Одной из физических характеристик звука является. Физические и физиологические характеристики шума, нормирование. Приборы для измерения шума

Шум – это совокупность звуков различной частоты и интенсивности (силы), возникающих в результате колебательного движения частиц в упругих средах (твердых, жидких, газообразных).
Процесс распространения колебательного движения в среде называется звуковой волной, а область среды, в которой распространяются звуковые волны – звуковым полем.
Различают ударный, механический, аэрогидродинамический шум. Ударный шум возникает при штамповке, клепке, ковке и т.д.
Механический шум возникает при трении и биении узлов и деталей машин и механизмов (дробилки, мельницы, электродвигатели, компрессоры, насосы, центрифуги и др.).
Аэродинамический шум возникает в аппаратах и трубо-проводах при больших скоростях движения воздуха, газа или жидкости и при резких изменениях направления их движения и давления.
Основные физические характеристики звука :
– частота f (Гц),
– звуковое давление Р (Па),
– интенсивность или сила звука I (Вт/м2),
– звуковая мощность? (Вт).
Скорость распространения звуковых волн в атмосфере при 20°С равна 344 м/с.
Органы слуха человека воспринимают звуковые колебания в интервале частот от 16 до 20000 Гц. Колебания с частотой ниже 16 Гц (инфразвуки) и с частотой выше 20000 (ультразвуки) не воспринимаются органами слуха.
При распространении звуковых колебаний в воздухе периодически появляются области разрежения и повышенного давления. Разность давлений в возмущенной и невозмущенной средах называется звуковым давлением Р, которое измеряется в паскалях (Па).
Распространение звуковой волны сопровождается и переносом энергии. Количество энергии, переносимое звуковой волной за единицу времени через единицу поверхности, ориентированную перпендикулярно направлению распространения волны, называется интенсивностью или силой звука I и измеряется в Вт/м 2 .
Произведение называется удельным акустическим сопротивлением среды, которое характеризует степень отражения звуковых волн при переходе из одной среды в другую, а также звукоизолирующие свойства материалов.
Минимальная интенсивность звука , которая воспринимается ухом, называется порогом слышимости. В качестве стандартной частоты сравнения принята частота 1000 Гц. При этой частоте порог слышимости I 0 = 10-12 Вт/м 2 , а соответствующее ему звуковое давление Р 0 = 2*10 -5 Па. Максимальная интенсивность звука , при которой орган слуха начинает испытывать болевое ощущение, называется порогом болевого ощущения, равным 10 2 Вт/м 2 , а соответствующее ему звуковое давление Р = 2*10 2 Па.
Так как изменения интенсивности звука и звукового давления слышимых человеком, огромны и составляют соответственно 10 14 и 10 7 раз, то пользоваться для оценки звука абсолютными значениями интенсивности звука или звукового давления крайне неудобно.
Для гигиенической оценки шума принято измерять его интенсивность и звуковое давление не абсолютными физическими величинами, а логарифмами отношений этих величин к условному нулевому уровню, соответствующему порогу слышимости стандартного тона частотой 1000 Гц. Эти логарифмы отношений называют уровнями интенсивности и звукового давления, выраженные в белах (Б). Так как орган слуха человека способен различать изменение уровня интенсивности звука на 0,1 бела, то для практического использования удобнее единица в 10 раз меньше – децибел (дБ).
Уровень интенсивности звука L в децибелах определяется по формуле

L=10Lg(I/I o) .

Так как интенсивность звука пропорциональна квадрату звукового давления, то эту формулу можно записать также в виде^

L=10Lg(P 2 /P o 2)=20Lg(P/P o) , дБ.

Использование логарифмической шкалы для измерения уровня шума позволяет укладывать большой диапазон значений I и P в сравнительно небольшом интервале логарифмических величин от 0 до 140 дБ.
Пороговое значение звукового давления Р 0 соответствует порогу слышимости L = 0 дБ, порог болевого ощущения 120-130 дБ. Шум, даже когда он невелик (50-60 дБ) создает значительную нагрузку на нервную систему, оказывая психологическое воздействие. При действии шума более 140-145 дБ возможен разрыв барабанной перепонки.
Суммарный уровень звукового давления L, создаваемый несколькими источниками звука с одинаковым уров-нем звукового давления Li , рассчитываются по формуле

L=L i +10Lgn , дБ,

где n – число источников шума с одинаковым уровнем звукового давления.
Так, например, если шум создают два одинаковых источника шума, то их суммарный шум на 3 дБ больше, чем каждого из них в отдельности.
По уровню интенсивности звука еще нельзя судить о физиологическом ощущении громкости этого звука, так как наш орган слуха неодинаково чувствителен к звукам различных частот; звуки равные по силе, но разной частоты, кажутся неодинаково громкими. Например, звук частотой 100 Гц и силой 50 дБ воспринимается как равногромкий звуку частотой 1000 Гц и силой 20 дБ. Поэтому для сравнения звуков различных частот, наряду с понятием уровня интенсивности звука, введено понятие уровня громкости с условной единицей – фон. Один фон – громкость звука при частоте 1000 Гц и уровне интенсивности в 1 дБ. На частоте 1000 Гц уровни громкости приняты равными уровням звукового давления.
На рис. 1 показаны кривые равной громкости звуков, полученные по результатам изучения свойств органа слуха оценивать звуки различной частоты по субъективному ощущению громкости. Из графика видно, что наибольшей чувствительностью наше ухо обладает на частотах 800-4000 Гц, а наименьшей – при 20-100 Гц.

