Солнечная радиация ее виды. Солнечная радиация: географический словарь

Солнечная радиация

Со́лнечная радиа́ция

электромагнитное излучение, исходящее от Солнца и поступающее в земную атмосферу. Длины волн солнечной радиации сосредоточены в диапазоне от 0,17 до 4 мкм с макс. на волне 0,475 мкм. Ок. 48 % энергии солнечного излучения приходится на видимую часть спектра (дл. волны от 0,4 до 0,76 мкм), 45 % – на инфракрасную (более 0,76, мкм), и 7 % – на ультрафиолетовую (менее 0,4 мкм). Солнечная радиация – осн. источник энергии процессов в атмосфере, океане, биосфере и т. д. Она измеряется в единицах энергии на единицу площади в единицу времени, напр. Вт/м². Солнечная радиация на верхней границе атмосферы на ср. расстоянии Земли от Солнца называется солнечной постоянной и составляет ок. 1382 Вт/м². Проходя сквозь земную атмосферу, солнечная радиация меняется по интенсивности и спектральному составу вследствие поглощения и рассеяния на частицах воздуха, газовых примесей и аэрозоля. У поверхности Земли спектр солнечного излучения ограничен 0,29–2,0 мкм, а интенсивность существенно снижена в зависимости от содержания примесей, высоты над уровнем моря и облачности. До земной поверхности доходит прямая радиация, ослабленная при прохождении сквозь атмосферу, а также рассеянная, образовавшаяся при рассеянии прямой в атмосфере. Часть прямой солнечной радиации отражается от земной поверхности и облаков и уходит в космос; рассеянная радиация также частично уходит в космос. Остальная солнечная радиация в осн. переходит в тепло, нагревая земную поверхность и частично воздух. Солнечная радиация, т. обр., представляет собой одну из осн. составляющих радиационного баланса.

География. Современная иллюстрированная энциклопедия. - М.: Росмэн . Под редакцией проф. А. П. Горкина . 2006 .


Смотреть что такое "солнечная радиация" в других словарях:

    Электромагнитное и корпускулярное излучения Солнца. Электромагнитное излучение охватывает диапазон длин волн от гамма излучения до радиоволн, его энергетический максимум приходится на видимую часть спектра. Корпускулярная составляющая солнечной… … Большой Энциклопедический словарь

    солнечная радиация - Полный поток электромагнитной радиации, излучаемой Солнцем и попадающий на Землю … Словарь по географии

    У этого термина существуют и другие значения, см. Радиация (значения). В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомн … Википедия

    Все процессы на поверхности земного шара, каковы бы они ни были, имеют своим источником солнечную энергию. Изучаются ли процессы чисто механические, процессы химические в воздухе, воде, почве, процессы ли физиологические или какие бы то ни было… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Электромагнитное и корпускулярное излучение Солнца. Электромагнитное излучение охватывает диапазон длин волн от гамма излучения до радиоволн, его энергетический максимум приходится на видимую часть спектра. Корпускулярная составляющая солнечной… … Энциклопедический словарь

    солнечная радиация - Saulės spinduliuotė statusas T sritis fizika atitikmenys: angl. solar radiation vok. Sonnenstrahlung, f rus. излучение Солнца, n; солнечная радиация, f; солнечное излучение, n pranc. rayonnement solaire, m … Fizikos terminų žodynas

    солнечная радиация - Saulės spinduliuotė statusas T sritis ekologija ir aplinkotyra apibrėžtis Saulės atmosferos elektromagnetinė (infraraudonoji 0,76 nm sudaro 45 %, matomoji 0,38–0,76 nm – 48 %, ultravioletinė 0,38 nm – 7 %) šviesos, radijo bangų, gama kvantų ir… … Ekologijos terminų aiškinamasis žodynas

    Излучение Солнца электромагнитной и корпускулярной природы. С. р. основной источник энергии для большинства процессов, происходящих на Земле. Корпускулярная С. р. состоит в основном из протонов, обладающих около Земли скоростями 300 1500… … Большая советская энциклопедия

    Эл. магн. и корпускулярное излучение Солнца. Эл. магн. излучение охватывает диапазон длин волн от гамма излучения до радиоволн, его энергетич. максимум приходится на видимую часть спектра. Корпускулярная составляющая С. р. состоит гл. обр. из… … Естествознание. Энциклопедический словарь

    прямая солнечная радиация - Солнечная радиация, поступающая непосредственно от солнечного диска … Словарь по географии

Книги

  • Солнечная радиация и климат Земли , Федоров Валерий Михайлович. В книге приводятся результаты исследований вариаций инсоляции Земли, связанных с небесно-механическими процессами. Анализируются низкочастотные и высокочастотные изменения солярного климата…

Солнечная радиация-поступающая на Землю энергия солнечного излучения в виде потока электромагнитных волн.

Солнце распространяет вокруг себя мощное электромагнитное излучение. Всего одна двухмиллиардная доля его попадает в верхние слои атмосферы Земли, но она составляет 2 500 000 000 миллиардов калорий в минуту.

Далеко не весь энергетический поток достигает поверхности Земли - большая его часть отбрасывается планетой обратно, в мировое пространство. Земля отражает атаку тех лучей, которые губительны для заселившего планету живого вещества. Главный «защитник» жизни-озон, образующийся в верхних слоях атмосферы, на высоте от 10 до 30 км. Озоновый «экран» поглощает и значительную часть теплового излучения земной поверхности, а затем возвращает тепло на Землю, создавая так называемый парниковый эффект. С увеличением интенсивности солнечной радиации возрастает и количество озона в атмосфере, усиливается его отепляющее действие.

На дальнейшем пути к Земле солнечные лучи встречают препятствия в виде наполняющих атмосферу водяного пара, молекул углекислого газа и частичек пыли, взвешенной в воздухе. Атмосферный «фильтр» поглощает значительную часть лучей, рассеивает их, отражает. Особенно велика отражательная способность облаков. В результате непосредственно земная поверхность получает лишь 2/3 той радиации, которая пропускается озоновым экраном. Но и из этой части многое отражается в соответствии с отражательной способностью различных поверхностей (наиболее интенсивно отражает снег).

