Сущность хромосомной теории наследственности. Хромосомная теория Моргана: определение, основные положения и особенности

Хромосомная теория наследственности

Сцепленное наследование признаков. Как мы отмечали в прошлой лекции, независимое наследование признаков при ди- и полигибридном скрещивании бывает в случае, если гены этих признаков локализованы в разных хромосомах. Но количество хромосом ограничено по сравнению с количеством признаков. У большинства животных организмов число хромосом не превышает 100. В то же время число признаков, каждый из которых контролируется по крайней мере одним геном, значительно больше. Так, например, у дрозофилы изучено 1000 генов, которые локализованы в четырех парах хромосом, у человека известно несколько тысяч генов при 23 парах хромосом и т.д. Отсюда следует, что в каждой паре хромосом располагается много генов. Естественно, что между генами, которые находятся в одной хромосоме, наблюдается сцепление, и при образовании половых клеток они должны передаваться вместе.

Сцепленное наследование признаков открыли в 1906 г, английские генетики В.Бетсон и Р.Пеннет при изучении наследования признаков у душистого горошка, но они не смогли дать теоретическое объяснение этому явлению. Природу сцепленного наследования выяснили американские исследователи Т. Морган и его сотрудники С. Бриджес и А. Стертевант в 1910 году. В качестве объекта исследований они избрали плодовую мушку дрозофилу очень удобную для генетических опытов. Достоинства этого объекта исследования следующие: малое число хромосом (4 лары), высокая плодовитость, быстрая сменяемость поколений (12-14 суток). Мухи дрозофилы серого цвета, с красными глазами, имеют маленькие размеры (около 3 мм), легко разводятся в лабораторных условиях на простых по составу питательных средах. У дрозофилы выявлено большое число мутантных форм. Мутации затрагивают окраску глаз и тела, форму и размер крыльев, расположение щетинок и др.

Изучение наследования разных пар признаков и их расщепления при дигибридномскрещивании позволило обнаружить наряду с независимым комбинированием признаков явление сцепленного наследования. На основании изучения большого числа признаков было установлено, что все они распределяются на четыре группы сцепления в соответствии с числом хромосом у дрозофилы. Сцепленное наследование признаков связано с локализацией группы определенных генов в одной хромосоме.

Мысль о локализации генов в хромосомах была высказана Сеттоном еще в 1902 году, когда им был обнаружен параллелизм в поведении хромосом в мейозе и наследовании признаков у кузнечика.

Наиболее четкая разница в поведении сцепленных и независимо наследующихся генов выявляется при проведении анализирующего скрещивания.

Рассмотрим это на примере. В первом случае возьмем признаки, гены которых расположены в разных хромосомах.

Р === === х === ===

Гаметы: АВ , Ав, аВ, ав ав

А В А в а В а в

F === === ; === === ; === === ; === ===

а в а в а в а в

В результате мы получили потомство четырех фнотипических классов в соотношении: 1: 1: 1: 1. Другие результаты будут, если гены А и В локализованы в одной хромосоме.

Р =*===*= х =*===*=

Гаметы: А В, а в а в

F =*===*= ; =*===*=

Таким образом, если гены находятся в одной хромосоме в потомстве при анализирующем скрещивании, мы получим два класса потомков похожих на отца и на мать и не будет потомков с признаками отца и матери одновременно.

Опыты, подтверждающие сцепленное наследование признаков, были проведены Т.Морганом на дрозофиле. Для скрещивания были взяты особи серые с нормальными крыльями (доминантные признаки) и черные с зачаточными крыльями (рецессивные признаки). В результате опытов были получены потомки только серые крылатые и черные с зачаточными крыльями.

На основании проведенных экспериментов Т.Морган сформулировал закон сцепленного наследования признаков: признаки, гены которых располагаются в одной хромосоме, наследуются сцепленно.

Неполное сцепление. Явление кроссинговера . Наряду с полным сцепленным наследованием признаков Т.Морган в своих опытах с дрозофилой обнаружил и неполное сцепленное наследование. При неполном сцепленном наследовании одновременно с формами, похожими на родителей, были обнаружены организмы, у которых наблюдались признаки обоих родителей. Однако соотношение этих форм не было равным как при независимом комбинировании. В потомстве явно преобладали формы, схожие с родителями, а организмов рекомбинантов было значительно меньше.

Схема неполного сцепленного наследования признаков.

Р =*===*= х =*===*=

Гаметы: А В, а в, а В, А в а в

без кроссин. кроссоверные

А В а в а В А в

F ====; ====; ====; ====

а в а в а в а в

рекомбинанты

Объяснить этот факт можно следующим образом. Если гены А и В расположены в одной хромосоме, а в гомологичной ей хромосоме расположены рецессивные аллели а и в, то отделиться друг от друга и вступить в новые сочетания гены А и В могут только в том случае, если хромосома, в которой они расположены, будет разорвана на участке между этими генами и затем соединена с участком гомологичной хромосомы. В 1909 году Ф. Янсенс, изучая мейоз у земноводных, обнаружил в диплотене профазы 1 хиазмы (перекресты хромосом) и высказал предположение, что хромосомы взаимно обмениваются участками. Т.Морган развил это представление в идею об обмене генами приконьюгации гомологичных хромосом, а неполное сцепление было объяснено им как результат такого обмена и названо кроссинговером.

Схема кроссинговера.

А а А а А а

В в в В в В

Кроссинговер может быть одинарным, как показано на схеме, двойным и множественным. Кроссинговер возник в процессе эволюции. Он приводит к появлению организмов с новыми сочетаниями признаков, т.е. к увеличению изменчивости. Изменчивостьже является одним из движущих факторов эволюции.

Частота кроссинговера определяется по формуле и выражается в процентах или морганидах (1 морганида равна 1% перекреста).

число рекомбинантов

Р кроссинговера = х 100%

общее число потомков

Если, например, общее число потомков, полученное в результате анализирующего скрещивания, равно 800, а число кроссоверных форм – 80, то

частота кроссинговера будет:

Р кросс. = х 100% = 10% (или 10 морганид)

Величина перекреста зависит от расстояния между генами. Чем дальше удалены гены друг от друга, тем чаще происходит перекрест. Установлено, что количество кроссоверных особей к общему числу потомков никогда не превышает 50%, так как при очень больших расстояниях между генами чаше происходит двойной кроссинговер и часть кроссоверных особей остается неучтенной.

Явление кроссинговера, установленное генетическими методами на дрозофиле, нужно было доказать цитологически. Это сделали в начале 30 годов Штерн на дрозофиле и Б. Мак-Клинтон на кукурузе. Для этого были получены гетероморфные хромосомы, т.е. хромосомы, различающиеся внешне с локализацией в них известных генов. В этом случае у кроссоверных форм можно было видеть рекомбинантные хромосомы и сомнений о наличии кроссинговера не возникало.

Процесс протекания кроссинговера зависит от многих факторов. Большое влияние на кроссинговер оказывает пол. Так, у дрозофилы кроссинговер происходит только у самок. У тутового шелкопряда кроссинговер отмечается у самцов. У животных и человека кроссингавер происходит у обоих полов. На частоту кроссинговера влияют также возраст организмов и условия среды.

К. Штерн показал, что кроссинговер может возникать не только в мейозе, при развитии половых клеток, но в некоторых случаях и в обычных соматических клетках. П о-видимому соматический кроссинговер широко распостранен в природе.