Обычно параметры шума и вибраций оценивают в октавных полосах. За ширину полосы принята октава, т.е. интервал частот, в котором высшая частота f 2 в два раза больше низшей f 1 . В качестве частоты, характеризующей полосу в целом, берут среднегеометрическую частоту. Среднегеометрические частоты октавных полос стандартизованы ГОСТ 12.1.003-83 "Шум. Общие требования безопасности " и составляют 63, 125, 250, 500, 1000, 2000, 4000 и 8000 Гц при соответствующих им граничным частотам 45-90, 90-180, 180-355, 355-710, 710-1400, 1400-2800, 2800-5600, 5600-11200.
Зависимость величин, характеризующих шум от его частоты, называется частотным спектром шума. Для удобства физиологической оценки воздействия шума на человека различают низкочастотный (до 300 Гц), среднечастотный (300-800 Гц) и высокочастотный (выше 800 Гц) шум.
ГОСТ 12.1.003-83 и СН 9-86 РБ 98 "Шум на рабочих местах. Предельно допустимые уровни " классифицирует шум по характеру спектра и по времени действия.
По характеру спектра :
– широкополосный, если он имеет непрерывный спектр шириной более одной октавы,
–тональный, если в спектре имеются выраженные дискретные тона. При этом тональный характер шума для практических целей устанавливается измерением в третьоктавных полосах частот (для третьоктавной полосы по пре-вышению уровня звукового давления в одной полосе над соседними не менее чем на 10 дБ.
По временным характеристикам :
– постоянный, уровень звука которых за 8-часовой рабо-чий день изменяется во времени не более чем на 5 дБ,
– непостоянный, уровень звука которых за 8-часовой ра-бочий день изменяется во времени более чем на 5 дБ.
Непостоянные шумы делятся на :
колеблющиеся во времени, уровень звука которых непрерывно изменяется во времени;
прерывистые, уровень звука которых ступенчато изменяется (на 5 дБ и более);
импульсные, состоящие из одного или нескольких звуковых сигналов, каждый длительностью менее 1 с.
Наибольшую опасность для человека представляют то-нальные, высокочастотные и непостоянные шумы.
Ультразвук по способу распространения подразделяется на :
– распространяемый воздушным путем (воздушный ультразвук);
– распространяемый контактным путем при соприкосновении с твердыми и жидкими средами (контактный ультразвук).
Ультразвуковой диапазон частот подразделяется на:
– низкочастотные колебания (1,12*10 4 - 1*10 5 Гц);
– высокочастотные (1*10 5 - 1*10 9 Гц).
Источниками ультразвука является производственное оборудование, в котором генерируются ультразвуковые колебания для выполнения технологического процесса, технического контроля и измерений, а также оборудование, при эксплуатации которого ультразвук возникает как сопутствующий фактор.
Характеристикой воздушного ультразвука на рабочем месте в соответствии с ГОСТ 12.1.001 "Ультразвук. Общие требования безопасности " и СН 9-87 РБ 98 "Ультразвук, передающийся воздушным путем. Предельно допустимые уровни на рабочих местах " являются уровни звукового давления в третьоктавных полосах со среднегеометрическими частотами 12,5; 16,0; 20,0; 25,0; 31,5; 40,0; 50,00; 63,0; 80,0; 100,0 кГц.
Характеристикой контактного ультразвука в соответствии с ГОСТ 12.1.001 и СН 9-88 РБ 98 "Ультразвук, передающийся контактным путем. Предельно допустимые уровни на рабочих местах " являются пиковые значения виброскорости или уровни виброскорости в октавных полосах со среднегеометрическими частотами 8; 16; 31,5; 63; 125; 250; 500; 1000; 2000; 4000; 8000; 16000; 31500 кГц.
Вибрации – это колебания твердых тел – частей аппаратов, машин, оборудования, сооружений, воспринимаемые организмом человека как сотрясения. Часто вибрации сопровождаются слышимым шумом.
По способу передачи на человека вибрация подразделяется на локальную и общую .
Общая вибрация передается через опорные поверхности на тело стоящего или сидящего человека. Наиболее опасная частота общей вибрации лежит в диапазоне 6-9 Гц, поскольку она совпадает с собственной частотой колебаний внутренних органов человека, в результате чего может возникнуть резонанс.
Локальная (местная) вибрация передается через руки человека. К локальной вибрации может быть отнесена и вибрация, воздействующая на ноги сидящего человека и на предплечья, контактирующие с вибрирующими поверхностями рабочих столов.
Источниками локальной вибрации, передающейся на работающих, могут быть: ручные машины с двигателем или ручной механизированный инструмент; органы управления машинами и оборудованием; ручной инструмент и обрабатываемые детали.
Общая вибрация в зависимости от источника ее возникновения подразделяется на:
общую вибрацию 1 категории – транспортную, воздействующую на человека на рабочем месте в самоходных и прицепных машинах, транспортных средствах при движении по местности, дорогам и агрофонам;
общую вибрацию 2 категории –- транспортно-технологическую, воздействующую на человека на рабочих местах в машинах, перемещающихся по специально подготовленным поверхностям производственных помещений, промышленных площадок, горных выработок;
общую вибрацию 3 категории – технологическую, воздействующую на человека на рабочем месте у стационарных машин или передающуюся на рабочие места, не имеющие источников вибрации.
Общая вибрация категории 3 по месту действия подразделяется на следующие типы:
3а – на постоянных рабочих местах производственных помещений предприятий;
3б – на рабочих местах на складах, в столовых, бытовых, дежурных и других вспомогательных производственных помещений, где нет машин, генерирующих вибрацию;
3в – на рабочих местах в административных и служебных помещениях заводоуправления, конструкторских бюро, лабораториях, учебных пунктах, вычислительных центрах, здравпунктах, конторских помещениях и других помещениях работников умственного труда.
По временным характеристикам вибрация подразделяется на :
– постоянную, для которой спектральный или корректированный по частоте нормируемый параметр за время наблюдения (не менее 10 минут или время технологического цикла) изменяются не более чем в 2 раза (6 дБ) при измерении с постоянной времени 1 с;
– непостоянную вибрацию, для которой спектральный или корректированный по частоте нормируемый параметр за время наблюдения (не менее 10 минут или время технологического цикла) изменяются более чем в 2 раза (6 дБ) при измерении с постоянной времени 1 с.
Основные параметры, характеризующие вибрацию:
– частота f (Гц);
– амплитуда смещения А (м) (величина наибольшего от-клонения колеблющейся точки от положения равновесия);
– колебательная скорость v (м/с); колебательное ускорение а (м/с 2).
Так же как и для шума, весь спектр частот вибраций, вос-принимаемых человеком, разделен на октавные полосы со среднегеометрическими частотами 1, 2, 4, 8, 16, 32, 63, 125, 250, 500, 1000, 2000 Гц.
Поскольку диапазон изменения параметров вибрации от пороговых значений, при которых она не опасна, до действительных – большой, то удобнее измерять недействительные значения этих параметров, а логарифм отношения действительных значений к пороговым. Такую величину называют логарифмическим уровнем параметра, а единицу ее измерения – децибел (дБ).

Физические характеристики звуковых волн имеют объективный характер и могут быть измерены соответствующими приборами в стандартных единицах – Это интенсивность, частота и спектр звука .

Интенсивность звука - э нергетическая характеристика звуковой волны, представляет собой энергию звуковой волны, попадающей на поверхность единичной площади за единицу времени, и измеряется в Вт/м 2 . Интенсивность звука определяет физиологическую характеристику слухового ощущении – громкость .

Частота звуковых колебаний (Гц)- определяет физиологическую характери­стику зву­кового ощущения, которую называют высотой звука .

Возможность оценки высоты тона слуховым аппаратом че­ловека связана с продолжительностью звучания. Ухо не способно оценить высоту тона, если время звукового воздей­ствия меньше 1/20 секунды.

Спектральный состав звуковых колебаний (акустический спектр), - число гармонических составляющих звука и соотношение их амплитуд, определяет тембр звука , физиологическую характеристику слухового ощущения.

Диаграмма слышимости.

Чтобы сформировалось слуховое ощущение, интенсив­ность звуковых волн должна превысить некоторое минимальное значение, называемое порогом слышимости. Оно имеет различные значения для различных частот звукового диапазона (нижняя кривая на рисунке 17.1 1). Это означает, что слуховой аппарат обладает не одинаковой чувствительностью к звуковым воздействиям на разных частотах. Максимальной чувствительностью ухо человека обладает в области частот 1000-3000 Гц. Здесь пороговое значение интенсивности звука минимально и составляет 10 –12 Вт/м 2 .

С увеличением интенсивности звука возрастает и ощуще­ние громкости. Однако, звуковые волны с интенсивностью порядка 1-10 Вт/м 2 вызывают уже ощущение боли. Максимальное значение интенсив­ности, при превышении которого возникает боль, называется порогом болево­го ощущения.

Он также зависит от частоты звука (верхняя кривая на рисунке 1), но в меньшей степени, чем порог слышимости.

Область частот и интенсивностей звука, ограниченная верхней и нижней кривыми рисунка 1, называет­ся областью слышимости.

Уровни интенсивности и уровни громко­сти звука

Закон Вебера-Фехнера.

Уже отмечалось, что объективная физическая характеристика звуковой волны - интенсивность определяет субъективную физиологическую характери­стику - громкость. Количественная связь между ними устанавливается законом Вебера-Фехнера : если интенсивность раздражителя увеличивается в геометрической прогрессии, то физиологическое ощущение растет в арифметической про­грессии.



Закон Вебера-Фехнера можно пересказать другими словами: физиологическаяреакция (в рассматриваемом слу­чае громкость ) на раздражитель (интенсивность звука) пропорциональна логарифму интенсивности раздра­жителя.

В физике и технике логарифм отношения двух интенсивностей называют уровнем интенсивности, поэтому величину, пропор­циональную десятичному логарифму отношения интенсивности некоторого звука (I) к ин­тенсивности на пороге слышимости I 0 = 10 -12 Вт/м 2:называют уровнем интенсивности звука (L):

(1)

Коэффициент n в формуле (1) определяет единицу измерения уровня интенсивности звука L . Если n =1, то единицей измерения L является Бел (Б). На практике обычно принимают n =10, тогда L измеряется в децибелах (дБ) (1 дБ = 0,1 Б). На пороге слышимости (I = I 0 ) уровень интенсивности звука L=0 , а на пороге болевого ощущения (I = 10 Вт/м 2)– L = 130 дБ.