«Бухгалтерия» солнечной радиации для всего земного шара складывается следующим образом. На верхней границе атмосферы каждый квадратный сантиметр поверхности пластинки, помещенной перпендикулярно к солнечным лучам, будет получать в минуту 2 калории. Эту величину называют солнечной постоянной.

На всю поверхность земли доходит чуть более 100 000 калорий на 1 см2 в минуту. Эта радиация поглощается растительностью, почвой, поверхностью морей и океанов. Она превращается в тепло, которое расходуется на прогревание слоев атмосферы, движение водных и воздушных масс, на создание всего великого разнообразия форм жизни на нашей огромной планете.

Солнечная радиация поступает на поверхность Земли разными путями: прямо от Солнца, если оно не закрыто облаками (прямая радиация); от небесного свода и облаков, рассеивающих прямые солнечные лучи (рассеянная, или диффузная); от атмосферы, нагревшейся в результате поглощения радиации (тепловая, или длинноволновая). Прямая и рассеянная радиация приходит только днем. Вместе они составляют суммарную, или интегральную, радиацию. Та солнечная радиация, которая остается после потери на отражение от поверхности, называется поглощенной. Солнечную радиацию измеряют с помощью приборов. Они называются актинометрическими. (от греческого слова «актинос»-луч).

В последние годы все большее внимание уделяется проблеме использования солнечной энергии в народном хозяйстве. В самом деле, Солнце заливает Землю целым океаном энергии, который практически неисчерпаем. Человечеству необходимо научиться собирать эту энергию и преобразовывать в другие формы, удобные для использования. Исследованием этой проблемы в нашей стране занимается созданный в Ашхабаде Институт солнечной энергии.

Уже разработаны различные виды гелиоустановок («гелиос» - по-гречески солнце). Задача их-повысить плотность рассеянной вокруг солнечной энергии. Усилить концентрацию солнечной энергии возможно лишь с помощью больших зеркал, фокусирующих лучи. Пара-болоидные зеркала повышают в фокусе температуру до 3600°С. При этой температуре плавятся практически все металлы; солнечная плавка обеспечивает исключительную чистоту сплавов, за ней будущее.

В разных странах работают уже солнечные опреснители, водонагреватели, сушители. Созданы компактные образцы «солнечных кухонь» для тех, кто живет в пустыне,-для чабанов, строителей, геологов. Полностью на энергии солнечной радиации работают запускаемые с Земли искусственные спутники, космические корабли и лаборатории.

Яркое светило припекает нас горячими лучами и заставляет задуматься о значении радиации в нашей жизни, ее пользе и вреде. Что же такое солнечная радиация? Урок школьной физики предлагает нам для начала ознакомиться с понятием электромагнитной радиации в целом. Этим термином обозначают еще одну форму материи - отличную от вещества. Сюда относится и видимый свет, и спектр, не воспринимаемый глазом. То есть рентгеновские лучи, гамма-лучи, ультрафиолетовые и инфракрасные.

Электромагнитные волны

При наличии источника-излучателя радиации ее электромагнитные волны распространяются во всех направлениях со скоростью света. Эти волны, как любые другие, имеют определенные характеристики. К ним относятся частота колебаний и длина волны. Свойством испускать радиацию обладают любые тела, чья температура отличается от абсолютного нуля.

Солнце - основной и мощнейший источник радиации вблизи нашей планеты. В свою очередь, Земля (ее атмосфера и поверхность) и сама излучает радиацию, но в другом диапазоне. Наблюдение за температурными условиями на планете в течение длительных промежутков времени породило гипотезу о равновесии количества тепла, получаемого от Солнца и отдаваемого в космическое пространство.

Радиация солнца: спектральный состав

Абсолютное большинство (около 99%) солнечной энергии в спектре лежит в интервале длин волн от 0,1 до 4 мкм. Оставшийся 1% - лучи большей и меньшей длины, включая радиоволны и рентгеновское излучение. Около половины лучистой энергии солнца приходится на тот спектр, который мы воспринимаем взглядом, примерно 44% - на инфракрасное излучение, 9% - на ультрафиолетовое. Откуда нам известно, как делится солнечная радиация? Расчет ее распределения возможен благодаря исследованиям с космических спутников.

Есть вещества, способные приходить в особое состояние и излучать дополнительную радиацию другого волнового диапазона. К примеру, встречается свечение при низких температурах, не характерных для испускания света данным веществом. Данный вид радиации, получивший название люминесцентной, не поддается обычным принципам теплового излучения.

Явление люминесценции происходит после поглощения веществом некоторого количества энергии и перехода в другое состояние (т. н. возбужденное), более энергетически высокое, чем при собственной температуре вещества. Люминесценция появляется при обратном переходе - из возбужденного в привычное состояние. В природе мы можем наблюдать ее в виде ночных свечений неба и полярного сияния.

Наше светило

Энергия солнечных лучей - почти единственный источник тепла для нашей планеты. Собственная радиация, идущая из ее глубин к поверхности, имеет интенсивность, меньшую примерно в 5 тысяч раз. При этом видимый свет - один из важнейших факторов жизни на планете - лишь часть солнечной радиации.

Энергия солнечных лучей переходит в тепло меньшей частью - в атмосфере, большей - на поверхности Земли. Там она расходуется на нагревание воды и почвы (верхних слоев), которые затем отдают тепло воздуху. Будучи нагретыми, атмосфера и земная поверхность, в свою очередь, испускают инфракрасные лучи в космос, при этом охлаждаясь.

Солнечная радиация: определение

Ту радиацию, которая идет к поверхности нашей планеты непосредственно от солнечного диска, принято именовать прямой солнечной радиацией. Солнце распространяет ее во всех направлениях. С учетом огромного расстояния от Земли до Солнца, прямая солнечная радиация в любой точке земной поверхности может быть представлена как пучок параллельных лучей, источник которых - практически в бесконечности. Площадь, расположенная перпендикулярно лучам солнечного света, получает, таким образом, ее наибольшее количество.

