Радиоактивный йод период полураспада. Щитовидная железа радиоактивный йод. Радиоактивный йод: что это

Йод 131 - бета-, гамма-излучатель с периодом полураспада 8,1 дня. Энергия гамма-излучения 0,364 Мэв, энергия бета-излучения 0,070 Мэв. Суммарная активность препаратов, используемых с диагностической целью, составляет от 2 до 5 мккюри (300 мккюри допускается лишь при скеннировании печени и почек). При поступлении 1 мккюри йода в щитовидной железе создается доза 1,5-2 рад. Правомочность использования различных количеств йода для целей диагностики определяется клиническими показаниями (Ф. М. Лясс, 1966). Независимо от пути поступления йод быстро накапливается в организме, при этом до 90% сосредоточено в щитовидной железе. Выводится йод с мочой и калом. Его можно также обнаружить в слюне (сразу же после введения). Предельно допустимое количество при хроническом поступлении составляет 0,6 мккюри; эта величина достаточно хорошо обоснована клиническими наблюдениями как безопасная для организма человека по всем критериям.

Практика использования достаточно больших количеств радиоактивного йода с лечебной целью (до 100 мккюри), опыт аварии в Уиндскеле (Англия), данные о выпадении радиоактивных осадков ядерного взрыва на Маршалловых островах позволяют оценить степень опасности случайного поступления в организм изотопа в широком диапазоне доз.

В соответствии с характером избирательного распределения йода клинические проявления в зависимости от дозы варьируют от преходящих изменений функции щитовидной железы с учащением возможности ее бластомной метаплазии в отдаленные сроки до глубокой, рано наступающей деструкции ткани железы, что может сопровождаться и общими клиническими проявлениями лучевой болезни, включая нарушения кроветворения. В связи со сравнительно быстрым формированием лучевой нагрузки основная симптоматика развивается, как правило, в относительно ранние сроки - в первые 1-2 месяца.

По данным Д. А. Улитовского (1962) и Н. И. Улитовской (1964), избирательное облучение и Поражение щитовидной железы и ее нервнорецепторного аппарата имеют место при разовом поступлении 1-3 мкюри I131, что соответствует местной дозе 1000-3000 рад. Интегральные дозы во всем организме близки к создающимся при облучении от внешних гамма-источников в дозе 7-13 р; признаков отчетливых общих реакций в этих случаях не возникает.

Развитие клинических проявлений с возможностью летального исхода при типичных для лучевой болезни изменениях крови наблюдается при поступлении за короткие сроки 300-500 мкюри I131, что создает дозу общего облучения порядка 300-570 рад. Суммарные активности в 20-50 мкюри йода приводят к промежуточной группе клинических эффектов. При этом следует помнить, что определяющий вклад в дозу дает бета-излучение йода, т. е. имеет место определенная неравномерность распределения дозы в объеме железы и сохранение благодаря этому отдельных неповрежденных участков эпителия фолликулов. При использовании изотопов I132 и I134, являющихся мощными гамма-излучателями, биологический эффект выше благодаря равномерности облучения ткани железы.

Иод-131 (йод-131, 131 I) - искусственный радиоактивный изотоп иода . Период полураспада около 8 суток, механизм распада - бета-распад . Впервые получен в 1938 году в Беркли .

Является одним из значимых продуктов деления ядер урана , плутония и тория , составляя до 3 % продуктов деления ядер. При ядерных испытаниях и авариях ядерных реакторов является одним из основных короткоживущих радиоактивных загрязнителей природной среды. Представляет большую радиационную опасность для человека и животных в связи со способностью накапливаться в организме, замещая природный иод.