Громкость звука в соответствии с законом Вебера-Фехнерапрямо пропорциональна уровнем интенсивности L:

Е = kL, (2)

где k - коэффициент пропорциональности, зависящий от частоты и интенсивности звука.

Если бы коэффициент k в формуле (2) был постоянным, то уровень гром­кости совпадал бы с уровнем интенсивности и мог бы измеряться в децибелах.

Но он зависит и от частоты и от интенсивности звуковой волны, поэтому громкость звука измеряют в других единицах – фонах . Постановили, что на частоте 1000 Гц 1 фон = 1 дБ , т.е. уровень интенсивности в децибелах и уровень громкости в фонах совпадают(в формуле (2) коэффициент k = 1 на частоте 1000 Гц). На других частотах для перехода от децибел к фонам не­обходимо вводить соответствующие поправки, которые можно определить с помощью кривых равной громкости (см. рис.1).



Определение порога слышимости на разных частотах составляет основу методов измерения остроты слуха. Полученная кривая называется спектральной характеристикой уха на пороге слыши­мости или аудиограммой. Сравнивая порог слышимости пациента с усредненной нормой, можно судить о степени развития нару­шений слухового аппарата.

Порядок выполнения работы

Снятие спектральной характеристики уха на пороге слышимости проводится с помощью генератора синусоидального сигнала SG-530 и наушников.

Основные органы управления генератора расположены на передней панели (рис.3). Там же расположен выходной разъем для подключения наушников. На задней панели генератора расположены выключатель питания, сетевой шнур и клемма заземления.

Рис. 3. Передняя панель генератора:

1- выходной разъем; 2 -ЖКИ; 3 - энкодер.

Управление генератором осуществляется с помощью нескольких меню, которые выводятся на жидкокристаллический индикатор (ЖКИ). Система меню организована в виде кольцевой структуры. Короткое нажатие кнопки энкодера позволяет «по кругу» переходить между меню, длинное нажатие в любом из пунктов меню приводит к переходу на главное меню. Любое действие по переходу между пунктами меню сопровождается звуковым сигналом.

С помощью системы меню можно задать частоту выходного сигнала генератора, амплитуду выходного сигнала, значение ослабления аттенюатора, считать или записать предустановку частоты, а также выключить или включить выходной сигнал. Увеличение или уменьшение значения выбранного параметра производится поворотом энкодера по (вправо) или против (влево) направления часовой стрелки соответственно.

В исходном состоянии генератора на индикатор выводится главное меню, в котором отображается текущее значение частоты, амплитуды и состояние аттенюатора. При повороте энкодера или нажатии кнопки энкодера происходит переход в меню установки частоты (рис. 4).

Одиночный поворот энкодера вправо или влево приводит к изменению частоты на один шаг.

Если на протяжении примерно 5 секунд регулировка частоты не производится, происходит автоматический переход на главное меню, за исключением меню калибровки частоты и амплитуды.

Нажатие кнопки энкодера в меню установки частоты приводит к переходу в меню установки амплитуды (рис. 4а,б). Значение амплитуды выводится в вольтах с запятой, которая отделяет десятые доли вольта, если значение больше 1 В, или без запятой в милливольтах, если значение меньше 1 В. На рис. 17.4,б показан пример индикации амплитуды, равной 10 В, а на рис. 17.4,в -амплитуды 10 мВ.

Нажатие кнопки энкодера в меню установки амплитуды приводит к переходу в меню установки ослабления аттенюатора. Возможные значения ослабления аттенюатора 0, -20, -40, -60 дБ.

Нажатие кнопки энкодера в меню установки ослабления аттенюатора приводит к переходу в меню установки шага изменения частоты. Шаг изменения значения частоты может иметь значение 0.01 Гц... 10 КГц. Нажатие кнопки энкодера в меню установки шага изменения частоты приводит к переходу в меню установки шага изменения значения амплитуды (рис. 5). Шаг изменения значения амплитуды может иметь значение 1 мВ... 1 В.

Порядок выполнения работы.

1. Подключите к сети (220В. 50 Гц ) шнур питания генератора SG-530 нажатием кнопки «POWER» на задней панели;

2. Однократно нажмите кнопку энкодера - произойдет переход из главного меню в меню установки частоты «FREQUENCY» - и вращением энкодера установите первое значение частоты ν =100 Гц;

3. Нажатие кнопки энкодера в меню установки частоты приводит к переходу к меню установки амплитуды «AMPLITUDE» - установите значение амплитуды Uген =300 мВ;

4. Подключите наушники к генератору;

5. Уменьшая значение амплитуды до 100 мВ, добейтесь отсутствия шума в наушниках;

6. Если при минимальной амплитуде (100 мВ) звук в наушниках ещё слышен, нажатием кнопки энкодера перейдите в меню установки ослабления аттенюатора «ATTENUATOR» и установите минимальное ослабление L (например, -20dB), при котором звук исчезает ;

7. Запишите полученные значения частотыν , амплитудыUген и ослабления L в таблицу результатов измерений (таблица 1) ;

8. Аналогично добейтесь отсутствия звука для каждой из предложенных частотν ;

9. Произведите расчёт амплитуды на выходе генератораUвых по формулеUвых = Uген ∙ K, где коэффициент ослабленияK определяется по величинеослабления L из таблицы2;

10. Определите минимальное значениеамплитуды на выходе генератораUвых min как наименьшееиз совокупности всех полученных значенийамплитуды на выходе генератораUвых для всех частот;

11. Произведите расчёт уровня громкости на пороге слышимости E по формуле E=20lg Uвых/ Uвых min ;

12. Постройте график зависимости величины уровня громкости на пороге слышимости E от значения логарифма частоты lg ν . Полученная кривая будет представлять собой порог слышимости.

Таблица 1 . Результаты измерений.

ν, Гц lg ν Uген, мВ L, дБ Коэффициент ослабления, K U вых = К·U ген мВ Уровень интенсивности (дБ ) E =20 lg (Uвых/ Uвых min)
2,0
2,3
2,7
3,0
3,3
3,5
3,7
4,0
4,2

Таблица 2. Связь показаний аттенюатора L (0, -20, -40, -60 дБ) и коэффициента ослабления по напряжению K (1, 0,1, 0,01, 0,001).

Контрольные вопросы:

1. Природа звука. Скорость звука. Классификация звуков (тоны, шумы).

2. Физические и физиологические характеристики звука (частота, интенсивность, спектральный состав, высота, громкость, тембр).

3. Диаграмма слышимости (порог слышимости, порог болевого ощущения, область речи).

4. Закон Вебера-Фехнера. Уровни интенсивности и уровни громкости звука, связь между ними и единицы измерения.

5. Методика определения порога слышимости (спектральной характеристики уха на пороге слышимости)

Решить задачи:

1. Интенсивность звука частотой 5 кГц равна 10 -9 Вт/м 2 . Определить уровни интенсивности и громкости этого звука.

2. Уровень интенсивности звука от некоторого источника равен 60 дБ. Чему равен суммарный уровень интенсивности звука от десяти таких ис­точников звука при их одновременном действии?

3. Уровень громкости звука частотой 1000 Гц после его прохождения че­рез стенку понизился от 100 до 20 фон. Во сколько раз уменьшилась ин­тенсивность звука?

Литература:

1. В.Г.Лещенко, Г.К.Ильич. Медицинская и биологическая физика.- Мн.: Новое знание. 2011.

2. Г.К.Ильич. Колебания и волны, акустика, гемодинамика. Пособие. – Мн.: БГМУ, 2000.