Плотность потока радиации (или энергетическая освещенность) служит мерой ее количества, падающего на определенную поверхность. Это объем лучистой энергии, попадающей в единицу времени на единицу площади. Измеряется данная величина - энергетическая освещенность - в Вт/м 2 . Наша Земля, как всем известно, обращается вокруг Солнца по эллипсоидной орбите. Солнце находится в одном из фокусов данного эллипса. Поэтому ежегодно в определенное время (в начале января) Земля занимает положение ближе всего к Солнцу и в другое (в начале июля) - дальше всего от него. При этом величина энергетической освещенности меняется в обратной пропорции относительно квадрата расстояния до светила.

Куда девается дошедшая до Земли солнечная радиация? Виды ее определяются множеством факторов. В зависимости от географической широты, влажности, облачности, часть ее рассеивается в атмосфере, часть поглощается, но большинство все же достигает поверхности планеты. При этом незначительное количество отражается, а основное - поглощается земной поверхностью, под действием чего та подвергается нагреванию. Рассеянная же солнечная радиация частично также попадает на земную поверхность, частично ею поглощается и частично отражается. Остаток ее уходит в космическое пространство.

Как происходит распределение

Однородна ли солнечная радиация? Виды ее после всех "потерь" в атмосфере могут различаться по своему спектральному составу. Ведь лучи с различными длинами и рассеиваются, и поглощаются по-разному. В среднем атмосферой поглощается около 23% ее первоначального количества. Примерно 26% всего потока превращается в рассеянную радиацию, 2/3 которой попадает затем на Землю. В сущности, это уже другой вид радиации, отличный от первоначального. Рассеянная радиация посылается на Землю не диском Солнца, а небесным сводом. Она имеет другой спектральный состав.

Поглощает радиацию главным образом озон - видимый спектр, и ультрафиолетовые лучи. Излучение инфракрасного диапазона поглощается углекислым газом (диоксидом углерода), которого, кстати, в атмосфере очень немного.

Рассеяние радиации, ослабляющее ее, происходит для любых длин волн спектра. В процессе его частицы, попадая под электромагнитное воздействие, перераспределяют энергию падающей волны во всех направлениях. То есть частицы служат точечными источниками энергии.

Дневной свет

Вследствие рассеяния свет, идущий от солнца, при прохождении слоев атмосфер изменяет цвет. Практическое значение рассеяния - в создании дневного света. Если бы Земля была лишена атмосферы, освещение существовало бы лишь в местах попадания прямых или отраженных поверхностью лучей солнца. То есть атмосфера - источник освещения днем. Благодаря ей светло и в местах, недоступных прямым лучам, и тогда, когда солнце скрывается за тучами. Именно рассеяние придает воздуху цвет - мы видим небо голубым.

А от чего зависит солнечная радиация еще? Не следует сбрасывать со счетов и фактор мутности. Ведь ослабление радиации происходит двумя путями - собственно атмосферой и водяным паром, а также различными примесями. Уровень запыленности возрастает летом (как и содержание в атмосфере водяного пара).

Суммарная радиация

Под ней подразумевается общее количество радиации, падающей на земную поверхность, - и прямой, и рассеянной. Суммарная солнечная радиация уменьшается при облачной погоде.

По этой причине летом суммарная радиация в среднем выше до полудня, чем после него. А в первом полугодии - больше, чем во втором.

Что происходит с суммарной радиацией на земной поверхности? Попадая туда, она в большинстве своем поглощается верхним слоем почвы или воды и превращается в тепло, часть ее при этом отражается. Степень отражения зависит от характера земной поверхности. Показатель, выражающий процентное отношение отраженной солнечной радиации к общему ее количеству, попадающему на поверхность, именуют альбедо поверхности.

Под понятием собственного излучения земной поверхности понимают длинноволновую радиацию, излучаемую растительностью, снежным покровом, верхними слоями воды и почвы. Радиационным балансом поверхности именуют разность между ее поглощенным количеством и излучаемым.

Эффективное излучение

Доказано, что встречное излучение практически всегда меньше, чем земное. Из-за этого поверхность земли несет тепловые потери. Разность величин собственного излучения поверхности и атмосферного получило название эффективного излучения. Это фактически чистая потеря энергии и как результат - тепла ночью.

Существует оно и в дневные часы. Но в течение дня частично компенсируется или даже перекрывается поглощенной радиацией. Поэтому поверхность земли теплее днем, чем ночью.

О географическом распределении радиации

Солнечная радиация на Земле в течение года распределяется неравномерно. Ее распределение несет зональный характер, причем изолинии (соединяющие точки одинаковых значений) радиационного потока вовсе не идентичны широтным кругам. Такое несоответствие вызвано различными уровнями облачности и прозрачности атмосферы в разных районах Земного шара.

Наибольшее значение суммарная солнечная радиация в течение года имеет в субтропических пустынях с малооблачной атмосферой. Гораздо меньше оно в лесных областях экваториального пояса. Причина этого - повышенная облачность. По направлению к обоим полюсам этот показатель убывает. Но в районе полюсов возрастает заново - в северном полушарии меньше, в районе снежной и малооблачной Антарктиды - больше. Над поверхностью океанов в среднем солнечная радиация меньше, чем над материками.

Почти повсюду на Земле поверхность имеет положительный радиационный баланс, то есть за одно и то же время приток радиации больше эффективного излучения. Исключение составляют области Антарктиды и Гренландии с их ледяными плато.

Грозит ли нам глобальное потепление?

Но вышесказанное не означает ежегодного потепления земной поверхности. Излишек поглощенной радиации компенсируется утечкой тепла с поверхности в атмосферу, что происходит при изменениях фазы воды (испарении, конденсации в виде облаков).

Таким образом, радиационного равновесия как такового на поверхности Земли не существует. Зато имеет место тепловое равновесие - поступление и убыль тепла уравновешивается разными путями, в том числе радиационным.

Распределение баланса по карте

В одних и тех же широтах Земного шара радиационный баланс больше на поверхности океана, чем над сушей. Объяснить это можно тем, что слой, поглощающий радиацию, в океанах имеет большую толщину, в то же время эффективное излучение там меньше из-за холода морской поверхности по сравнению с сушей.

