явления фотоэлектрического эффекта, открытого в 1887г. немецким физиком Генрихом Герцем.

    Явление фотоэффекта обнаруживается при освещении цинковой пластины, соединенной со стержнем электрометра. Если пластине и стержню передан положительный заряд, то электрометр не разряжается при освещении пластины. При сообщении пластине отрицательного электрического заряда электрометр разряжается, как только на пластину попадает ультрафиолетовое излучение. Этот опыт доказывает, что с поверхности металлической пластины под действием света могут освобождатьсяотрицательные электрические заряды. Измерение заряда и массы частиц, вырываемых светом, показало, что эти частицы - электроны.

    Фотоэффекты бывают нескольких видов: внешний и внутренний фотоэффект, вентильный фотоэффект и ряд других эффектов.

    Внешним фотоэффектом называют явление вырывания электронов из вещества под действием падающего на него света.

    Внутренним фотоэффектом называют появление свободных электронов и дырок в полупроводнике в результате разрыва связей между атомами за счет энергии света, падающего на полупроводник.

    Вентильным фотоэффектом называют возникновение под действием света электродвижущей силы в системе, содержащей контакт двух различных полупроводников или полупроводника и металла.

    2.2 Эффект Комптона.

    Наиболее полно корпускулярные свойства света проявляются в эффекте Комптона. Американский физик А. Комптон (1892-1962), исследуя в 1923 г. Рассеяние монохроматического рентгеновского излучения веществами с лёгкими атомами (парафин, бор), обнаружил, что в составе рассеянного излучения наряду с излучением первоначальной длины волны наблюдается также более длинноволновое излучение.

    Эффектом Комптона называется упругое рассеяние коротковолновогоэлектромагнитного излучения (рентгеновского и гамма-излучений) на свободных(или слабосвязанных) электронах вещества, сопровождающееся увеличением длины волны. Этот эффект не укладывается в рамки волновой теории, согласно которой длина волны при рассеянии изменяться не должна: под действием периодического поля световой волны электрон колеблется с частотой поля и поэтому излучает рассеянные волны той же частоты.

    Объяснение эффекта Комптона дано на основе квантовых представлений о природе света. Если считать, как это делает квантовая теория, что излучение имеет корпускулярную природу.

    Эффект Комптона наблюдается не только на электронах, но и на других заряженных частицах, например протонах, однако из-за большой массы протона его отдача «просматривается» лишь при рассеянии фотонов очень высоких энергий.

    Как эффект Комптона, так и фотоэффект на основе квантовых представлений обусловлены взаимодействием фотонов с электронами. В первом случае фотон рассеивается, во втором- поглощается. Рассеяние происходит при взаимодействии фотона со свободными электронами, а фотоэффект - со связанными электронами. Можно показать, что при столкновении фотона со свободными электронами не может произойти поглощения фотона, так как это находится в противоречии с законами сохранения импульса и энергии. Поэтому при взаимодействии фотонов со свободными электронами может наблюдаться только их рассеяние, .т.е. эффект Комптона.

    Заключение.

    Итак, свет корпускулярен в том смысле, что его энергия, импульс, масса и спин локализованы в фотонах, а не размыты в пространстве, но не в том, что фотон может находиться в данном точно определенном месте пространства. Свет ведет себя как волна в том смысле, что распространение и распределение фотонов в пространстве носят вероятный характер: вероятность того, что фотон находится в данной точке определяется квадратом амплитуды в этой точке. Но вероятностный (волновой) характер распределения фотонов в пространстве не означает, что фотон в каждый момент времени находится в какой-то одной точке.

    Таким образом, свет сочетает в себе непрерывность волн и дискретность частиц. Если учтем, что фотоны существуют только при движении (со скоростью с), то приходим к выводу, что свету одновременно присущи как волновые, так и корпускулярные свойства. Но в некоторых явлениях при определенных условиях основную роль играют или волновые, или корпускулярные свойства и свет можно рассматривать или как волну, или как частицы (корпускулы).

    Список использованной литературы.

    1) А.А. Детлаф Б.М. Яворский «Курс физики» изд. «Высшая школа» 2000 г.

    2) Т.И. Трофимова «Курс физики» изд. «Высшая школа» 2001 г.

    3) Х. Кухлинг «Справочник по физике» изд. «Мир» 1982 г.

    4) Гурский И.П. «Элементарная физика» под ред. И.В. Савельева 1984 г.

    5) Тарасов Л.В., Тарасова А.Н. «Беседы о преломлении света» /под ред. В.А.

    Фабриканта, изд. «Наука», 1982.

Похожие статьи