3. А.Н. Ремизов. Медицинская и биологическая физика.- М.: Высш. шк. 1987.

Шум – это совокупность звуков различной частоты и интенсивности (силы), возникающих в результате колебательного движения частиц в упругих средах (твердых, жидких, газообразных).

Процесс распространения колебательного движения в среде называется звуковой волной , а область среды, в которой распространяются звуковые волны – звуковым полем .

Различают ударный, механический, аэрогидродинамический шум. Ударный шум возникает при штамповке, клепке, ковке и т.д.

Механический шум возникает при трении и биении узлов и деталей машин и механизмов (дробилки, мельницы, электродвигатели, компрессоры, насосы, центрифуги и др.).

Аэродинамический шум возникает в аппаратах и трубопроводах при больших скоростях движения воздуха, газа или жидкости и при резких изменениях направления их движения и давления.

Основные физические характеристики звука :

– частота f (Гц),

– звуковое давление Р (Па),

– интенсивность или сила звука I (Вт/м 2),

– звуковая мощность w (Вт).

Скорость распространения звуковых волн в атмосфере при 20°С равна 344 м/с.

Органы слуха человека воспринимают звуковые колебания в интервале частот от 16 до 20000 Гц. Колебания с частотой ниже 16 Гц (инфразвуки ) и с частотой выше 20000 (ультразвуки ) не воспринимаются органами слуха.

При распространении звуковых колебаний в воздухе периодически появляются области разрежения и повышенного давления. Разность давлений в возмущенной и невозмущенной средах называется звуковым давлением Р, которое измеряется в паскалях (Па).

Распространение звуковой волны сопровождается и переносом энергии. Количество энергии, переносимое звуковой волной за единицу времени через единицу поверхности, ориентированную перпендикулярно направлению распространения волны, называется интенсивностью или силой звука I и измеряется в Вт/м 2 .

Интенсивность звука связана со звуковым давлением следующим соотношением:

где r 0 – плотность среды, в которой распространяется звуковая волна, кг/м 3 ; с – скорость распространения звука в данной среде, м/с; v – среднеквадратичное значение колебательной скорости частиц в звуковой волне, м/с.

Произведение называется удельным акустическим сопротивлением среды , которое характеризует степень отражения звуковых волн при переходе из одной среды в другую, а также звукоизолирующие свойства материалов.

Минимальная интенсивность звука, которая воспринимается ухом, называется порогом слышимости . В качестве стандартной частоты сравнения принята частота 1000 Гц. При этой частоте порог слышимости I 0 = 10 -12 Вт/м 2 , а соответствующее ему звуковое давление Р 0 = 2×10 -5 Па. Максимальная интенсивность звука, при которой орган слуха начинает испытывать болевое ощущение, называется порогом болевого ощущения , равным 10 2 Вт/м 2 , а соответствующее ему звуковое давление Р = 2×10 2 Па.



Так как изменения интенсивности звука и звукового давления слышимых человеком, огромны и составляют соответственно 10 14 и 10 7 раз, то пользоваться для оценки звука абсолютными значениями интенсивности звука или звукового давления крайне неудобно.

Для гигиенической оценки шума принято измерять его интенсивность и звуковое давление не абсолютными физическими величинами, а логарифмами отношений этих величин к условному нулевому уровню, соответствующему порогу слышимости стандартного тона частотой 1000 Гц. Эти логарифмы отношений называют уровнями интенсивности и звукового давления , выраженные в белах (Б). Так как орган слуха человека способен различать изменение уровня интенсивности звука на 0,1 бела, то для практического использования удобнее единица в 10 раз меньше – децибел (дБ).

Уровень интенсивности звука L в децибелах определяется по формуле

Так как интенсивность звука пропорциональна квадрату звукового давления, то эту формулу можно записать также в виде

Использование логарифмической шкалы для измерения уровня шума позволяет укладывать большой диапазон значений I и P в сравнительно небольшом интервале логарифмических величин от 0 до 140 дБ.

Пороговое значение звукового давления Р 0 соответствует порогу слышимости L = 0 дБ, порог болевого ощущения 120-130 дБ. Шум, даже когда он невелик (50-60 дБ) создает значительную нагрузку на нервную систему, оказывая психологическое воздействие. При действии шума более 140-145 дБ возможен разрыв барабанной перепонки.

Суммарный уровень звукового давления L, создаваемый несколькими источниками звука с одинаковым уровнем звукового давления L i , рассчитываются по формуле

где n – число источников шума с одинаковым уровнем звукового давления.

Так, например, если шум создают два одинаковых источника шума, то их суммарный шум на 3 дБ больше, чем каждого из них в отдельности.

Суммарный уровень звукового давления нескольких различных источников звука , определяется по формуле

где L 1 , L 2 , ..., L n – уровни звукового давления, создаваемые каждым из источников звука в исследуемой точке пространства.

По уровню интенсивности звука еще нельзя судить о физиологическом ощущении громкости этого звука, так как наш орган слуха неодинаково чувствителен к звукам различных частот; звуки равные по силе, но разной частоты, кажутся неодинаково громкими. Например, звук частотой 100 Гц и силой 50 дБ воспринимается как равногромкий звуку частотой 1000 Гц и силой 20 дБ. Поэтому для сравнения звуков различных частот, наряду с понятием уровня интенсивности звука, введено понятие уровня громкости с условной единицей – фон. Один фон – громкость звука при частоте 1000 Гц и уровне интенсивности в 1 дБ. На частоте 1000 Гц уровни громкости приняты равными уровням звукового давления.

На рис. 1 показаны кривые равной громкости звуков, полученные по результатам изучения свойств органа слуха оценивать звуки различной частоты по субъективному ощущению громкости. Из графика видно, что наибольшей чувствительностью наше ухо обладает на частотах 800-4000 Гц, а наименьшей – при 20-100 Гц.

Обычно параметры шума и вибраций оценивают в октавных полосах. За ширину полосы принята октава , т.е. интервал частот, в котором высшая частота f 2 в два раза больше низшей f 1 . В качестве частоты, характеризующей полосу в целом, берут среднегеометрическую частоту . Среднегеометрические частоты октавных полос стандартизованы ГОСТ 12.1.003-83 "Шум. Общие требования безопасности" и составляют 63, 125, 250, 500, 1000, 2000, 4000 и 8000 Гц при соответствующих им граничным частотам 45-90, 90-180, 180-355, 355-710, 710-1400, 1400-2800, 2800-5600, 5600-11200.

Зависимость величин, характеризующих шум от его частоты, называется частотным спектром шума . Для удобства физиологической оценки воздействия шума на человека различают низкочастотный (до 300 Гц), среднечастотный (300-800 Гц) и высокочастотный (выше 800 Гц) шум .

ГОСТ 12.1.003-83 и СН 9-86 РБ 98 "Шум на рабочих местах. Предельно допустимые уровни" классифицирует шум по характеру спектра и по времени действия.

По характеру спектра:

широкополосный , если он имеет непрерывный спектр шириной более одной октавы,

тональный , если в спектре имеются выраженные дискретные тона. При этом тональный характер шума для практических целей устанавливается измерением в третьоктавных полосах частот (для третьоктавной полосы по превышению уровня звукового давления в одной полосе над соседними не менее чем на 10 дБ.

По временным характеристикам:

постоянный , уровень звука которых за 8-часовой рабочий день изменяется во времени не более чем на 5 дБ,

непостоянный , уровень звука которых за 8-часовой рабочий день изменяется во времени более чем на 5 дБ.

Непостоянные шумы делятся на:

колеблющиеся во времени , уровень звука которых непрерывно изменяется во времени;

прерывистые , уровень звука которых ступенчато изменяется (на 5 дБ и более);

импульсные , состоящие из одного или нескольких звуковых сигналов, каждый длительностью менее 1 с.

Наибольшую опасность для человека представляют тональные, высокочастотные и непостоянные шумы.