Значительные колебания амплитуды распределения его наблюдаются в пустынях. Баланс там ниже из-за высокого эффективного излучения в условиях сухого воздуха и малой облачности. В меньшей степени он понижен в районах муссонного климата. В теплый сезон облачность там повышена, а поглощенная солнечная радиация меньше, чем в других районах той же широты.

Конечно же, главный фактор, от которого зависит среднегодовое солнечное излучение, это широта того или иного района. Рекордные "порции" ультрафиолета достаются странам, расположенным вблизи экватора. Это Северо-Восточная Африка, ее восточное побережье, Аравийский полуостров, север и запад Австралии, часть островов Индонезии, западная часть побережья Южной Америки.

В Европе самую большую дозу как света, так и радиации принимают на себя Турция, юг Испании, Сицилия, Сардиния, острова Греции, побережье Франции (южная часть), а также часть областей Италии, Кипр и Крит.

А как у нас?

Солнечная суммарная радиация в России распределена, на первый взгляд, неожиданно. На территории нашей страны, как ни странно, вовсе не черноморские курорты держат пальму первенства. Самые большие дозы солнечного излучения приходятся на территории, пограничные с Китаем, и Северную Землю. В целом солнечная радиация в России особой интенсивностью не отличается, что вполне объясняется нашим северным географическим положением. Минимальное количество солнечного света достается северо-западному региону - Санкт-Петербургу вместе с прилегающими районами.

Солнечная радиация в России уступает показателям Украины. Там больше всего ультрафиолета достается Крыму и территориям за Дунаем, на втором месте - Карпаты с южными областями Украины.

Суммарная (к ней относится и прямая, и рассеянная) солнечная радиация, попадающая на горизонтальную поверхность, приводится по месяцам в специально разработанных таблицах для разных территорий и измеряется в МДж/м 2 . Например, солнечная радиация в Москве имеет показатели от 31-58 в зимние месяцы до 568-615 летом.

О солнечной инсоляции

Инсоляция, или объем полезного излучения, падающего на освещаемую солнцем поверхность, значительно варьируется в разных географических точках. Годовая инсоляция рассчитывается на один квадратный метр в мегаваттах. Например, в Москве эта величина - 1,01, в Архангельске - 0,85, в Астрахани - 1,38 МВт.

При определении ее нужно учитывать такие факторы, как время года (зимой ниже освещенность и долгота дня), характер местности (горы могут загораживать солнце), характерные для данной местности погодные условия - туман, частые дожди и облачность. Световоспринимающая плоскость может быть ориентирована вертикально, горизонтально или под наклоном. Количество инсоляции, как и распределение солнечной радиации в России, представляет собой данные, сгруппированные в таблицу по городам и областям с указанием географической широты.

Все виды солнечных лучей достигают земной поверхности тремя путями - в виде прямой, отраженной и рассеянной солнечной радиации.
Прямая солнечная радиация - это лучи, идущие непосредственно от солнца. Её интенсивность (эффективность) зависит от высоты стояния солнца над горизонтом: максимум наблюдается в полдень, а минимум - утром и вечером; от времени года: максимум - летом, минимум - зимой; от высоты местности над уровнем моря (в горах выше, чем на равнине); от состояния атмосферы (загрязнённость воздуха уменьшает её). От высоты стояния солнца над горизонтом зависит и спектр солнечной радиации (чем ниже стоит солнце над горизонтом, тем меньше ультрафиолетовых лучей).
Отраженная солнечная радиация - это лучи солнца, отраженные земной или водной поверхностью. Она выражается процентным отношением отраженных лучей к их суммарному потоку и называется альбедо. Величина альбедо зависит от характера отражающих поверхностей. При организации и проведении солнечных ванн необходимо знать и учитывать альбедо поверхностей, на которых проводятся солнечные ванны. Некоторые из них характеризуются избирательной отражающей способностью. Снег полностью отражает инфракрасные лучи, а ультрафиолетовые - в меньшей степени.

Рассеянная солнечная радиация образуется в результате рассеивания солнечных лучей в атмосфере. Молекулы воздуха и взвешенные в нем частицы (мельчайшие капельки воды, кристаллики льда и т. п.), называемые аэрозолями, отражают часть лучей. В результате многократных отражений часть их все же достигает земной поверхности; это рассеянные солнечные лучи. Рассеиваются в основном ультрафиолетовые, фиолетовые и голубые лучи, что и определяет голубой цвет неба в ясную погоду. Удельный вес рассеянных лучей велик в высоких широтах (в северных районах). Там солнце стоит низко над горизонтом, и потому путь лучей к земной поверхности длиннее. На длинном пути лучи встречают больше препятствий и в большей степени рассеиваются.

(http://new-med-blog.livejournal.com/204

Суммарная солнечная радиация - вся прямая и рассеянная солнечная радиация, поступающая на земную поверхность. Суммарная солнечная радиация характеризуется интенсивностью. При безоблачном небе суммарная солнечная радиация имеет максимальное значение около полудня, а в течение года - летом.

Радиационный баланс
Радиационный баланс земной поверхности - разность между суммарной солнечной радиацией, поглощенной земной поверхностью, и ее эффективным излучением. Для земной поверхности
- приходная часть есть поглощенная прямая и рассеянная солнечная радиация, а также поглощенное встречное излучение атмосферы;
- расходная часть состоит из потери тепла за счет собственного излучения земной поверхности.

Радиационный баланс может быть положительным (днем, летом) и отрицательным (ночью, зимой); измеряется в кВт/кв.м/мин.
Радиационный баланс земной поверхности - важнейший компонент теплового баланса земной поверхности; один из основных климатообразующих факторов.

Тепловой баланс земной поверхности - алгебраическая сумма всех видов прихода и расхода тепла на поверхность суши и океана. Характер теплового баланса и его энергетический уровень определяют особенности и интенсивность большинства экзогенных процессов. Основными составляющими теплового баланса океана являются:
- радиационный баланс;
- затрата тепла на испарение;
- турбулентный теплообмен между поверхностью океана и атмосферой;
- вертикальный турбулентный теплообмен поверхности океана с нижележащими слоями; и
- горизонтальная океаническая адвекция.