52 131 T e → 53 131 I + e − + ν ¯ e . {\displaystyle \mathrm {{}_{52}^{131}Te} \rightarrow \mathrm {{}_{53}^{131}I} +e^{-}+{\bar {\nu }}_{e}.}

В свою очередь теллур-131 образуется в природном теллуре при поглощении им нейтронов стабильным природным изотопом теллур-130, концентрация которого в природном теллуре составляет 34 % ат.:

52 130 T e + n → 52 131 T e . {\displaystyle \mathrm {{}_{52}^{130}Te} +n\rightarrow \mathrm {{}_{52}^{131}Te} .} 53 131 I → 54 131 X e + e − + ν ¯ e . {\displaystyle \mathrm {^{131}_{53}I} \rightarrow \mathrm {^{131}_{54}Xe} +e^{-}+{\bar {\nu }}_{e}.}

Получение

Основные количества 131 I получают в ядерных реакторах путём облучения теллуровых мишеней тепловыми нейтронами . Облучение природного теллура позволяет получить почти чистый иод-131 как единственный конечный изотоп с периодом полураспада более нескольких часов.

В России 131 I получают облучением на Ленинградской АЭС в реакторах РБМК . Химическое выделение 131 I из облученного теллура осуществляется в . Объем производства позволяет получить изотоп в количестве, достаточным для выполнения 2…3 тысяч медицинских процедур в неделю.

Иод-131 в окружающей среде

Выброс иода-131 в окружающую среду происходит в основном в результате ядерных испытаний и аварий на предприятиях атомной энергетики . В связи с коротким периодом полураспада, через несколько месяцев после такого выброса содержание иода-131 опускается ниже порога чувствительности детекторов.

Иод-131 считается наиболее опасным для здоровья людей нуклидом, образующимся при делении ядер. Это объясняется следующим:

  1. Относительно высоким содержанием иода-131 среди осколков деления (около 3 %).
  2. Период полураспада (8 суток), с одной стороны, достаточно велик, чтобы нуклид распространился по большим площадям, а с другой стороны, достаточно мал, чтобы обеспечить очень высокую удельную активность изотопа - примерно 4,5 ПБк /г .
  3. Высокая летучесть. При любых авариях ядерных реакторов в первую очередь в атмосферу улетучиваются инертные радиоактивные газы, затем - иод. Например, при аварии на ЧАЭС из реактора было выброшено 100 % инертных газов, 20 % иода, 10-13 % цезия и всего 2-3 % остальных элементов [ ] .
  4. Иод очень подвижен в природной среде и практически не образует нерастворимых соединений.
  5. Иод является жизненно важным микроэлементом , и, в то же время, - элементом, концентрация которого в пище и воде невелика. Поэтому все живые организмы выработали в процессе эволюции способность накапливать иод в своем теле.
  6. У человека бо́льшая часть иода в организме концентрируется в щитовидной железе, но имеющей небольшую массу по сравнению со массой тела (12-25 г). Поэтому даже относительно небольшое количество радиоактивного йода, поступившего в организм, приводит к высокому локальному облучению щитовидной железы.

Основным источником загрязнения атмосферы радиоактивным иодом являются атомные электростанции и фармакологическое производство .

Радиационные аварии

Оценка по радиологическому эквиваленту активности иода-131 принята для определения уровня ядерных событий по шкале INES .

Санитарные нормативы по содержанию иода-131

Профилактика

В случае попадания йода-131 в организм возможно вовлечение его в процесс обмена веществ. При этом йод задержится в организме на длительное время, увеличивая продолжительность облучения. У человека наибольшее накопление йода наблюдается в щитовидной железе. Чтобы минимизировать накопление радиоактивного йода в организме при радиоактивном загрязнении окружающей среды принимают препараты, насыщающие обмен веществ обычным стабильным йодом. Например, препарат йодида калия . При приеме калия йодида одновременно с поступлением радиоактивного йода защитный эффект составляет около 97 %; при приеме за 12 и 24 ч до контакта с радиоактивным загрязнением - 90 % и 70 % соответственно, при приеме через 1 и 3 ч после контакта - 85 % и 50 %, более чем через 6 ч - эффект незначительный. [ ]

Применение в медицине

Иод-131, как и некоторые другие радиоактивные изотопы иода ( 125 I , 132 I) применяются в медицине для диагностики и лечения некоторых заболеваний щитовидной железы :

Изотоп применяется для диагностики распространения и лучевой терапии нейробластомы , которая также способна накапливать некоторые препараты иода.