Линейное расположение генов в хромосомах. Карты хромосом . После того как была установлена связь генов с хромосомами и обнаружено, что частота кроссинговера всегда вполне определенная величина для каждой пары генов, расположенных в одной группе сцепления, встал вопрос о пространственном расположении генов в хромосомах. На основании многочисленных генетических исследований Морган и его ученик Стертевант выдвинули гипотезу линейного расположения генов в хромосоме. Изучение взаимоотношения между тремя генами при неполном сцеплении показало, что частота перекреста между первым и вторым, вторым и третьим, первым и третьим генами равна сумме или разности между ними. Так, если в одной группе сцепления расположены три гена - А, В и С, то процент перекреста между генами АС равен сумме процентов перекреста между генами АВ и ВС, частота перекреста между генами АВ оказалась равной АС - ВС, а между генами ВС = АС - АВ. Приведенные данные соответствуют геометрической закономерности в расстояниях между тремя точками на прямой. На этом основании был сделан вывод, что гены расположены в хромосомах в линейной последовательности на определенном расстоянии друг от друга. Используя эту закономерность, можно строить карты хромосом.

Карта хромосомы это схема, на которой показано, какие гены локализованы в данной хромосоме, в каком поряке и на каком расстоянии друг от друга они располагаются. Для построения карты хромосом проводят анализирующее скрещивание и определяют частоту кроссинговера. Например, установлено, что в хромосоме локализованы три гена М, N и К. Частота перекреста между генами М и N составляет 12%, между М и К - 4 % и между N и К - 8%. Чем больше частота кроссинговера, тем дальше друг от друга расположены гены. Используя эту закономерность, строим карту хромосомы.

После построения генетических карт встал вопрос о том, отвечает ли расположение генов в хромосоме, определенное на основании частоты кроссинговера, истинному расположению. С этой цепью генетические карты нужно было сравнить с цитологическими.

В 30 годах нашего столетия Пайнтер открыл в слюнных железах дрозофилы гигантские хромосомы, строение которых можно было изучать под микроскопом. Хромосомы эти имеют характерный для них поперечный рисунок в виде дисков разной толщины и формы. Каждая хромосома по длине имеет специфические рисунки дисков, что позволяет отличать разные ее участки друг от друга. Появилась возможность сравнить генетические карты с фактическим расположением генов в хромосомах. Материалом для проверки служили хромосомы, у которых вследствие мутаций возникли различные хромосомные перестройки:не хватало отдельных дисков, или они были удвоены. Диски служили маркерами, с их помощью определяли характер хромосомных перестроек и место расположения генов, о существовании которых было известно на основании данных генетического анализа. При сопоставлении генетических карт хромосом с цитологическими было установлено, что каждый ген находится в определенном месте (локусе) хромосомы и что гены в хромосомах расположены в определенной линейной последовательности. В то же время было обнаружено, что физические расстояния между генами на генетическойкарте не вполне соответствуют установленным цитологически. Однако это не снижает ценности генетических карт хромосом для предсказания появления особей с новыми сочетаниями признаков.

На основании анализа результатов многочисленных исследований на дрозофиле и других объектах Т. Морган сформулировал хромосомную теорию наследственности, сущность которой заключается в следующем:

Материальные носители наследственности - гены находятся в хромосомах, располагаются в них линейно на определенном расстоянии друг от друга;

Гены, расположенные в одной хромосоме, относятся к одной группе

сцепления. Число групп сцепления соответствуют гаплоидному числу хромосом;

Признаки, гены которых находятся в одной хромосоме, наследуются сцепленно;

Неполное сцепленное наследование признаков связано с явлением кроссинговера, частота которого зависит от расстояния между генами;

На основании линейного расположения генов в хромосоме и частоты кроссинговера как показателя расстояния между генами можно построить карты хромосом.

Создателем хромосомной теории (ХТ) является учёный Томас Морган. ХТ является результатом изучения наследственности на клеточном уровне.

Суть хромосомной теории :

Материальными носителями наследственности являются хромосомы.

Основными доказательством этому является:

    Цитогенетический параллелизм

    Хромосомное определение пола

    Сцепленное с полом наследование

    Сцепление генов и кроссинговер

Основные положения хросомной теории:

    Наследственные задатки (гены) локализованы в хромосомах.

    Гены расположены в хромосоме в линейном порядке.

    Каждый ген занимает определенный участок (локус). Аллельные гены занимают аналогичные локусы в гомологичных хромосомах.

    Гены, локализованные в одной хромосоме, наследуются совместно, сцеплено (Закон Моргана) и образуют группу сцепления. Число групп сцепления равно гаплоидному числу хромосом (n).

    Между гомологичными хромосомами возможен обмен участками, или рекомбинация.

    Расстояние между генами измеряются в процентах кроссинговера – морганидах.

    Частота кроссинговера обратно пропорциональна расстоянию между генами, а сила сцепления между генами обратно пропорциональна расстоянию между ними.

    Цитогенетический параллелизм

Дипломником Моргана Сюттоном было замечено что поведение генов по Менделю, совпадает с поведение хромосом: (ТАБЛИЦА – цитогенетический паралелизм)

Каждый организм несёт 2-а наследственных задатка, в гамету входит только 1- ин наследственный задаток из пары. При оплодотворении в зиготе и далее в организме опять 2-а наследственных задатка по каждому признаку.

Точно так же ведут себя и хромосомы, что можно предположить что гены лежат в хромосомах и наследуются вместе с ними.

    Хромосомное определение пола

В 1917 году Алленом было показано что мужские и женские особи у мхов отличаются по набору хромосом. В клетках диплоидной ткани мужского организма половые хромосомы XиY, в женскомXиX. Таким образом Хромосомы определяют такой признак как пол, а следовательно могут быть материальными носителями наследственности. Позже хромосомное определение пола было показано и для других организмов, в том числе и для человека.(ТАБЛИЦА)

    Сцепленное с полом наследование

Поскольку половые хромосомы различны у мужских и женских организмов, признаки, гены которых, расположены в Х или Yхромосомах, будут наследовать по-разному. Такие признаки называютсясцепленными с полом признаками .

Особенности наследования сцепленных с полом признаков

    Не соблюдается 1 закон Менделя

    Реципрокные скрещивания дают разный результат

    Имеет место крисс-кросс (или наследование крест-накрест).

Впервые наследование связанное с признаком было обнаружено Морганом у дрозофилы.

W + -красные глаза

(C) X W+ X W+ * X w Y

(C) X w X w * X W+ Y

w – белые глаза

(CЖ)X W + X w – Красные глаза

X w X W + - Красные глаза

(CМ)X W + Y– Красные глаза

X w Y– Белые глаза

Таким образом наследование выявленной Морганом мутация – “белые глаза” - white, характеризовалась перечисленными выше особенностями:

    Закон единообразия несоблюдался

    В 2-ух реципрокных скрещиваниях получено разное потомство

    Во втором скрещивании сыновья получают признак матери (белые глаза), дочери – признак отца (красные глаза).

Такое наследование и называется «наследование крисс-кросс»

(ТАБЛИЦА сцепленное с полом наследование )

Сцепленное с полом наследование объясняется отсутствием в Yхромосоме генов, аллельных генамXхромосоме.Yхромосома намного меньше Х хромосомы, в ней, в настоящее время, локализовано 78(?) генов, в то время как вXхромосоме их более 1098.

Примеры сцепленных с полом наследований:

Гемофилия, дистрофия Дюшенна, синдром Данкана, синдром Альпорта, и др.

Есть гены, которые наоборот содержатся в Yхромосоме и отсутствуют вXхромосоме, они, следовательно, встречаются только в мужских организмах, и никогда в женских (голандрическое наследование) и передаются только сыновьям от отца.