(http://www.glossary.ru/cgi-bin/gl_sch2.c gi?RQgkog.outt:p!hgrgtx!nlstup!vuilw)tux yo)

Измерение солнечной радиации.

Для измерения солнечной радиации служат актинометры и пиргелиометры. Интенсивность солнечной радиации обычно измеряется по её тепловому действию и выражается в калориях на единицу поверхности за единицу времени.

(http://www.ecosystema.ru/07referats/slo vgeo/967.htm)

Измерение интенсивности солнечной радиации производится пиранометром Янишевского в комплекте с гальванометром или потенциометром.

При замерах суммарной солнечной радиации пиранометр устанавливают без теневого экрана, при замерах же рассеянной радиации с теневым экраном. Прямая солнечная радиация вычисляется как разность между суммарной и рассеянной радиацией.

При определении интенсивности падающей солнечной радиации на ограждение пиранометр устанавливают на него так, чтобы воспринимаемая поверхность прибора была строго параллельна поверхности ограждения. При отсутствии автоматической записи радиации замеры следует производить через 30 мин в промежутке между восходом и заходом солнца.

Радиация, падающая на поверхность ограждения, полностью не поглощается. В зависимости от фактуры и окраски ограждения некоторая часть лучей отражается. Отношение отраженной радиации к падающей, выраженное в процентах, называется альбедо поверхности и измеряется альбедометром П.К. Калитина в комплекте с гальванометром или потенциометром.

Для большей точности наблюдения следует проводить при ясном небе и при интенсивном солнечном облучении ограждения.

(http://www.constructioncheck.ru/default.a spx?textpage=5)

Солнечную радиацию, в состав которой входят длины электромагнитных волн менее 4 мкм1 , в метеорологии принято называть коротковолновой. В солнечном спектре различают ультрафиолетовую (< 400 нм), видимую (= 400…760 нм) и инфракрасную (> 760 нм) части.

Солнечная радиация, поступающая непосредственно от солнечного диска, называется прямой солнечной радиацией S. Обычно она характеризуется интенсивностью, т. е. количеством лучистой энергии в калориях, проходящей в 1 минуту через 1 см2 площади, расположенной перпендикулярно к солнечным лучам.

Интенсивность прямой солнечной радиации, поступающей на верхнюю границу земной атмосферы, называют солнечной постоянной S 0 . Она составляет примерно 2 кал/см2 мин. У земной поверхности прямая солнечная радиация всегда значительно меньше этой величины, так как, проходя через атмосферу, ее солнечная энергия ослабляется вследствие поглощения и рассеяния молекулами воздуха и взвешенными частичками (пылинками, капельками, кристалликами). Ослабление прямой солнечной радиации атмосферой характеризуется или коэффициентом ослабленияа, или коэффициентом прозрачностир.

Для расчета прямой солнечной радиации, приходящейся на перпендикулярную поверхность, обычно применяют формулу Буге:

Sm S0 pm m ,

где S m – прямая солнечная радиация, кал см-2 мин-1 , при данной массе атмосферы;S 0 солнечная постоянная;р т коэффициент прозрачности при данной массе атмосферы;т масса атмосферы на пути солнечных

лучей; m

При малых значениях высоты солнца (h

< 100 ) мас-

sin h

са находится не по формуле, а по таблице Бемпорада . Из формулы (3.1) следует, что

Или р = е

Прямая солнечная радиация, приходящаяся на горизонтальную по-

верхность S" , вычисляется по формуле

S = S sin h .,

1 1 мкм = 10-3 нм = 10-6 м. Микрометры еще называют микронами, а нанометры – миллимикронами. 1 нм = 10-9 м.

где h высота солнца над горизонтом.

Радиация, поступающая на земную поверхность от всех точек небесного свода, называется рассеянной D. Сумма прямой и рассеянной солнечной радиации, приходящей на горизонтальную земную поверхность, представляет собой суммарную солнечную радиациюQ :

Q = S" + D.(3.4)

Суммарная радиация, дошедшая до земной поверхности, частично отражаясь от нее, создает отраженную радиацию R, направленную от земной поверхности в атмосферу. Остальная часть cyммарной солнечной радиации поглощается земной поверхностью. Отношение отраженной от земной поверхности радиации к пocтупающей суммарной радиации называется альбедоА.

Величина A R характеризует отражательную способность зем-

ной поверхности. Она выражается в долях единицы или процентах. Разность между суммарной и отраженной радиацией называется поглощенной радиацией, или балансом коротковолновой радиации земной поверхности В к :

Поверхность земли и земная атмосфера, как и все тела, имеющие температуру выше абсолютного нуля, также излучают радиацию, которую условно называют длинноволновой. Ее длины волн - примерно от

4 до 100 мкм.

Собственное излучение земной поверхности, по закону Cтефана - Больцмана, пропорционально четвертой степени ее абсолютной темпе-

ратуры Т:

Ез = Т4 ,

где = 0,814 10-10 кал/см2 мин град4 постоянная Стефана-Больцмана;относительная излучательная способность деятельной поверхности: для большей части естественных поверхностей 0,95.

Излучение атмосферы направлено как к Земле, так и в мировое пространство. Часть длинноволнового атмосферного излучения, направленная вниз и поступающая к земной поверхности, называется встречным излучением атмосферы и обозначается Е а .

Разность между собственным излучением земной поверхности Е з и встречным излучением атмосферыЕ а называется эффективным излуче-

нием земной поверхности Е эф :

Е эф= Е зЕ а.

Величина Е эф , взятая с обратным знаком, составляет баланс длинноволновой радиации на земной поверхностиВ д .