В России фармпрепараты на основе 131 I производит .

См. также

Примечания

  1. Audi G. , Wapstra A. H. , Thibault C. The AME2003 atomic mass evaluation (II). Tables, graphs, and references (англ.) // Nuclear Physics A . - 2003. - Vol. 729 . - P. 337-676 . -

Радиоактивный изотоп: Цезий-137

Влияние на организм

Цезий-137 является радиоактивным изотопом элемента цезия и имеет период полураспада 30 лет. Впервые этот радионуклид был открыт с использованием оптической спектроскопии в далеком 1860 году. Известно солидное количество изотопов этого элемента – 39. Дольше всего будет «полураспадаться» (извините за каламбур) изотоп цезий-135, долгие 2,3 миллиона лет.

Наиболее применяемым изотопом цезия в ядерном оружии и ядерных реакторах является цезий-137, который получают из растворов переработанных радиационных отходов. Во время ядерных испытаний или аварий на атомных электростанциях этот радионуклид не прочь выбраться в окружающую среду. На атомных подводных лодках и ледоколах он находит широкое применение, поэтому время от времени может попадать в воды Мирового океана, загрязняя его.

В человеческий организм цезий-137 пробирается, когда человек дышит или принимает пищу. Больше всего любит селиться в мышечной ткани (до 80%), а остальное его количество распределяется по другим тканям и органам.

Ближайшими друзьями цезия-137 (по химическому составу) являются такие личности, как калий и рубидий. Человечество в ходе эволюции научилось широко использовать цезий-137, например, в медицине (лечение опухолей), при стерилизации пищевых продуктов, а также в измерительной технике.

Если обратиться к истории, можно увидеть, что аварии на производстве вызвали наибольшие выбросы цезия в окружающую среду. В 1950 году случилась незапланированная авария на предприятии «Маяк», и цезий-137 в количестве 12,4 ПБК (Петабеккерелей) вырвался на свободу. Однако выбросы этого опасного радиоактивного элемента в ходе аварии на Чернобыльской АЭС были в десятки раз больше - 270 ПБК. Радиоактивный цезий-137 вместе с другими не менее опасными элементами покинул развороченный взрывом реактор и улетел в атмосферу, чтобы выпасть обратно на землю и зеркала рек и озер на большой территории и весьма далеко от места катастрофы. Именно от этого изотопа зависит пригодность почв для проживания и возможность заниматься сельским хозяйством. Вместе с другими, не менее опасными радиоактивными элементами, в 1986 году цезий-137 сделал жизнь в 30-ти километровой зоне вокруг разрушенной Чернобыльской АЭС смертельно опасной, и вынудил людей покинуть свои дома и строить свою жизнь заново на чужбине.

Радиоактивный изотоп: Йод-131

Йод-131 имеет период полураспада 8 суток, поэтому наибольшую опасность для всего живого этот радионуклид представляет в течение первого месяца после того, как попадет в окружающую среду. Как и цезий-137, йод-131 обычно оказывается на свободе после испытания ядерного заряда или в результате аварии на атомной станции.

В ходе аварии на Чернобыльской АЭС весь йод-131, который находился в атомном реакторе, попал в атмосферу, поэтому уже на следующий день после катастрофы большинство людей, находившихся в опасной зоне, получили дозы радиоактивного облучения, вдыхая зараженный воздух и между делом принимая внутрь свежее, но уже радиоактивное коровье молоко. Коровы тут были ни при чем, и ни у кого не поднялась рука и не открылся рот, чтобы обвинить их в том, что они наелись на пастбище радиоактивной травы. И даже срочно убрав из продажи молоко, не удалось бы уберечь население от радиоактивного облучения, так как около трети населения, проживавшего в районе Чернобыльской АЭС, употребляло в пищу молоко, полученное от личных коров.