    Сцепление генов и кроссинговер

В генетике было известно такое явления как «притяжение генов»: некоторые неаллельные признаки наследовались не независимо, как должны по IIIзакону Менделя, а наследовались вместе, не давали новых комбинаций. Морган объяснил это тем, что эти гены находятся в одной хромосоме, поэтому они расходятся в дочерние клетки вместе одной группой, как бы сцеплено. Он назвал это явление –сцепленным наследованием .

Закон сцепления Моргана:

Гены расположенные в одной хромосоме наследуются совместно, сцеплено.

Гены расположенные в одной хромосоме образуют группу сцепления. Число групп сцепления равно «n» - гаплоидному числу хромосом.

Скрещивали гомозиготные линии мух с серым цветом тела и длинными крыльями и мух, имеющих чёрное тело и короткие крылья. Гены цвета тела и длинны крыльев – сцеплены, т.е. лежат в одной хромосоме.

А- серое тело

а- чёрное тело

B- нормальные крылья (длинные)

b- зачаточные крылья

(С Ж) AABBxaabb(CМ)

Серые длиннокрылые

Чёрные короткокрылые

Запись в хромосомном выражении

Серое тело

Длинные крылья

Чёрное тело

Короткое тело

Все мухи имеют серое тело и длинные крылья

Т.е. в этом случае закон единообразия гибридов Iпоколения соблюдается. Однако вF 2 вместо ожидаемого расщепления 9:3:3:1 получилось отношение на 3 серых длиннокрылых на 1 часть чёрных короткокрылых, т.е. новых сочетаний признаков не появлялось. Морган предположил что дегетерозиготыF 2 - ()продуцируют (дают) гаметы не 4, а только 2 типов -и. Проведенные анализирующие скрещивания это подтвердило:

Серое тело

Длинные крылья

Чёрное тело

Короткое тело

F a

Серое тело

Длинные крылья

Чёрное тело

Короткие крылья

В результате в F 2 расщепление идёт как при моногибридном скрещивании 3:1.

Серое тело

Длинные крылья

Серое тело

Длинные крылья

Серое тело

Длинные крылья

Чёрное тело

Короткие крылья

Кроссинговер.

В небольшом проценте случаев в F 2 в опытах Моргана появлялись мухи с новыми сочетаниями признаков: крылья длинные, тело черное; крылья короткие, а тело серое. Т.е. признаки «расцепились». Морган объяснил это тем, что хромосомы во время конъюгации в мейозе обмениваются генами. В результате получаются особи с новыми сочетаниями признаков, т.е. как и положено по третьему закону Менделя. Морган назвал этот обмен генами рекомбинацией.

Позже цитологи действительно подтвердили гипотезу Моргана, обнаружив обмен участками хромосом у кукурузы и у саламандры. Они назвали этот процесс кроссинговер.

Кроссинговер увеличивает разнообразие потомства в популяции.

Хромосомная теория наследственности. Хромосомные карты человека.

    Хромосомная теория Т.Моргана.

    Карты хромосом человека.

    Хромосомная теория Т.Моргана.

Наблюдая за большим количеством мух, Т. Морган выявил много мутаций, которые были связаны с изменением разных признаков: окраски глаз, формы крыльев, окраски тела и т.д.

При изучении наследования этих мутаций оказалось, что многие из них наследуются, сцепленно с полом.

Такие гены легко было выделить, потому что они передавались от материнских особей только потомству мужского пола, и через них - только их потомкам женского пола.

У человека признаки, наследуемые через Y-хромосому, могут быть только у лиц мужского пола, а наследуемые через Х-хромосому - у лиц как одного, так и другого пола.

При этом особь женского пола может быть гомо или гетерозиготной по генам, расположенным в Х-хромосоме, а рецессивные гены могут проявляться у нее только в гомозиготном состоянии.

У особи мужского пола только одна Х-хромосома, поэтому все локализованные в ней гены, в том числе и рецессивные, проявляются в фенотипе. Такие патологические состояния, как гемофилия (медленная свертываемость крови, обусловливающая повышенную кровоточивость), дальтонизм (аномалия зрения, при которой человек путает цвета, чаще всего красный с зеленым), наследуются у человека сцепленно с полом.

Исследование наследования, сцепленного с полом, стимулировало изучение сцепления между другими генами.

В качестве примера можно привести эксперименты на дрозофиле.

У дрозофилы существует мутация, обусловливающая черный цвет тела. Ген, ее вызывающий, рецессивен по отношению к гену серого цвета, характерному для дикого типа. Мутация, вызывающая рудиментарные крылья, также рецессивна к гену, приводящему к развитию нормальных крыльев. Серия скрещиваний показала, что ген черного цвета тела и ген рудиментарных крыльев передавались вместе, как будто оба эти признаки вызывались одним геном.

Причина такого результата заключалась в том, что гены, обусловливающие два признака, локализованы в одной хромосоме. Это явление так называемого полного сцепления генов. В каждой хромосоме расположено много генов, которые наследуются совместно, и такие гены называют группой сцепления.

Таким образом, закон независимого наследования и комбинирования признаков, установленный Г. Менделем, действует только в случае, когда гены, определяющие тот или иной признак, находятся в разных хромосомах (разных группах сцепления).

Однако гены, находящиеся в одной хромосоме, сцеплены не абсолютно.

    Сцепленные гены, кроссинговер.

Причиной неполного сцепления является кроссинговер. Дело в том, что во время мейоза, при конъюгации хромосом, происходит их перекрест, и гомологичные хромосомы обмениваются гомологичными участками. Это явление называется кроссинговером. Он может произойти в любом участке гомологичных Х-хромосом, даже в нескольких местах одной пары хромосом. Причем, чем дальше друг от друга расположены локусы в одной хромосоме, тем чаще между ними следует ожидать перекрест и обмен участками.

Рисунок 17 Кроссинговер: а - схема процесса; б - варианты кроссинговера между гомологичными хромосомами

    Карты хромосом человека.

В каждой группе сцепления генов содержатся сотни или даже тысячи генов.

В экспериментах А. Стертеванта в 1919 г. было показано, что гены внутри хромосомы расположены в линейном порядке.

Это было доказано путем анализа неполного сцепления в системе генов, принадлежащей к одной группе сцепления.

Изучение взаимоотношений между тремя генами при кроссинговере выявило, что в случае, если частота перекреста между генами А и В равна величине М, а между генами А и С частота обменов равна величине N, то частота перекреста между генами В и С составит М+N, или М - N, в зависимости в какой последовательности расположены гены: АВС или АСВ. И такая закономерность распространяется на все гены этой группы сцепления. Объяснение этому возможно лишь при линейном расположении генов в хромосоме.

Эти эксперименты явились основой создания генетических карт хромосом многих организмов, в том числе и человека.

Единицей генетической или хромосомной карты является сан-тиморганида (сМ). Это мера расстояния между двумя локусами, равная длине участка хромосомы, в пределах которого вероятность кроссинговера составляет 1%.

Методы изучения групп сцепления генов, такие как: генетический анализ соматических гибридных клеток, изучение морфологических вариантов и аномалий хромосом, гибридизация нуклеиновых кислот на цитологических препаратах, анализ аминокислотной последовательности белков и другие, которые позволили описать все 25 групп сцепления у человека.

Одной из основных целей исследования генома человека является построение точной и подробной карты каждой хромосомы. На генетической карте показано относительное расположение генов и других генетических маркеров на хромосоме, а также относительное расстояние между ними.

Генетическим маркером для составления карты потенциально может быть любой наследуемый признак, будь то цвет глаз или длина фрагментов ДНК. Главное при этом - наличие легко выявляемых межиндивидуальных различий рассматриваемых маркеров. Карты хромосом подобно географическим картам можно строить в разном масштабе, т.е. с разным уровнем разрешения.