Разность между всей приходящей и всей уходящей радиацией назы-

3.1. Приборы для измерения радиационного баланса

и его составляющих

Для измерения интенсивности лучистой энергии применяются актинометрические приборы различной конструкции. Приборы бывают абсолютные и относительные. По абсолютным приборам показания получают сразу в тепловых единицах, а по относительным - в относительных, поэтому для таких приборов необходимо знать переводные множители для перехода к тепловым единицам.

Абсолютные приборы по устройству и обращению довольно сложны и не имеют массового распространения. Применяются они преимущественно для поверки относительных приборов. В конструкции относительных приборов чаще всего используется термоэлектрический метод, который основан на зависимости силы термотока от разности температур спаев.

Приемником термоэлектрических приборов служат термобатареи из спаев двух металлов (рис. 3.1). Разность температур спаев создается в результате различной поглотительной способности спаев или

ванометром 3. Во втором случае разность температур спаев достигается путем затенения одних (спай3) и облучения других (спай2) солнечной радиацией. Так как разность температур спаев обусловливается приходящей солнечной радиацией, то интенсивность ее будет пропорциональна силе термоэлектрического тока:

где N отклонение стрелки гальванометра;а переводный множитель, кал/см2 мин.

Таким образом, для выражения интенсивности радиации в тепловых единицах необходимо показания гальванометра умножить на переводный множитель.

Переводный множитель для пары термоэлектрический прибор – гальванометр определяют путем сравнения с контрольным прибором или рассчитывают по электрическим характеристикам, содержащимся в сертификатах гальванометра и актинометрического прибора, с точностью до 0,0001 кал/см2 мин по формуле

(R бR rR доб),

где а переводный множитель; цена деления шкалы гальванометра, мА;k чувствительность термоэлектрического прибора, милливольт на 1 кал/см2 мин;R б сопротивление термобатареи, Ом;R r внутреннее сопротивление гальванометра, Ом;R доб добавочное сопротивление гальванометра, Ом.

Термоэлектрический актинометр АТ-50 служит для измерения прямой солнечной радиации.

Устройство актинометра. Приемником актинометра является диск1 из серебряной фольги (рис. 3.2). Со стороны, обращенной к солнцу, диск зачернен, а с другой стороны к нему подклеены через изоляционную бумажную прокладку внутренние спаи2 термозвездочки из манганина и константана, состоящей из 36 термоэлементов (на схеме показаны только семь термо-элементов). Внешние спаи3 термозвездочки через изоляционную бумажную про-

Рис. 3.2. Схема термозвез-

кладку 5 подклеены к медному диску4. По-

дочки актинометра следний помещается в массивном медном корпусе со скобами, к которым присоединены

выводы термобатареи и мягкие провода 6 (рис. 3.3).

Корпус со скобами закрыт кожухом 7 , закрепленным гайкой8, и соединен винтом10 с мерной трубкой9. Внутри трубки имеется пять диафрагм, расположенных в порядке уменьшения их диаметра от 20 до 10 мм по направлению к корпусу. Диафрагмы удерживаются плоской и пружинящей шайбами, установленными между корпусом и наименьшей диафрагмой. С внутренней стороны диафрагмы зачернены.

На концах трубки расположены кольца 12 и13 для нацеливания актинометра на солнце. На кольце13 есть отверстие, а на кольце12 точка. При правильной установке пучок света, проходящий через отверстие, должен точно попадать в точку кольца12 . Трубка закрывается съемной крышкой11 , которая служит для определения нулевого положения гальванометра и защищает приемник от загрязнения.

Трубка 9 соединяется со стойкой14, укрепленной на плато16 параллактическим штативом17. Для установки оси штатива соответственно широте места служит шкала18 с делениями, риска19 и винт20.

Установка. Вначале ось штатива устанавливают по широте места наблюдений. Для этого, ослабив винт20, поворачивают ось штатива до совпадения деления шкалы18, соответствующего

данной широте, с риской 19 иРис. 3.3.Термоэлектрический закрепляют ось в этом положе-

актинометр АТ-50

нии. Затем актинометр устанавливают на горизонтальной подставке так, чтобы стрелка на плато была ориентирована на север, и, сняв крышку, ориентируют его на солнце путем ослабления винта 23 и вращения рукоятки22; трубку9 поворачивают до тех пор, пока пучок света через отверстие на кольце13 попадает на точку кольца12. После этого провода актинометра при открытой крышке11 присоединяют к клеммам гальванометра (+) и (С), соблюдая полярность. Если стрелка гальванометра отклоняется за нуль, провода меняют местами.

Наблюдения. За 1 минуту до начала наблюдения проверяют установку приемника актинометра на солнце. После этого крышку закрывают и по гальванометру делают отсчет нулевого положенияN 0 . Затем снимают крышку, проверяют точность нацеливания на солнце и 3 раза отсчитывают показания гальванометра с интервалом в 10-15 с (N 1 , N 2 , N 3 ) и температуру по гальванометру. После наблюдений прибор закрывают крышкой футляра.

Обработка наблюдений. Из трех отсчетов по гальванометру находят среднее значениеN c с точностью до 0,1:

N с N 1N 2N 3. 3

Для получения исправленного отсчета N к среднему значениюN вводят шкаловую поправкуN , поправку на температуруN t из поверочного свидетельства гальванометра и вычитают положение места нуляN 0 :

N N Nt N0 .

Для выражения интенсивности солнечной радиации S в кал/см2 мин показания гальванометраN умножают на переводный множительа:

Интенсивность прямой солнечной радиации на горизонтальную поверхность вычисляют по формуле (3.3).

Высоту солнца над горизонтом h и sinh можно определить по уравнению

sin h = sin sin+ cos cos cos,

где широта места наблюдений; склонение солнца для данного дня (приложение 9); часовой угол солнца, отсчитываемый от момента истинного полдня. Определяется он по истинному времени середины наблюдений: t ист = 15(t ист 12ч ).

Термоэлектрический пиранометр П-3х3 применяется для измерения рассеянной и суммарной солнечной радиации.

Устройство пиранометра (рис. 3.4).