Следует напомнить, что заражение населения радиоактивным йодом уже имело место в истории задолго до чернобыльской катастрофы. Так, в 50 – 60 годах двадцатого века в США проводились широкомасштабные ядерные испытания, и результаты не заставили себя долго ждать. В штате Невада у большого количества жителей появились раковые заболевания, и виной тому был простой и неприхотливый во всех отношениях радиоактивный элемент – йод-131.

Попав в организм человека, йод-131 в первую очередь накапливается в щитовидной железе, поэтому именно этот орган страдает больше всего. Даже небольшое количество радиоактивного йода, попадающего в человека в основном с пищей (особенно, с молоком) плохо сказывается на здоровье этого важнейшего органа и может вызвать рак щитовидной железы в пожилом возрасте.

Радиоактивный изотоп: Америций-241

Америций-241 имеет довольно длительный период полураспада, который равняется 432 годам. Этот серебристо-белый металл получил свое название в честь Америки, и имеет необыкновенную способность светиться в темноте благодаря альфа-излучению. В промышленности америций находит свое применение, например, позволяет создавать контрольно-измерительные приборы, способные измерять толщину листового стекла или алюминиевой и стальной ленты. В детекторах дыма этот изотоп также находит свое применение. Пластинка из свинца толщиной всего 1 см может надежно защитить человека от радиоактивного излучения, испускаемого америцием. В медицине америций помогает выявлять заболевания щитовидной железы человека, благодаря тому, что стабильный йод, находящийся в щитовидной железе, начинает излучать слабое рентгеновское излучение.

Плутоний-241 в значительном количестве присутствует в оружейном плутонии, и именно он является основным поставщиком изотопа америций-241. В результате распада плутония америций постепенно накапливается в исходном веществе.

Например, в только что изготовленном плутонии можно обнаружить всего 1% америция, а в плутонии, который уже успел поработать в атомном реакторе, плутоний-241 может присутствовать в количестве 25%. А по истечении нескольких десятилетий весь плутоний распадется и превратится в америций-241. Срок жизни америция можно охарактеризовать как достаточно короткий, но с достаточно большим тепловым выходом и высокой радиоактивностью.

При попадании в окружающую среду америций-241 демонстрирует весьма высокую подвижность и хорошо растворяется в воде. Поэтому при попадании в организм человека эти качества позволяют ему быстро разноситься по органам с потоком крови и оседать в почках, печени и костях. Попасть в организм человека америцию проще всего через легкие во время дыхания. После аварии на Чернобыльской АЭС америций-241 присутствовал не только в отравленном воздухе, но и осел в почве, в результате чего получил возможность накапливаться в растениях. Для следующих поколений жителей Украины это было не очень радостным событием, учитывая 432-летний период полураспада этого радиоактивного изотопа.

Радиоактивный изотоп: Плутоний

В 1940 году был открыт элемент Плутоний с порядковым номером 94, в том же году открыты его изотопы: Плутоний-238, имеющий период полураспада 90 лет, и Плутоний-239, распадающийся наполовину за 24 тысячи лет. В природном уране Плутоний-239 можно обнаружить в следовых количествах, и образуется он там, когда ядро Плутония-238 захватывает один нейтрон. В цериевой же руде можно обнаружить чрезвычайно малые количества другого изотопа этого радионуклида: Плутония-244. Этот элемент, по всей видимости, образовался во времена формирования Земли, ведь период его полураспада составляет 80 миллионов лет.

С виду Плутоний выглядит как серебристый металл, очень тяжелый, если взять в руки. В присутствии даже незначительной влажности быстро окисляется и коррозирует, однако гораздо медленнее покрывается ржавчиной в чистом кислороде или в присутствии сухого воздуха, так как при прямом воздействии кислорода на его поверхности формируется слой оксида, мешающий дальнейшему окислению. Из-за своей радиоактивности кусок плутония, лежащий в ладони, будет теплым на ощупь. А если поместить такой кусочек в термически изолированное пространство, он без посторонней помощи нагреется до температуры, превышающей 100 градусов по шкале Цельсия.