Самой мелкомасштабной картой является картина дифференциального окрашивания хромосом. Максимально возможный уровень разрешения - один нуклеотид. Следовательно, самой крупномасштабной картой какой-либо хромосомы является полная последовательность нуклеотидов. Размер генома человека равен примерно 3 164,7 м.п.н.

К настоящему времени для всех хромосом человека построены мелкомасштабные генетические карты с расстоянием между соседними маркерами в 7-10 миллионов пар оснований или 7-10 Мб (мегабаз, 1Мб = 1 млн пар оснований).

Современные сведения о генетических картах человека содержат информацию о более чем 50 000 маркеров. Это означает, что они находятся в среднем на расстоянии десятков тысяч пар оснований друг от друга, и между ними расположено несколько генов.

Для многих участков, конечно же, имеются и более подробные карты, но все же большая часть генов еще не идентифицирована и не локализована.

К 2005 г. идентифицировано более 22 000 генов и около 11 000 генов картированы на отдельных хромосомах, около 6 000 генов локализованы, из них 1000 - это гены, определяющие заболевания.

Неожиданным оказалось обнаружение необычно большого числа генов на хромосоме 19 (более 1400), что превышает число генов (800), известных на самой большой хромосоме человека 1.

Рисунок 18 Патологическая анатомия хромосомы 3

Митохондриальная ДНК представляет собой небольшую кольцевую молекулу длиной 16 569 пар оснований. В отличие от ДНК ядерного генома она не связана с белками, а существует в «чистом» виде.

Рисунок 19 Структура митохондриального генома

В митохондриальных генах отсутствуют интроны, а межгенные промежутки очень невелики. Эта небольшая молекула содержит 13 генов, кодирующих белки, и 22 гена транспортных РНК. Митохондриальная ДНК полностью секвенирована и на ней выявлены все структурные гены. Митохондриальные гены имеют гораздо большую, чем хромосомные, копийность (несколько тысяч на клетку).

Наследственные свойства крови.

    Механизм наследования групп крови системы АВО и резус системы.

В одном локусе мог быть либо доминантный, либо рецессивный ген. Однако часто признак определяется не двумя, а несколькими генами.

Три или большее число генов, которые могут находиться в одном локусе (занимать одно и то же место в гомологичных хромосомах), называют множественными аллелями.

В генотипе одного индивида может быть не более двух генов из этого множества, однако в генофонде популяции соответствующий локус может быть представлен большим числом аллелей.

Примером является наследование группы крови.

Ген I A кодирует синтез в эритроцитах специфического белка агглютиногена А, ген I B - агглютиногена B, ген I О не кодирует никакого белка и является рецессивным по отношению к I A и I B ; I A и I B не доминируют относительно друг друга. Таким образом, генотип I О I О определяет группу крови 0 (первую); I A I A и I A I О - группу А (вторую); I B I B и I B I О - группу В (третью); I A I B - группу АВ (четвертую).

Если у одного из родителей группа крови 0, то (за исключением маловероятных ситуаций, требующих дополнительных обследований) у него не может родиться ребенок с группой крови АВ.

    Причины и механизм возникновения осложнений при гемотрансфузии, связанных с неправильно подобранной донорской кровью.

По определению иммуногенетики группа крови это - феномен сочетания антигенов эритроцитов и антител в плазме.

Группа крови определяется сочетанием аллелей. в настоящее время известно более 30 видов аллелей детерминирующих группы крови. При гемотрансфузии учитываются те группы, которые могут вызвать осложнения. Это группы крови системы АВО, Rh-фактор, С, Kell. В донорской крови данных групп сохраняются антитела. В других известных группах антитела в донорской крови быстро разрушаются.

На рис. 20 а) показаны группы крови системы АВО, где антитела, соответствующие антигенам группы В, синего цвета, группе А – красного. Рисунок показывает, что плазма группы А имеет антитела к группе В, группы В антитела к группе А, группы АВ антител нет, группы О – антитела к группам А и В.

При гемотрансфузии (переливании крови) переливают плазму, так как, эритроциты каждого человека несут на поверхности мембраны огромное количество антигенов, специфичных для данного человека. Попав в кровь реципиента, они вызывают тяжело протекающие иммунные реакции.

Рисунок 20 Группы кови системы АВО; а) сочетание антигенов на эритроцитах и антител в плазме, b) гемолиз эритроцитов реципиента антителами донорской крови.

Если реципиенту с группой В перелить кровь (плазму) группы В, антитела в плазме немедленно вступят в взаимодействие с антигенами эритроцитов с последующим лизисом эритроцитов рис 20 b). Такой же механизм возникновения осложнений при гемотрансфузии, связанных с неправильно подобранной донорской кровью.

Практическое занятие

Решение задач, моделирующих скрещивание, сцепленное с полом наследование, наследование групп крови по системе АВО и резус систе

ХРОМОСОМНАЯ ТЕОРИЯ НАСЛЕДСТВЕННОСТИ (греческий chroma цвет, окраска + soma тело) - основная теория современной генетики, согласно которой главными материальными носителями наследственности являются хромосомы и расположенные на них в определенной линейной последовательности гены.

Основы теории сформулированы и экспериментально подтверждены Т. Морганом и его сотрудниками Стертевантом (A. Sturtevant), Меллером (H. J. Muller) и Бриджизом (С. В. Bridges) в начале 20 века. Законы наследственности и изменчивости определяются по хромосомной теории наследственности поведением хромосом в митозе (см.), мейозе (см.) и при образовании зиготы (см. Менделя законы).

В 1865 году Г. Мендель, изучая численные соотношения качественных признаков в гибридном потомстве, полученном от скрещивания отличающихся друг от друга растений гороха, высказал предположение о наличии наследственных факторов (позже названных генами) и чистоты половых клеток - гамет (см. Гаметы , Ген). Согласно этой гипотезе, проявление каждого наследственного признака у организмов с половым размножением контролируется парой наследственных факторов или по современной терминологии парой аллелей (см. Аллели) одного гена, один из которых передается зародышу яйцеклеткой, а другой - спермием. В процессе роста и развития все пары аллелей различных генов передаются от клетки к клетке, репродуцируясь (см. Репродукция хромосом) в каждом клеточном цикле, и обусловливают проявление соответствующих наследственных признаков. При созревании половых клеток все пары аллелей распределяются таким образом, что зрелые гаметы содержат только по одному аллелю для каждого наследственного признака, то есть являются «чистыми» (негибридными). Распределение членов каждой пары аллелей между созревающими половыми клетками происходит независимо от распределения членов других пар. В процессе оплодотворения мужские и женские гаметы сливаются, а их одинарные наборы объединяются, образуя парный набор нового поколения. Эта гипотеза Г. Менделя предвосхитила открытие хромосом, механизмов деления клеток и цитологических основ оплодотворения. В последней четверти 19 века начале 20 века Страсбургер (E. Strasburger), Бовери (Th. Boveri) и Уилсон (Е. В. Wilson) и другие ученые открыли существование хромосом (см.) и доказали, что каждому биол. виду свойствен определенный, постоянный хромосомный набор (см.). Было обнаружено, что парность набора восстанавливается в процессе оплодотворения, хромосомы разных пар неидентичны, индивидуальны и для осуществления нормального онтогенеза требуется полный хромосомный набор. Впоследствии были изучены механизмы поведения хромосом в митозе и мейозе. Сеттон (W. Sutton) в 1902 году обобщил данные о строении и функционировании хромосом и указал на полный параллелизм хромосомных циклов с поведением менделевских наследственных факторов.