Приемной частью пиранометра является термоэлектрическая батарея 1 , состоящая из 87 термоэлементов из манганина и константана. Полоски манганина и константана длиной 10 мм последовательно спаяны между собой и уложены в квадрате 3x3 см так, что спаи располагаются в середине и на поворотах. С внешней стороны поверхность термобатареи покрыта сажей и магнезией. Четные спаи термобатареи окрашены в белый цвет, а нечетные

– в черный. Спаи располагаются так, что

черные и белые участки чередуются в

Рис. 3.4. Термоэлектрический пиранометр П-3х3

шахматном порядке. Через изоляционную бумажную прокладку термобатарея прикреплена к ребрам плитки 2 , привинченной к корпусу3.

Вследствие различного поглощения солнечной радиации создается разность температур черных и белых спаев, поэтому в цепи возникает термоток. Выводы из термобатареи подведены к клеммам 4, к которым присоединяются провода, соединяющие пиранометр с гальванометром.

Сверху корпус закрыт стеклянным полусферическим колпаком 5 для защиты термобатареи от ветра и осадков. Для предохранения термобатареи и стеклянного колпака от возможной конденсации водяного пара на нижней части корпуса имеется стеклянная сушилка6 с химическим поглотителем влаги (металлический натрий, силикагель и др.).

Корпус с термобатареей и стеклянным колпаком составляет головку пиранометра, которая привинчена к стойке 7, зажатой в треноге8 винтом9. Тренога укреплена на основании футляра и имеет два установочных винта10 . При измерении рассеянной или суммарной радиации пиранометр вращением винтов10 устанавливают горизонтально по уровню11 .

Для затенения головки пиранометра от прямых солнечных лучей служит теневой экран, диаметр которого равен диаметру стеклянного колпака. Теневой экран укреплен на трубке 14, которая винтом13 соединена с горизонтальным стержнем12.

При затенении приемника пиранометра теневым экраном измеряется рассеянная, а без затенения - суммарная радиация.

Для определения нулевого положения стрелки гальванометра, а также для защиты стеклянного колпака от повреждения головку пиранометра закрывают металлической крышкой 16.

Установка. Прибор устанавливают на открытой площадке. Перед наблюдением проверяют наличие осушителя в стеклянной сушилке (1/3 сушилки должна быть заполнена осушителем). Затем трубку14 с теневым экраном15 присоединяют к стержню12 с помощью винта13.

К солнцу пиранометр поворачивают всегда одной и той же стороной, отмеченной номером на головке. Для поворота головки пиранометра номером к солнцу винт 9 слегка ослабляют и в таком положении закрепляют.

Горизонтальность термобатареи проверяют на уровне 11 и в случае нарушения ее регулируют установочными винтами10.

Гальванометр для измерения силы термотока устанавливают с северной стороны от пиранометра на таком расстоянии, чтобы наблюдатель при отсчетах не затенял пиранометр не только от прямых солнеч-

ных лучей, но и от участков неба. Правильность подключения пиранометра к гальванометру проверяют при снятой крышке пиранометра и освобожденном арретире гальванометра. При отклонении стрелки за нуль шкалы провода меняют местами.

Наблюдения. Непосредственно перед наблюдением проверяют правильность установки прибора по уровню и относительно солнца. Для отсчета нулевого положения гальванометра головку пиранометра закрывают крышкой16 и записывают показания гальванометраN 0 . После этого крышку пиранометра снимают и делают серию отсчетов с интервалом 10-15 с.

Вначале отсчитывают показания гальванометра при затененном пиранометре для определения рассеянной радиации N 1 , N 2 , N 3 , потом - при незатененном положении (теневой экран опускается ослаблением винта13 ) для определения суммарной радиацииN 4 ,N 5 , N 6 . После наблюдений трубку с теневым экраном отвинчивают и пиранометр закрывают крышкой футляра.

Обработка наблюдений. Из серий отсчетов по гальванометру для каждого вида радиации определяют средние значенияN D иN Q :

N 1N 2N 3

N 4N 5N 6

Затем получают исправленные значения N D иN Q . С этой целью по средним значениям определяют шкаловые поправкиN D иN Q из поверочного свидетельства гальванометра и вычитают пулевое показание гальванометра:

ND ND N N0 , NQ NQ N N0 .

Для определения интенсивности рассеянной радиации D в кал/см2 мин необходимо показания гальванометраN D умножить на переводный множительа:

D = ND.

Для определения суммарной радиации Q в кал/см2 мин вводится еще поправочный множитель на высоту солнцаF h . Этот поправочный множитель дается в поверочном свидетельстве в форме графика: по оси абсцисс нанесена высота солнца над горизонтом, а по оси ординат - поправочный множитель.

С учетом поправочного множителя на высоту солнца суммарная радиация определяется по формуле

Q = a (NQ ND )Fh + ND .

При наблюдениях по пиранометру может быть вычислена и интенсивность прямой радиации на горизонтальную поверхность как разность суммарной и рассеянной радиации:

Походный термоэлектрический альбедометр АП-3х3 предназна-

чен для измерения в походных условиях суммарной, рассеянной и отраженной радиации. На практике он применяется главным образом для измерения альбедо деятельной поверхности.

Устройство альбедометра. Приемником альбедометра (рис. 3.5) служит головка пиранометра1 , привинченная на втулке2 к трубке3 с карданным подвесом4 и рукояткой5. Поворотом рукоятки на 180° приемник может быть обращен вверх для измерения приходящей коротковолновой радиации и вниз для измерения отраженной коротковолновой радиации. Чтобы трубка была в отвесном положении, внутри нее на стержне скользит специальный груз, который при поворотах прибора всегда передвигается вниз. Для смягчения ударов при повороте прибора на концах трубки подложены резиновые прокладки6.

В разобранном виде прибор крепится на основании металлического футляра.

Установка. Перед наблюдением с осно-

вания футляра снимают головку, трубку,

рукоятку и свинчивают между собой: голов-

ку привинчивают к трубке, а рукоятку - к

карданному подвесу. Для исключения ради-

ации, которую может отражать сам наблю-

датель, рукоятка насаживается на деревян-

ный шест длиной около 2 м.