С экономической точки зрения плутоний является неконкурентоспособным по сравнению с ураном, потому что низко обогащенный уран стоит значительно дешевле, чем переработка реакторного топлива для получения плутония. Весьма высока стоимость охраны плутония для недопущения его кражи с целью создания «грязной» бомбы и совершения террористического акта. К этому можно добавить наличие значительных запасов оружейного урана в Соединенных Штатах и России, который путем разбавления становится пригодным для изготовления коммерческого топлива.

Плутоний-238 имеет очень высокую тепловую мощность и располагает очень высокой альфа-радиоактивностью, является весьма серьезным источником нейтронов. Не смотря на то, что содержание плутония-238 редко превышает одну сотую часть от общего количества плутония, количество испускаемых им нейтронов делает его весьма неприятным в обращении.

Плутоний-239 является единственным изотопом плутония, пригодным для изготовления ядерного оружия. Чистый плутоний-239 имеет весьма небольшую критическую массу, около 6 кг, то есть даже из абсолютно чистого плутония можно изготовить пушечную плутониевую бомбу. Из-за относительно короткого времени полураспада, при распаде этого радионуклида выделяется значительное количество энергии.

Плутоний-240 является основным агентом, загрязняющим оружейный плутоний-239, так как обладает способность интенсивно и спонтанно делиться. При содержании этого радионуклида в плутонии-239 всего в количестве 1% производится так много нейтронов, что стабильную пушечную бомбу из такой смеси сделать становится невозможным без применения имплозии. По этой причине в стандартном оружейном плутонии содержание плутония-240 не допускается в количестве большем, чем 6,5%. В противном случае даже при применении имплозии смесь детонирует раньше, чем это будет нужно для массового истребления себе подобных существ.

Плутоний-241 непосредственно не влияет на удобство использования плутония, потому что имеет небольшой нейтронный фон и среднюю тепловую мощность. Распадается этот радионуклид в течение 14-ти лет, после чего превращается в америций-241, создающий много тепла и не способный интенсивно делиться. Если начинка атомной бомбы содержит плутоний-241, нужно учитывать, что через десяток лет хранения мощность заряда боеголовки уменьшится, а ее самонагрев увеличится.

Плутоний-242 плохо делится, а при заметной своей концентрации увеличивает нейтронный фон и требуемую критическую массу. Имеет способность накапливаться в переработанном реакторном топливе.

Радиоактивный изотоп: Стронций-90

Стронций-90 распадается наполовину за 29 лет и является чистым бета-излучателем, образующимся при делении ядер в ядерном оружии и ядерных реакторах. После распада стронция-90 образуется радиоактивный иттрий. Во время аварии на Чернобыльской АЭС в атмосферу было выброшено примерно 0,22 МКи стронция-90, и именно он стал объектом пристального внимания в ходе выработки мер по защите населения городов Чернобыль, Припять, а также жителей населенных пунктов, находившихся в 30-километровой зоне вокруг 4-го блока ЧАЭС от радиации. Ведь при ядерном взрыве 35% всей активности, попавшей в окружающую среду, приходится именно на стронций-90, а в течение 20-ти лет после взрыва - 25% активности. Однако еще задолго до катастрофы в Чернобыле произошла авария на производственном объединении «Маяк» и в атмосферу попало значительное количество радионуклида стронций-90.

На организм человека стронций-90 действует разрушительным образом. По химическому составу он очень похож на кальций, а поэтому при попадании в организм начинает разрушать костную ткань и костный мозг, что приводит к лучевой болезни. Внутрь человеческого организма стронций-90 обычно попадает при приеме пищи, а на его выведение всего наполовину понадобится от 90 до 150-ти суток. В истории наибольшее количество этого опасного изотопа было зафиксировано в организме жителей северного полушария в 60-е годы XX века, после многочисленных ядерных испытаний, проводившихся в 1961-1962гг. После аварии в Припяти на Чернобыльской АЭС стронций-90 в больших количествах попал в водоемы, и предельно допустимая концентрация этого радионуклида была зафиксирована в нижнем течении реки Припять в мае 1986 года.