Несоответствие обычно малого числа хромосом всегда большому числу наследственных признаков, которые, по Менделю, должны независимо рекомбинировать (см. Рекомбинация), X. де Фрис объяснил тем, что каждая из хромосом содержит большое число наследственных факторов, а в мейозе гомологичные (структурно идентичные) хромосомы свободно обмениваются аллелями, это и обеспечивает независимое комбинирование разных пар аллелей, расположенных в одной и той же паре гомологичных хромосом. Бейтсон (W. Bateson), Сондерс (Е. В. Saunders) и Паннет (R. С. Punnet) показали, что закон независимого комбинирования не является универсальным: некоторые пары наследственных признаков рекомбинируют реже ожидаемого и сохраняются преимущественно в тех сочетаниях, в каких они присутствовали у исходных родительских форм. Это явление было названо ими сцеплением признаков (и соответствующих наследственных факторов, генов). При этом сцепление неаллельных генов не бывает абсолютным, а сила сцепления одной пары генов относительно постоянна и не зависит от того, в каком из возможных сочетаний данные гены присутствовали у исходных родительских форм. Обоснованием хромосомной теории наследственности явилось открытие хромосомных механизмов определения пола (см. Пол, Хромосомы).

Решающие доказательства хромосомной теории наследственности были получены Т. Морганом и его сотрудниками при изучении наследования признаков у плодовой мушки дрозофилы (см.), когда было показано, что совокупность наследственных признаков дрозофилы распадается на неперекрывающиеся группы наследуемых признаков (групп сцепления), причем в пределах группы все признаки наследуются сцепленно, а любой признак одной группы независимо рекомбинирует с любым признаком другой. Общее число групп сцепления - четыре - оказалось равным числу хромосом в гаплоидном наборе. Наследование признаков, принадлежащих к трем из четырех группа сцепления у дрозофилы, происходило независимо от пола. Признаки же четвертой группы наследовались сцепленно с полом. Принадлежность генов, наследуемых сцепленно с полом, к X-хромосоме была доказана Бриджизом в прямых экспериментах и одновременно им было открыто новое явление - не-расхождение хромосом, ведущее к анеуплоидии (см. Хромосомный набор). У человека анеуплоидия является этиологической основой хромосомных болезней (см.).

Важным экспериментальным подтверждением хромосомной теории наследственности явилось установление расположения генов на хромосомах - построение генетических карт хромосом (см. Хромосомная карта). Параллельный генетический и цитологический анализ гибридного потомства показал, что рекомбинация исследуемых сцепленных внешних наследственных признаков неизменно сопровождается рекомбинацией соответствующих маркерных хромосом.

Т. Морган и его сотрудники высказали предположение, что частота рекомбинации сцепленных генов пропорциональна расстоянию между ними на хромосоме. В сериях скрещиваний они определили частоту рекомбинации между всеми известными им неаллельными генами во всех четырех группах сцепления у дрозофилы. В результате гены каждой группы сцепления выстроились в единственно возможный неравномерный линейный ряд, получивший название генетической карты хромосом. Были сделаны выводы о том, что гены на хромосомах расположены в постоянной последовательности во вполне определенных точках (локусах) и что обмен между генами не затрагивает их целостности. Позже были открыты структурные перестройки хромосом (см. Мутация), в результате которых целые блоки хромосомного материала могут перемещаться как в пределах одной хромосомы - инверсии (см.), транспозиции, так и между хромосомами - транслокации (см.), что приводит соответственно к изменению локализации генов.

Установление полного параллелизма в последовательности генов на генетических и цитологических картах хромосом послужило окончательным обоснованием хромосомной теории наследственности. В настоящее время этот параллелизм обнаружен не только у дрозофилы, но и у всех генетически изученных видов растений, микроорганизмов и животных, в том числе и у человека. Открытие цитоплазматической наследственности не противоречит хромосомной теории, так как по этому механизму наследуется менее 1 % всех признаков (см. Наследственность цитоплазматическая). Хромосомная теория наследственности объясняет все известные закономерности взаимодействия генов. Хромосомная теория наследственности служит не только для теоретического обоснования механизмов наследственности и изменчивости, но и имеет большое практическое значение для точного установления этиологических факторов генетически обусловленной патологии у человека.

Библиогр.: Бочков Н. П., Захаре в А. Ф. и Иванов В. И. Медицинская генетика, М., 1984; Гершензон С. М. Основы современной генетики, Киев, 1983; Морган Т. Г. Структурные основы наследственности, пер. с англ., М. - Пг., 1924; М о r g a n Т. Н. а. о. The mechanism of mendelian heredity, N. Y., 1915; Sturt evantA.H. A history of genetics, N. Y., 1965; Wilson E. B.The cell in development and heredity, N. Y., 1934.

Статья на конкурс «био/мол/текст»: В 2015 году исполняется 100 лет хромосомной теории наследственности . Ее основные положения были сформулированы Т. Морганом, А. Стёртевантом, Г. Мёллером и К. Бриджесом в книге «Механизм менделевской наследственности», вышедшей в Нью-Йорке в 1915 году. А позднее Томас Морган получил первую «генетическую» Нобелевскую премию - за открытие роли хромосом в наследственности. Юбилею хромосомной теории была посвящена международная конференция «Хромосома 2015», прошедшая в августе 2015 года в Новосибирском Академгородке. Нижеизложенный текст - это авторские комментарии к постеру об истории исследований хромосом , представленному на конференции, а теперь и на «Биомолекуле» - в самой «живой» конкурсной номинации «Наглядно о ненаглядном ».

Обратите внимание!

Более полную информацию можно найти в книге - Коряков Д.Е., Жимулев И.Ф. . Новосибирск: Изд-во СО РАН, 2009 г. - 258 с., ISBN 978-5-7692-1045-7

Спонсором номинации «Лучшая статья о механизмах старения и долголетия» является фонд «Наука за продление жизни ». Спонсором приза зрительских симпатий выступила фирма Helicon .

Спонсоры конкурса: Лаборатория биотехнологических исследований 3D Bioprinting Solutions и Студия научной графики, анимации и моделирования Visual Science .

Нижеизложенный текст - это краткие комментарии к постеру, а более полную информацию можно найти в книге: Коряков Д.Е., Жимулев И.Ф. Хромосомы. Структура и функции . Новосибирск: Изд-во СО РАН, 2009 г. - 258 с., ISBN 978-5-7692-1045-7.

Нажмите на изображение, чтобы увеличить (откроется в отдельном окне).

Генетическая роль хромосом

Каждый организм воспроизводит лишь себе подобных, и даже в мелких чертах внешности и поведения детей можно увидеть сходство с их родителями. Первый шаг на пути к пониманию, почему так происходит, сделал монах из австрийского города Брюнн (сейчас это чешский Брно) Г. Мендель (G. Mendel ). В 1865 году на заседании Брюннского общества испытателей природы он сделал доклад под названием «Опыты над растительными гибридами » (Versuche über Pflanzen-Hybriden ), а в 1866 году опубликовал его в сборнике трудов этого общества. Монах-естествоиспытатель описал результаты скрещиваний разных форм гороха и предположил наличие особых факторов, от которых зависят внешние признаки растения. Закономерности наследования этих факторов позднее были названы законами Менделя . Однако современники не поняли значения этого открытия и забыли про него, и лишь в 1900 году Г. де Фриз (H. de Vries , Нидерланды), К. Корренс (C. Correns , Германия) и Э. Чермак (E. Tschermak , Австрия) независимо друг от друга переоткрыли законы Менделя.