Ультразвук по способу распространения подразделяется на:

распространяемый воздушным путем (воздушный ультразвук);

распространяемый контактным путем при соприкосновении с твердыми и жидкими средами (контактный ультразвук).

Ультразвуковой диапазон частот подразделяется на:

низкочастотные колебания (1,12×10 4 - 1×10 5 Гц);

высокочастотные (1×10 5 - 1×10 9 Гц).

Источниками ультразвука является производственное оборудование, в котором генерируются ультразвуковые колебания для выполнения технологического процесса, технического контроля и измерений, а также оборудование, при эксплуатации которого ультразвук возникает как сопутствующий фактор.

Характеристикой воздушного ультразвука на рабочем месте в соответствии с ГОСТ 12.1.001 "Ультразвук. Общие требования безопасности" и СН 9-87 РБ 98 "Ультразвук, передающийся воздушным путем. Предельно допустимые уровни на рабочих местах" являются уровни звукового давления в третьоктавных полосах со среднегеометрическими частотами 12,5; 16,0; 20,0; 25,0; 31,5; 40,0; 50,00; 63,0; 80,0; 100,0 кГц.

Характеристикой контактного ультразвука в соответствии с ГОСТ 12.1.001 и СН 9-88 РБ 98 "Ультразвук, передающийся контактным путем. Предельно допустимые уровни на рабочих местах" являются пиковые значения виброскорости или уровни виброскорости в октавных полосах со среднегеометрическими частотами 8; 16; 31,5; 63; 125; 250; 500; 1000; 2000; 4000; 8000; 16000; 31500 кГц.

Вибрации – это колебания твердых тел – частей аппаратов, машин, оборудования, сооружений, воспринимаемые организмом человека как сотрясения. Часто вибрации сопровождаются слышимым шумом.

По способу передачи на человека вибрация подразделяется на локальную и общую.

Общая вибрация передается через опорные поверхности на тело стоящего или сидящего человека. Наиболее опасная частота общей вибрации лежит в диапазоне 6-9 Гц, поскольку она совпадает с собственной частотой колебаний внутренних органов человека, в результате чего может возникнуть резонанс.

Локальная (местная) вибрация передается через руки человека. К локальной вибрации может быть отнесена и вибрация, воздействующая на ноги сидящего человека и на предплечья, контактирующие с вибрирующими поверхностями рабочих столов.

Источниками локальной вибрации, передающейся на работающих, могут быть: ручные машины с двигателем или ручной механизированный инструмент; органы управления машинами и оборудованием; ручной инструмент и обрабатываемые детали.

Общая вибрация в зависимости от источника ее возникновения подразделяется на:

общую вибрацию 1 категории транспортную , воздействующую на человека на рабочем месте в самоходных и прицепных машинах, транспортных средствах при движении по местности, дорогам и агрофонам;

общую вибрацию 2 категории –- транспортно-технологическую , воздействующую на человека на рабочих местах в машинах, перемещающихся по специально подготовленным поверхностям производственных помещений, промышленных площадок, горных выработок;

3а –на постоянных рабочих местах производственных помещений предприятий;

3б – на рабочих местах на складах, в столовых, бытовых, дежурных и других вспомогательных производственных помещений, где нет машин, генерирующих вибрацию;

3в – на рабочих местах в административных и служебных помещениях заводоуправления, конструкторских бюро, лабораториях, учебных пунктах, вычислительных центрах, здравпунктах, конторских помещениях и других помещениях работников умственного труда.

По временным характеристикам вибрация подразделяется на:

постоянную , для которой спектральный или корректированный по частоте нормируемый параметр за время наблюдения (не менее 10 минут или время технологического цикла) изменяются не более чем в 2 раза (6 дБ) при измерении с постоянной времени 1 с;

непостоянную вибрацию, для которой спектральный или корректированный по частоте нормируемый параметр за время наблюдения (не менее 10 минут или время технологического цикла) изменяются более чем в 2 раза (6 дБ) при измерении с постоянной времени 1 с.

Основные параметры, характеризующие вибрацию:

– частота f (Гц);

– амплитуда смещения А (м) (величина наибольшего отклонения колеблющейся точки от положения равновесия);

– колебательная скорость v (м/с); колебательное ускорение а (м/с 2).

Так же как и для шума, весь спектр частот вибраций, воспринимаемых человеком, разделен на октавные полосы со среднегеометрическими частотами 1, 2, 4, 8, 16, 32, 63, 125, 250, 500, 1000, 2000 Гц.

Поскольку диапазон изменения параметров вибрации от пороговых значений, при которых она не опасна, до действительных – большой, то удобнее измерять недействительные значения этих параметров, а логарифм отношения действительных значений к пороговым. Такую величину называют логарифмическим уровнем параметра, а единицу ее измерения – децибел (дБ).

Так логарифмический уровень виброскорости L v (дБ) определяется по формуле

где v – действительное среднеквадратичное значение виброскорости, м/с: – пороговая (опорная) виброскорость, м/с.

1. Звук, виды звука.

2. Физические характеристики звука.

3. Характеристики слухового ощущения. Звуковые измерения.

4. Прохождение звука через границу раздела сред.

5. Звуковые методы исследования.

6. Факторы, определяющие профилактику шума. Защита от шума.

7. Основные понятия и формулы. Таблицы.

8. Задачи.

Акустика. В широком смысле - раздел физики, изучающий упругие волны от самых низких частот до самых высоких. В узком смысле - учение о звуке.

3.1. Звук, виды звука

Звук в широком смысле - упругие колебания и волны, распространяющиеся в газообразных, жидких и твердых веществах; в узком смысле - явление, субъективно воспринимаемое органами слуха человека и животных.

В норме ухо человека слышит звук в диапазоне частот от 16 Гц до 20 кГц. Однако с возрастом верхняя граница этого диапазона уменьшается:

Звук с частотой ниже 16-20 Гц называется инфразвуком, выше 20 кГц -ультразвуком, а самые высокочастотные упругие волны в диапазоне от 10 9 до 10 12 Гц - гиперзвуком.

Звуки, встречающиеся в природе, разделяют на несколько видов.

Тон - это звук, представляющий собой периодический процесс. Основной характеристикой тона является частота. Простой тон создается телом, колеблющимся по гармоническому закону (например, камертоном). Сложный тон создается периодическими колебаниями, которые не являются гармоническими (например, звук музыкального инструмента, звук, создаваемый речевым аппаратом человека).

Шум - это звук, имеющий сложную неповторяющуюся временную зависимость и представляющий собой сочетание беспорядочно изменяющихся сложных тонов (шелест листьев).

Звуковой удар - это кратковременное звуковое воздействие (хлопок, взрыв, удар, гром).

Сложный тон, как периодический процесс, можно представить в виде суммы простых тонов (разложить на составляющие тоны). Такое разложение называется спектром.

Акустический спектр тона - это совокупность всех его частот с указанием их относительных интенсивностей или амплитуд.

Наименьшая частота в спектре (ν) соответствует основному тону, а остальные частоты называют обертонами или гармониками. Обертоны имеют частоты, кратные основной частоте: 2ν, 3ν, 4ν, ...

Обычно наибольшая амплитуда спектра соответствует основному тону. Именно он воспринимается ухом как высота звука (см. ниже). Обертоны создают «окраску» звука. Звуки одной и той же высоты, созданные разными инструментами, воспринимаются ухом по-разному именно из-за различного соотношения между амплитудами обертонов. На рисунке 3.1 показаны спектры одной и той же ноты (ν = 100 Гц), взятой на рояле и кларнете.

Рис. 3.1. Спектры ноты рояля (а) и кларнета (б)

Акустический спектр шума является сплошным.