Радиойод, а точнее один из радиоактивных (бета- и гамма-излучение) изотопов йода с массовым числом 131 с периодом полураспада в 8,02 суток. Йод-131 известен в первую очередь как продукт деления (до 3%) ядер урана и плутония, выделявшийся при авариях на атомных электростанциях .

Получение радиойода. Откуда он появляется

В природе изотоп йод-131 не возникает. Его появления связано лишь с работой фармакологических производств, а также атомных реакторов. Выделяется он и при проведении ядерных испытаний или радиоактивных катастроф. Так повысила содержание изотопа йода в морской и водопроводной воде в Японии, а также в продуктах питания. Использование специальных фильтров помогло в снижении распространения изотопов, а также в предотвращении возможных провокаций на объектах разрушенной атомной электростанции. Подобные фильтры в России производятся в компании «НТЦ Фарадей» .

Облучение в ядерном реакторе теплуровых мишеней тепловыми нейтронами позволяет получить йод-131 с высокой степенью содержания.

Характеристики йода-131. Вред

Период полураспада радиойода в 8,02 суток с одной стороны не делает йод-131 высокоактивным, а с другой позволяет ему распространиться на большие площади. Этому также способствует высокая летучесть изотопа. Так – около 20% йода-131 были выброшены из реактора. Для сравнения цезия-137 – около 10%, стронция-90 – 2%.

Йод-131 почти не образует нерастворимых соединений, что также помогает распространению.

Йод сам по себе дефицитный элемент и организмы людей и животных научились его концентрировать в теле, это же касается и радиойода, что не идет на пользу здоровью.

Если говорить о вреде йода-131 для человека, то речь идет в первую очередь о щитовидной железе. Щитовидка не отличает обычный йод от радиойода. А при ее массе в 12-25 грамм даже небольшая доза радиоактивного йода приводит к облучению органа.

Йод-131 вызывает мутации и гибель клеток, при активности в 4,6·10 15 Бк/грамм.

Йод-131. Польза. Применение. Лечение

В медицине применяются изотопы йод-131, а также йод-125 и йод-132 для диагностики и даже лечения проблем со щитовидной железой, в частности болезни Грейвса.

При распаде йода-131 появляется бета-частица с высокой скоростью полета. Она способна проникать в биологические ткани на расстояние до 2 мм, что вызывает гибель клеток. В случае гибели зараженных клеток это вызывает лечебных эффект.

Также йод-131 применяется как индикатор обменных процессов в организме человека.

Выброс радиоактивного йода 131 в Европе

21 февраля 2017 года в сводках новостей появилась информация о том, что европейские станции в более чем десятке стран от Норвегии до Испании на протяжении нескольких недель замечали превышение норм по содержанию йода-131 в атмосфере. Были высказаны предположения об источниках изотопа – выброс на


Схема распада иода-131 (упрощённая)

Иод-131 (йод-131, 131 I) , также называемый радиойодом (несмотря на наличие других радиоактивных изотопов этого элемента), - радиоактивный нуклид химического элемента иода с атомным номером 53 и массовым числом 131. Период его полураспада составляет около 8 суток. Основное применение нашёл в медицине и фармацевтике. Также является одним из основных продуктов деления ядер урана и плутония, представляющих опасность для здоровья человека, внесших значительный вклад во вредные последствия для здоровья людей после ядерных испытаний 1950-х, аварии в Чернобыле . Иод-131 является весомым продуктом деления урана, плутония и, косвенно, тория , составляя до 3 % продуктов деления ядер.

Нормативы по содержанию иода-131

Лечение и профилактика

Применение в медицинской практике

Иод-131, как и некоторые радиоактивные изотопы иода (125 I, 132 I) применяются в медицине для диагностики и лечения заболеваний щитовидной железы . Согласно нормам радиационной безопасности НРБ-99/2009 , принятым в России, выписка из клиники пациента, лечившегося с использованием иода-131, разрешается при снижении общей активности этого нуклида в теле пациента до уровня 0,4 ГБк .

См. также

Примечания

Ссылки

  • Patient brochure on radioactive iodine treatment From the American Thyroid Association

Похожие статьи