Рис. 3.5. Походный альбедометр

Альбедометр подсоединяют мягкими

проводами к гальванометру на клеммы (+) и

(С) при открытом приемнике и освобожденном арретире гальванометра. Если стрелка гальванометра уходит за нуль, провода меняют местами.

Во время наблюдений на постоянном участке приемник альбедометра устанавливают на высоте 1-1,5 м над деятельной поверхностью, а на сельскохозяйственных полях - на расстоянии 0,5 м от верхнего уровня растительного покрова. При измерении суммарной и рассеянной радиации головку альбедометра поворачивают номером к солнцу.

Наблюдения. За 3 мин до начала наблюдений отмечают место нуля. Для этого головку альбедометра закрывают крышкой и отсчитывают показания гальванометраN 0 . Затем открывают крышку и производят три отсчета по гальванометру при положении приемника альбедометра вверх для измерения приходящей суммарной радиации:N 1 , N 2 , N 3 . После третьего отсчета приемник поворачивают вниз и через 1 мин производят три отсчета для измерения отраженной радиации:N 4 , N 5 , N 6 . Потом приемник снова поворачивают вверх и через 1 мин делают еще три отсчета для измерения приходящей суммарной радиации:N 7 , N 8 , N 9 . После окончания серии отсчетов приемник закрывают крышкой.

Обработка наблюдений. Сначала вычисляют средние значения отсчетов по гальванометру для каждого вида радиацииN Q иN Rk :

N Q N 1N 2N 3N 7N 8N 9, 6

N Rk N 4N 5N 6. 3

Затем к средним значениям вводят шкаловую поправку из поверочного свидетельства N Q иN Rk , вычитают место нуляN 0 и определяют исправленные значенияN Q иN Rk :

N QN QN N 0 , N RkN RkN N 0 .

Так как альбедо выражается отношением отраженной радиации к суммарной, то переводный множитель сокращается и альбедо вычисляется как отношение исправленных показаний гальванометра при измерении отраженной и суммарной радиации (в процентах):

Альбедометр является наиболее универсальным прибором. При наличии переводного множителя им можно определить суммарную радиацию, рассеянную, отраженную и рассчитать прямую радиацию на горизонтальную поверхность. При наблюдениях за рассеянной радиацией необходимо применять теневой экран для защиты приемника от прямых солнечных лучей.

Балансомер термоэлектрический М-10 применяется для измере-

ния радиационного баланса подстилающей поверхности, или остаточной радиации, которая представляет собой алгебраическую сумму всех видов радиации, поступающих и теряемых этой поверхностью. Приходная часть радиации состоит из прямой радиации на горизонтальную поверхность S" , рассеянной радиацииD и излучения атмосферыE а . Расходная часть радиационного баланса, или уходящая радиация, представляет собой отраженную коротковолновую радиациюR K и длинноволновое излучение землиЕ 3 .

Действие балансомера основано на преобразовании потоков радиации в термоэлектродвижущую силу при помощи термобатареи.

Возникающая в термобатарее электродвижущая сила пропорциональна разности температур между верхним и нижним приемниками балансомера. Так как температура приемников зависит от приходящей и уходящей радиации, то и электродвижущая сила будет пропорциональна разности потоков радиации, поступающих сверху и снизу на приемники.

Радиационный баланс В при измерении балансомером выражается уравнением

N показания гальванометра;k поправочный множитель, учитывающий влияние скорости ветра (табл. 3.1).

Таблица 3.1

Поправочный множитель k (пример)

Скорость ветра,

Поправочный

множитель k

Показания балансомера, умноженные на поправочный множитель, соответствующий данной скорости ветра, приводятся к показаниям балансомера при штиле.

Устройство балансомера (рис. 3.6). Приемником балансомера служат две зачерненные тонкие медные пластинки1 и2 , имеющие форму квадрата со стороной 48 мм. С внутренней стороны к ним приклеены через бумажные прокладки спаи3, 4 термобатареи. Спаи образованы витками намотанной на медный брусок5 константановой ленты. Каждый виток ленты наполовину посеребрен. Начало и конец серебряного слоя служат термоспаями. Четные спаи подклеены к верхней, а нечет-

ные к нижней пластинке. Вся термобатарея состоит из десяти брусков, на каждый из которых намотано 32-33 витка. Приемник балансомера помещен в корпус6 , имеющий форму диска диаметром 96 мм и толщиной 4 мм. Корпус соединен с рукояткой7 , через которую пропущены выводы8 от термобатареи. Балансомер с помощью шаровых шарнир-

ов 9 устанавливается на па-

нельке 10 . К панельке присое-

диняется

шарнирах

стержень 11 с экраном12 , кото-

защищает

приемник

прямых солнечных лучей. При

применении экрана на стержне,

видимого из центра приемника

под углом 10°, прямая солнеч-

радиация исключается

показаний балансомера,

повышает точность измерений,

но в этом случае интенсивность

солнечной

радиации

необхо-димо измерять отдельно

Рис. 3.6. Термоэлектрический

актинометром. Чехол 13 защи-

балансомер М-10

щает балансомер от осадков и

Установка. Прибор прикрепляют панелькой к концу деревянной рейки на высоте 1,5 м от земли. Приемник его устанавливают горизонтально всегда одной и той же приемной стороной вверх, отмеченной на приборе цифрой 1. Выводы из термобатарей подключают к гальванометру.

В большинстве случаев балансомер затеняют экраном от прямой солнечной радиации. Поэтому на одной рейке с балансомером устанавливают актинометр для измерения прямой солнечной радиации. Для учета влияния скорости ветра на уровне балансомера и на небольшом расстоянии от него устанавливают анемометр.

Наблюдения. За 3 мин до начала наблюдения определяют место нуля балансомераN 0 . Производится это при разомкнутой цепи. После этого балансомер подключают к гальванометру так, чтобы стрелка гальванометра отклонялась вправо, и производят три отсчета по балансомеруN 1 , N 2 , N 3 и одновременно три отсчета по анемометру1 , 2 , 3 . Если балансомер установлен с теневым экраном, то после первого и второго отсчетов по балансомеру производят два отсчета по актинометру

Похожие статьи