3.2. Физические характеристики звука

1. Скорость (v). Звук распространяется в любой среде, кроме вакуума. Скорость его распространения зависит от упругости, плотности и температуры среды, но не зависит от частоты колебаний. Скорость звука в газе зависит от его молярной массы (М) и абсолютной температуры (Т):

Скорость звука в воде равна 1500 м/с; близкое значение имеет скорость звука и в мягких тканях организма.

2. Звуковое давление. Распространение звука сопровождается изменением давления в среде (рис. 3.2).

Рис. 3.2. Изменение давления в среде при распространении звука.

Именно изменения давления вызывают колебания барабанной перепонки, которые и определяют начало такого сложного процесса, как возникновение слуховых ощущений.

Звуковое давление Ρ) - это амплитуда тех изменений давления в среде, которые возникают при прохождении звуковой волны.

3. Интенсивность звука (I). Распространение звуковой волны сопровождается переносом энергии.

Интенсивность звука - это плотность потока энергии, переносимой звуковой волной (см. формулу 2.5).

В однородной среде интенсивность звука, испущенного в данном направлении, убывает по мере удаления от источника звука. При использовании волноводов можно добиться и увеличения интенсивности. Типичным примером такого волновода в живой природе является ушная раковина.

Связь между интенсивностью (I) и звуковым давлением (ΔΡ) выражается следующей формулой:

где ρ - плотность среды; v - скорость звука в ней.

Минимальные значения звукового давления и интенсивности звука, при которых у человека возникают слуховые ощущения, называются порогом слышимости.

Для уха среднего человека на частоте 1 кГц порогу слышимости соответствуют следующие значения звукового давления (ΔΡ 0) и интенсивности звука (I 0):

ΔΡ 0 = 3х10 -5 Па (≈ 2х10 -7 мм рт.ст.); I 0 = 10 -12 Вт/м 2 .

Значения звукового давления и интенсивности звука, при которых у человека возникают выраженные болевые ощущения, называются порогом болевого ощущения.

Для уха среднего человека на частоте 1 кГц порогу болевого ощущения соответствуют следующие значения звукового давления (ΔΡ m) и интенсивности звука (I m):

4. Уровень интенсивности (L). Отношение интенсивностей, соответствующих порогам слышимости и болевого ощущения, столь велико (I m /I 0 = 10 13), что на практике используют логарифмическую шкалу, вводя специальную безразмерную характеристику - уровень интенсивности.

Уровнем интенсивности называют десятичный логарифм отношения интенсивности звука к порогу слышимости:

Единицей измерения уровня интенсивности является бел (Б).

Обычно используют более мелкую единицу уровня интенсивности - децибел (дБ): 1 дБ = 0,1 Б. Уровень интенсивности в децибелах вычисляется по следующим формулам:

Логарифмический характер зависимости уровня интенсивности от самой интенсивности означает, что при увеличении интенсивности в 10 раз уровень интенсивности возрастает на 10 дБ.

Характеристики часто встречающихся звуков приведены в табл. 3.1.

Если человек слышит звуки, приходящие с одного направления от нескольких некогерентных источников, то их интенсивности складываются:

Высокий уровень интенсивности звука приводит к необратимым изменениям в слуховом аппарате. Так, звук в 160 дБ может вызвать разрыв барабанной перепонки и смещение слуховых косточек в среднем ухе, что приводит к необратимой глухоте. При 140 дБ человек ощущает сильную боль, а продолжительное действие шума в 90-120 дБ приводит к поражению слухового нерва.

3.3. Характеристики слухового ощущения. Звуковые измерения

Звук является объектом слухового ощущения. Он оценивается человеком субъективно. Все субъективные характеристики слухового ощущения связаны с объективными характеристиками звуковой волны.

Высота, тембр

Воспринимая звуки, человек различает их по высоте и тембру.

Высота тона обусловлена прежде всего частотой основного тона (чем больше частота, тем более высоким воспринимается звук). В меньшей степени высота зависит от интенсивности звука (звук большей интенсивности воспринимается более низким).

Тембр - это характеристика звукового ощущения, которая определяется его гармоническим спектром. Тембр звука зависит от числа обертонов и от их относительных интенсивностей.

Закон Вебера-Фехнера. Громкость звука

Использование логарифмической шкалы для оценки уровня интенсивности звука хорошо согласуется с психофизическим законом Вебера-Фехнера:

Если увеличивать раздражение в геометрической прогрессии (т.е. в одинаковое число раз), то ощущение этого раздражения возрастает в арифметической прогрессии (т.е. на одинаковую величину).

Именно логарифмическая функция обладает такими свойствами.

Громкостью звука называют интенсивность (силу) слуховых ощущений.

Ухо человека имеет различную чувствительность к звукам различных частот. Для учета этого обстоятельства можно выбрать некоторую опорную частоту, а восприятие остальных частот сравнивать с нею. По договоренности опорную частоту приняли равной 1 кГц (по этой причине и порог слышимости I 0 установлен для этой частоты).

Для чистого тона с частотой 1 кГц громкость (Е) принимают равной уровню интенсивности в децибелах:

Для остальных частот громкость определяют путем сравнения интенсивности слуховых ощущений с громкостью звука на опорной частоте.

Громкость звука равна уровню интенсивности звука (дБ) на частоте 1 кГц, вызывающего у «среднего» человека такое же ощущение громкости, что и данный звук.

Единицу громкости звука называют фоном.

Ниже приводится пример зависимости уровня громкости от частоты при уровне интенсивности 60 дБ.

Кривые равной громкости

Детальную связь между частотой, громкостью и уровнем интенсивности изображают графически с помощью кривых равной громкости (рис. 3.3). Эти кривые демонстрируют зависимость уровня интенсивности L дБ от частоты ν звука при заданной громкости звука.

Нижняя кривая соответствует порогу слышимости. Она позволяет найти пороговое значение уровня интенсивности (Е = 0) при заданной частоте тона.

С помощью кривых равной громкости можно найти громкость звука, если известны его частота и уровень интенсивности.

Звуковые измерения

Кривые равной громкости отражают восприятие звука средним человеком. Для оценки слуха конкретного человека применяется метод тональной пороговой аудиометрии.

Аудиометрия - метод измерения остроты слуха. На специальном приборе (аудиометре) определяется порог слухового ощущения, или порог восприятия, L П на разных частотах. Для этого с помощью звукового генератора создают звук заданной частоты и, увеличивая уро-

Рис. 3.3. Кривые равной громкости

вень интенсивности L, фиксируют пороговый уровень интенсивность L п, при котором у испытуемого появляются слуховые ощущения. Меняя частоту звука, получают экспериментальную зависимость L п (v), которую называют аудиограммой (рис. 3.4).

Рис. 3.4. Аудиограммы

Нарушение функции звуковоспринимающего аппарата может привести к тугоухости - стойкому снижению чувствительности к различным тонам и шепотной речи.

Международная классификация степеней тугоухости, основанная на усредненных значениях порогов восприятия на речевых частотах, приведена в табл. 3.2.

Для измерения громкости сложного тона или шума используют специальные приборы - шумомеры. Звук, принимаемый микрофоном, преобразуется в электрический сигнал, который пропускается через систему фильтров. Параметры фильтров подобраны так, что чувствительность шумомера на различных частотах близка к чувствительности человеческого уха.

3.4. Прохождение звука через границу раздела сред

При падении звуковой волны на границу раздела между двумя средами звук частично отражается, а частично проникает во вторую среду. Интенсивности отраженной и прошедшей через границу волн определяются соответствующими коэффициентами.

При нормальном падении звуковой волны на границу раздела сред справедливы следующие формулы:

Из формулы (3.9) видно, что чем сильнее различаются волновые сопротивления сред, тем большая доля энергии отражается на границе раздела. В частности, если величина х близка к нулю, то коэффициент отражения близок к единице. Например, для границы воздух-вода х = 3х10 -4 , а r = 99,88 %. То есть отражение является практически полным.

В таблице 3.3 приведены скорости и волновые сопротивления некоторых сред при 20 °С.