Задолго до всех этих исследований, которые сейчас бы назвали генетическим анализом, ученые, занимавшиеся ботаникой, зоологией, эмбриологией, гистологией и физиологией, заложили основу цитогенетики - науки о хромосомах. В разных статьях и книгах приоритет открытия хромосом отдан разным людям, но чаще всего годом их открытия называют 1882, а их первооткрывателем - немецкого анатома В. Флемминга (W. Flemming ). Однако справедливее было бы сказать, что он не открыл хромосомы, а лишь собрал и упорядочил в своей фундаментальной книге «Клеточное вещество, ядро и деление клетки » (Zellsubstanz, Kern und Zellteilung ) всё, что было известно о них на тот момент. Сам же термин «хромосома» ввел в науку немецкий гистолог Х. Вальдейер (H. Waldeyer ) в 1888 году, и в буквальном переводе термин означает «окрашенное тело».

Сейчас сложно сказать, кто сделал первое описание хромосом. В 1842 году швейцарский ботаник К. Нэгели (C. Nägeli ) опубликовал работу, в которой изобразил некие тельца, возникающие на месте ядра во время деления клетки при образовании пыльцы у лилии и традесканции. Возможно, это и были первые рисунки хромосом. Первое (1873 год) подробное описание митоза у плоского червя Mesostoma ehrenbergii принадлежит, как считают, немецкому зоологу А. Шнайдеру (F.A. Schneider ). Он описал не просто отдельные стадии митоза, которые видели и до него, а всю последовательность сложных изменений ядра: возникновение на его месте нитевидных телец, их расхождение в противоположные стороны и формирование новых ядер в дочерних клетках. Другой тип деления - мейоз - впервые подробно описал Э. ван Бенеден (E. van Beneden , Бельгия) в 1883 году, наблюдая за образованием гамет у аскариды. Он обнаружил, что в мейозе число хромосом уменьшается вдвое, а при оплодотворении восстанавливается, и, несмотря на различие в размерах, мужская и женская гаметы привносят в зиготу равное число хромосом.

* - Немного о месте и предназначении мобильных генетических элементов в про- и эукариотических геномах: «Мобильные генетические элементы прокариот: стратификация „общества“ бродяжек и домоседов », «Геном человека: полезная книга, или глянцевый журнал? », «„Мусорная“ ДНК управляет эволюцией млекопитающих? » - Ред.

Еще одним вариантом обмена участками является сестринский хроматидный обмен (СХО). Если при кроссинговере обмениваются хроматиды разных хромосом, то в случае СХО обмениваются хроматиды внутри одной хромосомы. Впервые СХО увидел американский генетик Д. Тейлор (J. Taylor ) в 1958 году.

С кроссинговером, хоть и неоднозначно, но связано формирование в профазе мейоза особой структуры из пары гомологичных хромосом - синаптонемного комплекса . Он был открыт в 1956 году независимо двумя американскими цитологами: М. Мозесом (M. Moses ) у речного рака и Д. Фоцеттом (D. Fawcett ) у мыши.

Многообразие хромосом

Если понимать под хромосомами любые носители наследственной информации, то они исключительно разнообразны по размеру, форме, внешнему виду, составу и числу. Хромосомы вирусов и бактерий могут быть кольцевыми и линейными. Хромосомы хлоропластов и митохондрий имеют кольцевую форму. Ядерные хромосомы эукариот имеют линейную форму, и именно они в виде телец X- и V-образной формы обычно приходят на ум при упоминании хромосом. Их называют митотическими или метафазными , поскольку такой вид они имеют во время деления - митоза (а метафаза - это одна из его стадий).

В 1912 году российский ботаник и цитолог С.Г. Навашин показал, что метафазные хромосомы обладают индивидуальным набором признаков, включающим размер, соотношение длин плеч, наличие спутников и перетяжек. Используя положение центромеры или соотношение длин плеч, С.Г. Навашин предложил классификацию митотических хромосом, которую используют и по сей день: метацентрики, субметацентрики, акроцентрики и телоцентрики.

Число хромосом у разных видов организмов может варьировать в самых широких пределах: от двух (у пары видов растений и одного из австралийских муравьев) до 1440 у папоротника Ophioglossum reticulatum и даже 1600 у морской радиолярии Aulacantha scolymantha . У человека число хромосом составляет 46, и оно было определено только в 1955 году, а опубликовано в 1956 цитогенетиком китайского происхождения Д. Чио (J. Tjio ) в соавторстве со своим руководителем А. Леваном (A. Levan ) в Швеции. Несколькими месяцами позже число подтвердили британцы Ч. Форд (C. Ford ) и Д. Хамертон (J. Hamerton ). Количество хромосом человека пытались определить еще с конца XIX века. В разных случаях получались разные значения: 18, 24, 47 или 48, - и только в 1955 году убедились, что хромосом у человека 46. В честь этого события на здании Института генетики Университета шведского города Лунда (где это событие и случилось) в 2003 году была открыта мемориальная доска с изображением той самой метафазной пластинки, по которой и были посчитаны хромосомы. Любопытно, что число хромосом шимпанзе (48) было выяснено на 15 лет раньше.

Общепринято, что число хромосом у каждого вида живых организмов постоянно, и в подавляющем большинстве случаев так и есть. Однако у некоторых животных и растений существуют так называемые сверхчисленные , или добавочные , хромосомы. Все хромосомы основного набора называют A-хромосомами . Они присутствуют всегда, и потеря или добавление хотя бы одной из них ведет к серьезным последствиям. Добавочные же хромосомы называют B-хромосомами , и их главные особенности - необязательность наличия и непостоянство числа. Впервые сверхчисленные хромосомы были найдены Э. Уилсоном (E. Wilson , США) в 1906 году у клопа Metapodius terminalis .

Своеобразный тип хромосом, названный хромосомами типа «ламповых щеток » , можно видеть в профазе первого деления мейоза при формировании ооцитов у птиц, рыб, рептилий и земноводных. Впервые их упоминает в своей фундаментальной книге (1882) В. Флеминг, который обнаружил эти хромосомы у аксолотля . Название они получили за сходство с ершиком для чистки керосиновых ламп.

Совершенно особое место среди всех типов хромосом занимают политенные хромосомы , которые имеют вид длинных толстых шнуров с поперечными полосками. Их открыл французский эмбриолог Э. Бальбиани (E. Balbiani ) в 1881 году в ядрах клеток слюнных желез личинок комара Chironomus plumosus . Политенные хромосомы сыграли выдающуюся роль в развитии генетики, цитогенетики и молекулярной биологии. С их помощью была показана линейность расположения генов и однозначно доказана генетическая роль хромосом. На политенных хромосомах дрозофил был впервые описан хромосомный полиморфизм диких популяций. Именно на политенных хромосомах были открыты гены белков теплового шока - компонентов системы, охраняющей клетки всех организмов от стрессорных воздействий. Политенные хромосомы сыграли ключевую роль в исследовании системы дозовой компенсации у дрозофилы.

Эволюция хромосом и геномов

В современных цитогенетических исследованиях важную роль играет дифференциальная окраска . Впервые способность хромосом окрашиваться дифференциально (то есть неодинаково по длине) продемонстрировали англичане С. Дарлингтон (C. Darlington ) и Л. Ла Кур (L. La Cour ) в 1938 году. Другой важный метод исследования - это гибридизация in situ , которая позволяет определить положение любого фрагмента ДНК на хромосоме. В основе метода лежит способность нуклеиновых кислот образовывать двуцепочечные молекулы, как ДНК-ДНК, так и РНК-ДНК. Придумали этот метод в 1969 году Д. Голл (J. Gall ) и М. Пардью (M. Pardue ) из США и Х. Джон (H. John ), М. Бирнстил (M. Birnstiel ) и К. Джонс (K. Jones ) из Великобритании .