Отметим, что значения коэффициентов отражения и преломления не зависят от того порядка, в котором звук проходит данные среды. Например, для перехода звука из воздуха в воду значения коэффициентов такие же, как для перехода в обратном направлении.

3.5. Звуковые методы исследования

Звук может быть источником информации о состоянии органов человека.

1. Аускультация - непосредственное выслушивание звуков, возникающих внутри организма. По характеру таких звуков можно определить, какие именно процессы протекают в данной области тела, и в некоторых случаях установить диагноз. Приборы, применяемые для выслушивания: стетоскоп, фонендоскоп.

Фонендоскоп состоит из полой капсулы с передающей мембраной, которая прикладывается к телу, от нее идут резиновые трубки к уху врача. В полой капсуле возникает резонанс столба воздуха, вызывающий усиление звучания и, следовательно, улучшение выслушивания. Выслушиваются дыхательные шумы, хрипы, тоны сердца, шумы в сердце.

В клинике используются установки, в которых выслушивание осуществляется при помощи микрофона и динамика. Широко

применяется запись звуков с помощью магнитофона на магнитную ленту, что дает возможность их воспроизведения.

2. Фонокардиография - графическая регистрация тонов и шумов сердца и их диагностическая интерпретация. Запись осуществляется с помощью фонокардиографа, который состоит из микрофона, усилителя, частотных фильтров, регистрирующего устройства.

3. Перкуссия - исследование внутренних органов посредством постукивания по поверхности тела и анализа возникающих при этом звуков. Постукивание осуществляется либо с помощью специальных молоточков, либо при помощи пальцев.

Если в замкнутой полости вызвать звуковые колебания, то при определенной частоте звука воздух в полости начнет резонировать, усиливая тот тон, который соответствует размеру полости и ее положению. Схематично тело человека можно представить суммой разных объемов: газонаполненных (легкие), жидких (внутренние органы), твердых (кости). При ударе по поверхности тела возникают колебания с разными частотами. Часть из них погаснет. Другие совпадут с собственными частотами пустот, следовательно, усилятся и из-за резонанса будут слышны. По тону перкуторных звуков определяют состояние и топографию органа.

3.6. Факторы, определяющие профилактику шума.

Защита от шума

Для профилактики шума необходимо знать основные факторы, определяющие его воздействие на организм человека: близость источника шума, интенсивность шума, длительность воздействия, ограниченность пространства, в котором действует шум.

Длительное воздействие шума вызывает сложный симптоматический комплекс функциональных и органических изменений в организме (и не только органа слуха).

Воздействие длительного шума на ЦНС проявляется в замедлении всех нервных реакций, сокращении времени активного внимания, снижении работоспособности.

После длительного действия шума изменяется ритм дыхания, ритм сердечных сокращений, возникает усиление тонуса сосудистой системы, что приводит к повышению систолического и диастоли-

ческого уровня кровяного давления. Изменяется двигательная и секреторная деятельность желудочно-кишечного тракта, наблюдается гиперсекреция отдельных желез внутренней секреции. Имеет место повышение потливости. Отмечается подавление психических функций, особенно памяти.

Специфическое действие оказывает шум на функции органа слуха. Ухо, как и все органы чувств, способно адаптироваться к шуму. При этом под действием шума порог слышимости повышается на 10-15 дБ. После прекращения шумового воздействия нормальное значение порога слышимости восстанавливается только через 3-5 минут. При высоком уровне интенсивности шума (80-90 дБ) его утомляющее действие резко усиливается. Одной из форм расстройства функции органа слуха, связанной с длительным воздействием шума, является тугоухость (табл. 3.2).

Сильное воздействие как на физическое, так и на психологическое состояние человека оказывает рок-музыка. Современная рок-музыка создает шум в диапазонах от 10 Гц до 80 кГц. Экспериментально установлено, что если основной ритм, задаваемый ударными инструментами, имеет частоту 1,5 Гц и имеет мощное музыкальное сопровождение на частотах 15-30 Гц, то у человека наступает сильное возбуждение. При ритме с частотой 2 Гц при таком же сопровождении человек впадает в состояние, близкое наркотическому опьянению. На рок-концертах интенсивность звука может превышать 120 дБ, хотя человеческое ухо настроено наиболее благоприятно на среднюю интенсивность 55 дБ. При этом могут возникать контузии звуком, звуковые «ожоги», потеря слуха и памяти.

Шум оказывает вредное воздействие и на орган зрения. Так, длительное воздействие производственного шума на человека, находящегося в затемненном помещении, приводит к заметному снижению активности сетчатки глаза, от которой зависит работа глазного нерва, а следовательно, и острота зрения.

Защита от шума достаточно сложна. Это связано с тем, что вследствие сравнительно большой длины волны звук огибает препятствия (дифракция) и звуковая тень не образуется (рис. 3.5).

Кроме того, многие материалы, применяемые в строительстве и технике, имеют недостаточно высокий коэффициент поглощения звука.

Рис. 3.5. Дифракция звуковых волн

Эти особенности требуют специальных средств борьбы с шумами, к которым относятся подавление шумов, возникающих в самом источнике, использование глушителей, применение упругих подвесов, звукоизолирующих материалов, устранение щелей и т.п.

Для борьбы с шумами, проникающими в жилые помещения, большое значение имеют правильное планирование расположения зданий, учет розы ветров, создание защитных зон, в том числе и растительных. Растения - хороший гаситель шума. Деревья и кустарники могут снижать уровень интенсивности на 5-20 дБ. Эффективны зеленые полосы между тротуаром и мостовой. Лучше всего шум гасят липы и ели. Дома, находящиеся позади высокого хвойного заслона, могут быть избавлены от шумов улицы почти полностью.

Борьба с шумом не предполагает создания абсолютной тишины, так как при длительном отсутствии слуховых ощущений у человека могут возникнуть расстройства психики. Абсолютная тишина и длительный повышенный шум одинаково противоестественны для человека.

3.7. Основные понятия и формулы. Таблицы

Продолжение таблицы

Окончание таблицы

Таблица 3.1. Характеристики встречающихся звуков

Таблица 3.2. Международная классификация тугоухости

Таблица 3.3. Скорость звука и удельное акустическое сопротивление для некоторых веществ и тканей человека при t = 25 °С

3.8. Задачи

1. Звук, которому на улице соответствует уровень интенсивности L 1 = 50 дБ, слышен в комнате так, как звук с уровнем интенсивности L 2 = 30 дБ. Найти отношение интенсивностей звука на улице и в комнате.

2. Уровень громкости звука частотой 5000 Гц равен Е = 50 фон. Найти интенсивность этого звука, воспользовавшись кривыми равной громкости.

Решение

Из рисунка 3.2 находим, что на частоте 5000 Гц громкости Е =50 фон соответствует уровень интенсивности L = 47 дБ = 4,7 Б. Из формулы 3.4 находим: I = 10 4,7 I 0 = 510 -8 Вт/м 2 .

Ответ: I = 5?10 -8 Вт/м 2 .

3. Вентилятор создает звук, уровень интенсивности которого L = 60 дБ. Найти уровень интенсивности звука при работе двух рядом стоящих вентиляторов.

Решение

L 2 = lg(2x10 L) = lg2 + L = 0,3 + 6Б = 63 дБ (см. 3.6). Ответ: L 2 = 63 дБ.

4. Уровень громкости звука реактивного самолета на расстоянии 30 м от него равен 140 дБ. Каков уровень громкости на расстоянии 300 м? Отражением от земли пренебречь.

Решение

Интенсивность убывает пропорционально квадрату расстояния - уменьшается в 10 2 раз. L 1 - L 2 = 10xlg(I 1 /I 2) = 10x2 = 20 дБ. Ответ: L 2 = 120 дБ.

5. Отношение интенсивностей двух источников звука равно: I 2 /I 1 = 2. Чему равна разность уровней интенсивностей этих звуков?

Решение

ΔL = 10xlg(I 2 /I 0) - 10xlg(I 1 /I 0) = 10xlg(I 2 /I 1) = 10xlg2 = 3 дБ. Ответ: 3 дБ.

6. Каков уровень интенсивности звука с частотой 100 Гц, который имеет ту же громкость, что и звук с частотой 3 кГц и интенсивностью

Решение

Используя кривые равной громкости (рис. 3.3), найдем, что 25 дБ на частоте 3 кГц соответствуют громкости 30 фон. На частоте 100 Гц этой громкости соответствует уровень интенсивности 65 дБ.

Ответ: 65 дБ.

7. Амплитуда звуковой волны увеличилась в три раза. а) во сколько раз возросла ее интенсивность? б) на сколько децибел увеличился уровень громкости?

Решение

Интенсивность пропорциональна квадрату амплитуды (см. 3.6):

8. В лабораторном помещении, находящемся в цехе, уровень интенсивности шума достигал 80 дБ. С целью уменьшения шума было решено обить стены лаборатории звукопоглощающим материалом, уменьшающим интенсивность звука в 1500 раз. Какой уровень интенсивности шума станет после этого в лаборатории?

Решение

Уровень интенсивности звука в децибелах: L = 10x lg(I/I 0). При изменении интенсивности звука изменение уровня интенсивности звука будет равно:

9. Импедансы двух сред различаются в 2 раза: R 2 = 2R 1 . Какая часть энергии отражается от границы раздела и какая часть энергии переходит во вторую среду?

Решение

Используя формулы (3.8 и 3.9) найдем:

Ответ: 1/9 часть энергии отражается, а 8/9 переходит во вторую среду.

Физиологическими характеристиками звука называют субъективные характеристики слухового ощущения звука слуховым аппаратом человека. К физиологическим характеристикам звука относится минимальная и максимальная частоты колебаний, воспринимаемые данным человеком, порог слышимости и порог болевого ощущения, громкость, высота, тембр звука.

1. Минимальная и максимальная частоты колебаний, воспринимаемые данным человеком . Частоты звуковыхколебаний лежат в пределах 20-20000 Гц. Однако наименьшая воспринимаемая частота данным человеком обычно больше 20 Гц, а наибольшая - меньше 20000 Гц, что определяется индивидуальными особенностями строения слухового аппарата человека. Например: n мин =32 Гц, n макс =17900 Гц .

2. Порогом слышимости называется воспринимаемая человеческим ухом минимальная интенсивность I o . Считается, что I o =10 -12 Вт/м 2 при n=1000 Гц . Однако обычно для конкретного человека порог слышимости больше I o .

Порог слышимости зависит от частоты звукового колебания. На какой-то частоте (обычно 1000-3000 Гц) в зависимости от длины слухового канала слухового аппарата человека происходит резонансное усиление звука в человеческом ухе. При этом ощущение звука будет наилучшим, а порог слышимости будет минимальным. При уменьшении или увеличении частоты колебаний условие резонанса ухудшается (удаление по частоте от резонансной частоты) и порог слышимости соответственно повышается.



3. Порогом болевого ощущения называется испытываемое человеческим ухом болевое ощущение при интенсивностях звука выше некоторого значения I пор (звуковая волна при этом как звук не ощущается). Порог болевого ощущения I пор зависит от частоты (хотя и в меньшей степени, чем порог слышимости). На низких и высоких частотах порог болевого ощущения снижается, т.е. болевые ощущения наблюдаются при больших интенсивностях.

4. Громкостью звука называется уровень слухового ощущения человеком данного звука. Громкость зависит, прежде всего, от человека, воспринимающего звук. Например, при достаточной интенсивности на частоте 1000 Гц громкость может быть равна и нулю (для глухого человека).

Для данного конкретного человека, воспринимающего звук, громкость зависит от частоты, интенсивности звука. Как и для порога слышимости, громкость максимальна обычно на частоте 1-3 кГц, а с уменьшением или увеличением частоты громкость снижается.

Громкость звука зависит от интенсивности звука сложным образом. В соответствии с психофизическим законом Вебера-Фехнера громкость Е прямо пропорциональна уровню интенсивности:

E = k . lg(I/I 0), где k зависит от частоты и интенсивности звука.

Громкость звука измеряют в фонах . Считается, что громкость в фонах численно равна уровню интенсивности в децибелах на частоте 1000 Гц . Например, громкость звука Е=30 фон ; это означает, что данный человек по уровню восприятия ощущает указанный звук так же, как и звук, частотой 1000 Гц и уровнем силы звука 30 дБ . Графически (см. учебник) строят кривые равной громкости, которые индивидуальны для каждого конкретного человека.

С целью диагностики состояния слухового аппарата человека с помощью аудиометра снимают аудиограмму - зависимость порога слышимости от частоты.

5. Высотой звука называется ощущения человеком чистого тона. С повышением частоты увеличивается и высота тона. С повышением интенсивности высота тона незначительно снижается.

6. Тембром звука называется ощущение человеком данного сложного звукового колебания. Тембр звука - это окраска звука, по которой мы различаем голос того или иного человека. Тембр зависит от акустического спектра звука. Однако один и тот же акустический спектр воспринимается различными людьми по-разному. Так, если слуховой аппарат у двух человек поменять друг другу, а мозговой анализатор звука оставить тем же, то окраска звука от знакомых ему людей будет казаться другой, т.е. он может и не узнать голос знакомого человека или голос покажется измененным.

Задание по УИРС

1. Изучить по учебникам устройство слухового аппарата, теории восприятия звука и физические основы звуковых методов исследования в клинике.

2. Найти громкость звука в фонах, если дано звуковое колебание с частотой 50 Гц и уровнем силы звука 100 дБ.

Порядок выполнения работы

Упражнение №1. Определение максимально воспринимаемой Вами частоты звука

(Минимальную воспринимаемую частоту с помощью данного звукового генератора определить не удается из-за прохождения в телефоны наушников помех в основном из сети частотой 50 Гц.)

Поставьте переключатели в следующее положение:

-тумблер сеть - в положение "Выкл ";

-множитель частоты (слева внизу) в положение "100 ";

- "выходное сопротивление " в положение "50 ";

" в положение "Выкл ";

Переключатели десятки и единицы децибел в положение "0 ".

Включите вилку сетевого шнура генератора в сеть 220 В, тумблер "сеть " поставьте в положение "Вкл ": наушники подключить к выходу генератора.

Ручкой регулировки выходного напряжения "Рег. вых. " поставить на вольтметре 20 В.

Поставьте частоту 20 000 Гц (лимб частоты в положение

200 Гц и множитель частоты стоит в положении "100", т.е. 200 Гц×100 = 20 000 Гц).

Плавно уменьшая частоту, определите такое ее значение, при котором услышите звук. Запишите ее значение. Это и есть воспринимаемая Вами верхняя граничная частота (ν 1верхн ).

Для уточнения этой границы повышайте частоту от 10 000 Гц до исчезновения звука, определив второе значение верхней граничной частоты ν 2верхн .

Значение воспринимаемой Вами верхней граничной частоты найдите как среднее арифметическое полученных двух значений частот: ν верхн = (ν 1верхн + ν 2верхн) / 2 .

Упражнение №2 . Определение зависимости порога слышимости от частоты

Провести измерения на следующих частотах: 50, 100, 200, 400, 1000, 2000, 4000 и 8000 Гц. За исходный уровень взять такую интенсивность звука на частоте 1000 Гц (при затухании 0 дБ), при которой громкость звука не вызывает у Вас неприятных ощущений.

Поставьте частоту 50 Гц, переключателем десятков децибел добиться исчезновения звука, затем уменьшить затухание на 10 дБ и ручкой единицы децибел ввести затухания до исчезновения звука. Запишите результат в таблицу 1.

Таблица 1


Похожие статьи