Комбинация этих методов дает возможность подробно исследовать эволюцию хромосом и геномов*, а неизменным спутником эволюционного процесса являются хромосомные перестройки . По мере эволюции вида в его хромосомах неизбежно возникают перестройки, которые меняют порядок генов по сравнению с предковым видом. Чем дальше виды уходят друг от друга, тем больше хромосомных перестроек их отличает, и тем больше меняется порядок генов. Известны разные типы перестроек: делеции (потеря), дупликации (удвоение) и транслокации (перемещение) участков хромосом, которые обнаружил К. Бриджес в 1916, 1919 и 1923 годах соответственно. Еще один тип - это инверсии (поворот участка хромосомы на 180°), описанные А. Стёртевантом в 1921 году. Кроме того, существует особый тип перестроек, называемый Робертсоновской транслокацией (или центрическим слиянием). Первым ее описал американец У. Робертсон (W. Robertson ) в 1916 году, сравнивая хромосомные наборы близких видов саранчи. Суть этой перестройки сводится к слиянию двух акроцентрических хромосом в одну метацентрическую или субметацентрическую. Существует и обратный процесс - центрическое разделение. В этом случае мета- или субметацентрическая хромосома делится на две акроцентрических.

* - На биомолекуле можно найти внушительную подборку статей, так или иначе затрагивающих эволюцию геномов и изменения генетического кода: «Вирусные геномы в системе эволюции », «Под „генную гармошку“ », «Аллополиплоидия, или как разные геномы научились жить под одной крышей », «Полные геномы галапагосских вьюрков наконец-то раскрыли механизмы их эволюции », «Как составлялся геном эукариот: эндосимбиоз VS. непрерывный горизонтальный перенос »; «Таинственный код нашего генома », «Эволюция генетического кода », «У истоков генетического кода: родственные души », «Такие разные синонимы » и др. - Ред.

Положение хромосом в ядре

В конце XIX века Т. Бовери выдвинул идею о том, что хромосомы в интерфазном ядре не перемешаны случайным образом, а каждая из них занимает свое пространство. В 1909 году для обозначения этого пространства он ввел термин «хромосомная территория ». Первые доказательства существования хромосомных территорий были получены лишь в 1982 году немецким исследователем Т. Кремером (T. Cremer ) с соавторами. Позднее они визуализировали эти территории с помощью флуоресцентных красителей разного цвета. Оказалось, что хромосомы крупного размера с гораздо большей вероятностью можно найти в периферической части ядра, тогда как мелкие сосредоточены в основном в центральной. Кроме этого, на периферии ядра расположены районы хромосом, обедненные генами. Районы же, обогащенные генами, наоборот, расположены ближе к центру ядра.

Состав хромосом. ДНК

Хромосомы представляют собой структуры, состоящие из сложного комплекса ДНК, РНК и белков. Такой комплекс называется хроматином .

ДНК как химическое вещество открыл и выделил в чистом виде молодой швейцарский исследователь Ф. Мишер (F. Miescher ), работая в 1868–1869 годах в университете немецкого города Тюбингена. Он изучал химический состав лейкоцитов, источником которых служил гной с бинтов из местной хирургической клиники. Ф. Мишер разработал метод разделения ядер и цитоплазмы клеток и анализировал состав ядер. Помимо белков и липидов он обнаружил вещество, которое назвал нуклеином (от слова nucleus - ядро), а сейчас оно известно как ДНК. То, что именно ДНК является носителем наследственной информации, первыми установили в 1944 году американцы О. Эйвери (O. Avery ), К. МакЛауд (C. MacLeod ) и М. МакКарти (M. McCarty ) в экспериментах по заражению мышей пневмококками.

Структуру молекулы ДНК в виде двойной спирали расшифровали в 1953 году Ф. Крик (F. Crick ), Д. Уотсон (J. Watson ), М. Уилкинс (M. Wilkins ) и Р. Франклин (R. Franklin ), работавшие в Великобритании. За это открытие первые три исследователя получили Нобелевскую премию в 1962 году (историю открытия увлекательно описал в книге «Двойная спираль » Джеймс Уотсон, очень рекомендуем - Ред. ). Среди лауреатов нет Розалинды Франклин, поскольку она умерла от рака за четыре года до этого. Известно, что молекула ДНК состоит из последовательности четырех типов нуклеотидов : аденина, тимина, гуанина и цитозина*. За разработку метода определения их последовательности (секвенирования ) в 1980 году Нобелевской премии были удостоены П. Берг (P. Berg , США), У. Гилберт (W. Gilbert , США) и Ф. Сэнгер (F. Sanger , Великобритания).

* - Помимо четырех «классических» нуклеотидов в ДНК находят и их эпигенетически модифицированные варианты: метилцитозин и метиладенин («Шестое ДНК-основание: от открытия до признания »). А для некоторых бактериофагов Bacillus subtilis описано включение в ДНК «РНК-ового» урацила - Ред .

Если вначале секвенирование было трудоемким процессом, который позволял за раз «прочитать» лишь небольшой фрагмент, то по мере развития технологии стало возможным определить, например, полную последовательность митохондриальной ДНК человека (1981 год). В 1990 году был запущен амбициозный проект с целью полного секвенирования человеческого генома, а первый результат был представлен в 2001 году (биомолекула: «Геном человека: как это было и как это будет »). При этом секвенирование одного генома обошлось в колоссальную сумму - сотни миллионов долларов. Но технологии не стоят на месте, и появление новых методов позволило снизить затраты в тысячи раз*. Теперь секвенирование целого генома стало рядовым событием, и в 2009 году был запущен проект «Genome 10K». Его цель - это секвенирование и полная «сборка» в хромосомы 10 тысяч геномов животных.

* - «Закон» Мура прямо таки обречен на достижение конечных точек в разных науках (куда только его удалось притянуть). Биология даже обогнала электронику: постепенное падение стоимости секвенирования в 2007-м ушло в крутое пике, приближая эру рутинного чтения геномов в сельских фельдшерских пунктах по полисам ОМС. Правда, в обозримой перспективе всё же придется раскошелиться - долларов на 1000 плюс транспортные расходы: «Технология: 1,000 $ за геном ». Но и о таком могли лишь мечтать до появления новых методов секвенирования ДНК: «454-секвенирование (высокопроизводительное пиросеквенирование ДНК) ». И для понимания базовых (на уровне клетки) процессов развития организма и победы над онкозаболеваниями мечтать есть еще о чём: «Секвенирование единичных клеток (версия - Metazoa) » - Ред.

Новые технологии позволили развиться такому направлению, как исследование древней ДНК (биомолекула: «Древняя ДНК: Привет из прошлого »). Стало возможным выделять ДНК из костей возрастом десятки тысяч лет, и в 2008 году, например, был секвенирован митохондриальный геном неандертальца. Исследование древней ДНК, да и всю современную молекулярную биологию невозможно представить без использования ПЦР - полимеразной цепной реакции . За ее открытие американец К. Муллис (K. Mullis ) получил в 1993 году Нобелевскую премию .

Состав хромосом. Белки́

ДНК в хромосомах претерпевает несколько последовательных уровней упаковки, и на самом первом уровне двойная спираль ДНК оборачивается вокруг белковой глобулы, образуя нуклеосому (биомолекула: «Катится, катится к ДНК гистон »). В состав глобулы входят четыре типа белков, называемых гистонами . В 1982 году английский молекулярный биолог А. Клюг (A. Klug ) получил Нобелевскую премию за расшифровку трехмерной структуры нуклеосом. Косвенно нуклеосомы отмечены еще одной Нобелевской премией - в 1910 году ее получил немецкий биохимик А. Коссель (A. Kossel ) за изучение химического состава веществ, образующих ядро клетки, и в том числе за открытие гистонов.

C-концевые части молекул гистонов плотно свернуты, а N-концевые не имеют определенной структуры и свободно расходятся в стороны. В 1963–1964 годах было обнаружено, что некоторые аминокислотные остатки в гистонах могут быть ковалентно модифицированы, то есть ацетилированы или метилированы. Сейчас список модификаций значительно расширился, к остаткам аминокислот могут быть присоединены как относительно простые группы - метильная, ацетильная, фосфатная, - так и сложные крупные молекулы: биотин, олигопептиды или цепочки ADP-рибозы. Модификации появляются в основном на N- и, в гораздо меньшей степени, на С-концевой частях молекул гистонов.

Согласно теории гистонового кода , модификации, которые присутствуют на нуклеосомах в данном участке хроматина, не случайны, а «кодируют» какой-либо процесс. Такую точку зрения сформулировали в 2000–2001 годах Б. Штраль (B. Strahl , США), С. Эллис (C. Allis , США) и Т. Йенувайн (T. Jenuwein , Австрия). Схематично процесс работы гистонового кода можно составить из трех этапов. На первом этапе работают ферменты, которые производят модификацию определенных остатков в гистонах. На втором этапе с модифицированными аминокислотами связываются белки, имеющие для этой цели специальные домены. Каждый из доменов подходит только к «своей» модификации. На последнем же этапе эти связавшиеся белки привлекают другие белковые комплексы, запуская тем самым какой-то процесс.

* - О блестящих перспективах и отрезвляющих сомнениях в области применения ИПСК: «Французским исследователям удалось омолодить клетки столетних людей », «Снежный ком проблем с плюрипотентностью ». - Ред.

Гетерохроматин

Одним из объектов исследования многообразных эпигенетических процессов является гетерохроматин . Его как более темные участки хромосом открыл в 1907 году немецкий цитолог С. Гутхерц (S. Gutherz ), а термины «гетерохроматин» и «эухроматин» ввел в 1928 году другой немецкий цитолог Э. Хайц (E. Heitz ). Если совсем кратко, то эухроматин - это части хромосом, в которых расположено подавляющее большинство генов, тогда как гетерохроматин - это в основном районы с некодирующей ДНК, состоящей из коротких многократно повторенных последовательностей. Кроме этого, эу- и гетерохроматин различаются временем репликации в течение S-фазы клеточного цикла. Первым это отличие описал в 1959 году А. Лима-де-Фария (A. Lima-de-Faria , США), исследуя процесс репликации ДНК в семенниках у саранчи Melanoplus differentialis . Он показал, что гетерохроматин и начинает, и заканчивает репликацию своей ДНК позже эухроматина.

Важным свойством гетерохроматина является способность инактивировать помещенные в него эухроматиновые гены. Это явление называется эффектом положения мозаичного типа . Оно было обнаружено в 1930 году Г. Мёллером у дрозофилы. В результате хромосомной перестройки ген white попал в гетерохроматин. Этот ген отвечает за красный цвет глаз, а если он не работает, то глаза становятся белыми. У Г. Мёллера же получились мухи, глаза которых были ни красными, ни белыми, а пятнистыми, и у разных мух пятна были разной формы и размера. Это объясняется тем, что сам ген остается неповрежденным, а лишь случайным образом инактивируется в одних клетках глаза и работает в других.

Несмотря на многолетние исследования, процесс формирования гетерохроматина во многом до сих пор не ясен, особенно его самый первый этап. Предполагают, что ключевую роль в нём играет процесс, схожий с интерференцией РНК (биомолекула: «Обо всех РНК на свете, больших и малых »). За открытие этого явления два американца Э. Файр (A. Fire ) и К. Мелло (C. Mello ) получили Нобелевскую премию в 2006 году. Процесс интерференции сложен и многостадиен, но если не вдаваться в детали, то введение в клетку двухцепочечной РНК, гомологичной какому-либо гену, приводит к инактивации этого гена.

Теломеры

Интенсивное исследование теломер началось после того, как в 1978 году американцы Э. Блэкберн (E. Blackburn ) и Д. Голл секвенировали теломеру у инфузории Tetrahymena thermophila . Оказалось, что теломеры содержат последовательность из шести нуклеотидов, повторенную от 20 до 70 раз. В 1985 году К. Грейдер (C. Greider ) и Э. Блэкберн всё у той же инфузории открыли фермент, названный теломеразой , задачей которого является достраивание теломер. В 2009 году Э. Блэкберн , К. Грейдер и Д. Шостак (J. Szostak , США) получили Нобелевскую премию за исследование теломер и открытие фермента теломеразы (биомолекула: «„Нестареющая“ Нобелевская премия: в 2009 году отмечены работы по теломерам и теломеразе », «Старение - плата за подавление раковых опухолей? »).

Дозовая компенсация

Огромное число видов живых организмов, и человек в их числе, имеет негомологичные половые хромосомы, например, X и Y. При этом возникает необходимость в процессе, который называется дозовой компенсацией . Суть его заключается в следующем: поскольку число аутосом одинаково и у самцов, и у самок, то число аутосомных генов, а следовательно, и количество их продуктов, также будет одинаковым. А вот количество продуктов, синтезированных с генов, расположенных в половой хромосоме, у одного пола будет в 2 раза больше, чем у другого. Получается диспропорция, которую надо как-то регулировать, то есть уравнять «дозу генов». Решить эту проблему призвана система дозовой компенсации (биомолекула: «, США) выдвинули гипотезу, согласно которой у самок млекопитающих одна из двух X-хромосом инактивируется, и выбор ее случаен. Таким способом система дозовой компенсации млекопитающих уравнивает число работающих X-хромосом у разных полов: у самцов Х-хромосома всего одна, а у самок из двух только одна работает.

У дрозофилы природа изобрела другой механизм, противоположный по сути механизму млекопитающих: единственная X-хромосома самцов гиперактивируется и работает как две X-хромосомы самок. То, что суммарная активность двух копий какого-либо гена из X-хромосомы у самок и одной копии у самцов дрозофилы одинакова, было обнаружено еще на заре развития генетики. Это сделали К. Штерн в 1929 году и Г. Мёллер в 1931 году, так что дрозофила - это первый организм, у которого нашли дозовую компенсацию.

Ну и наконец...

Пара слов об открытии, которое не связано напрямую с хромосомами, но его очень активно используют, в том числе и для исследования разных сторон жизни хромосом. В 2008 году О. Шимомура (O. Shimomura ), М. Чалфи (M. Chalfie ) и Р. Циен (R. Tsien ) из США получили Нобелевскую премию за открытие, выделение и применение зеленого флуоресцирующего белка (GFP) медузы Aequorea victoria . С помощью молекулярных манипуляций можно соединить ген белка GFP с геном любого другого белка и получить химерный белок, который будет выполнять как свою исходную функцию, так и светиться зеленым цветом. Это дает возможность видеть, в каких клетках работает белок, в ядре или цитоплазме, в каких частях хромосом. Кроме зеленого (GFP) сейчас известны красный (RFP) и желтый (YFP) флуоресцирующие белки*.

* - О многообразии флуоресцентных белков и их применении в биологических исследованиях рассказывают материалы: «Флуоресцирующая Нобелевская премия по химии », «Флуоресцентные белки: разнообразнее, чем вы думали! », «„Нарисуем“ живую клетку ». А о биолюминесценции у наземных и морских организмов и работе люциферин-люциферазной системы - статьи: «Биолюминесценция: возрождение », «Микроскопическое свечение космического масштаба ». - Ред.

Похожие статьи