Как выглядит водород в чистом виде. Все о водороде и водородной воде

Водород (лат. Hydrogenium), H, химический элемент, первый по порядковому номеру в периодической системе Менделеева; атомная масса 1,0079. При обычных условиях Водород - газ; не имеет цвета, запаха и вкуса.

Распространение Водорода в природе. Водород широко распространен в природе, его содержание в земной коре (литосфера и гидросфера) составляет по массе 1%, а по числу атомов 16%. Водород входит в состав самого распространенного вещества на Земле - воды (11,19% Водорода по массе), в состав соединений, слагающих угли, нефть, природные газы, глины, а также организмы животных и растений (то есть в состав белков, нуклеиновых кислот, жиров, углеводов и других). В свободном состоянии Водород встречается крайне редко, в небольших количествах он содержится в вулканических и других природных газах. Ничтожные количества свободного Водорода (0,0001% по числу атомов) присутствуют в атмосфере. В околоземном пространстве Водород в виде потока протонов образует внутренний ("протонный") радиационный пояс Земли. В космосе Водород является самым распространенным элементом. В виде плазмы он составляет около половины массы Солнца и большинства звезд, основную часть газов межзвездной среды и газовых туманностей. Водород присутствует в атмосфере ряда планет и в кометах в виде свободного Н 2 , метана СН 4 , аммиака NH 3 , воды Н 2 О, радикалов типа CH, NH, OH, SiH, PH и т. д. В виде потока протонов Водород входит в состав корпускулярного излучения Солнца и космических лучей.

Изотопы, атом и молекула Водорода. Обыкновенный Водород состоит из смеси 2 устойчивых изотопов: легкого Водорода, или протия (1 H), и тяжелого Водорода, или дейтерия (2 Н, или D). В природных соединениях Водорода на 1 атом 2 Н приходится в среднем 6800 атомов 1 Н. Радиоактивный изотоп с массовым числом 3 называют сверхтяжелым Водородом, или тритием (3 Н, или Т), с мягким β-излучением и периодом полураспада T ½ = 12,262 года. В природе тритий образуется, например, из атмосферного азота под действием нейтронов космических лучей; в атмосфере его ничтожно мало (4·10 -15 % от общего числа атомов Водорода). Получен крайне неустойчивый изотоп 4 Н. Массовые числа изотопов 1 Н, 2 Н, 3 Н и 4 Н, соответственно 1, 2, 3 и 4, указывают на то, что ядро атома протия содержит только один протон, дейтерия - один протон и один нейтрон, трития - один протон и 2 нейтрона, 4 Н - один протон и 3 нейтрона. Большое различие масс изотопов Водорода обусловливает более заметное различие их физических и химических свойств, чем в случае изотопов других элементов.

Атом Водорода имеет наиболее простое строение среди атомов всех других элементов: он состоит из ядра и одного электрона. Энергия связи электрона с ядром (потенциал ионизации) составляет 13,595 эв. Нейтральный атом Водород может присоединять и второй электрон, образуя отрицательный ион Н - при этом энергия связи второго электрона с нейтральным атомом (сродство к электрону) составляет 0,78 эв. Квантовая механика позволяет рассчитать все возможные энергетические уровни атома Водород, а следовательно, дать полную интерпретацию его атомного спектра. Атом Водорода используется как модельный в квантовомеханических расчетах энергетических уровней других, более сложных атомов.


Молекула Водород Н 2 состоит из двух атомов, соединенных ковалентной химической связью. Энергия диссоциации (то есть распада на атомы) составляет 4,776 эв. Межатомное расстояние при равновесном положении ядер равно 0,7414Å. При высоких температурах молекулярный Водород диссоциирует на атомы (степень диссоциации при 2000°С 0,0013, при 5000°С 0,95). Атомарный Водород образуется также в различных химических реакциях (например, действием Zn на соляную кислоту). Однако существование Водорода в атомарном состоянии длится лишь короткое время, атомы рекомбинируют в молекулы Н 2 .

Физические свойства Водорода. Водород - легчайшее из всех известных веществ (в 14,4 раза легче воздуха), плотность 0,0899 г/л при 0°С и 1 атм. Водород кипит (сжижается) и плавится (затвердевает) соответственно при -252,8°С и -259,1°С (только гелий имеет более низкие температуры плавления и кипения). Критическая температура Водорода очень низка (-240°С), поэтому его сжижение сопряжено с большими трудностями; критическое давление 12,8 кгс/см 2 (12,8 атм), критическая плотность 0,0312 г/см 3 . Из всех газов Водород обладает наибольшей теплопроводностью, равной при 0°С и 1 атм 0,174 вт/(м·К), то есть 4,16·10 -4 кал/(с·см·°С). Удельная теплоемкость Водорода при 0°С и 1 атм С p 14,208 кДж/(кг·К), то есть 3,394 кал/(г·°С). Водород мало растворим в воде (0,0182 мл/г при 20°С и 1 атм), но хорошо - во многих металлах (Ni, Pt, Pa и других), особенно в палладии (850 объемов на 1 объем Pd). С растворимостью Водорода в металлах связана его способность диффундировать через них; диффузия через углеродистый сплав (например, сталь) иногда сопровождается разрушением сплава вследствие взаимодействия Водорода с углеродом (так называемая декарбонизация). Жидкий Водород очень легок (плотность при -253°С 0,0708 г/см 3) и текуч (вязкость при -253°С 13,8 спуаз).

Химические свойства Водорода. В большинстве соединений Водород проявляет валентность (точнее, степень окисления) +1, подобно натрию и другим щелочным металлам; обычно он и рассматривается как аналог этих металлов, возглавляющий I группу системы Менделеева. Однако в гидридах металлов ион Водорода заряжен отрицательно (степень окисления -1), то есть гидрид Na + H - построен подобно хлориду Na + Cl - . Этот и некоторые других факты (близость физических свойств Водорода и галогенов, способность галогенов замещать Водород в органических соединениях) дают основание относить Водород также и к VII группе периодической системы. При обычных условиях молекулярный Водород сравнительно мало активен, непосредственно соединяясь лишь с наиболее активными из неметаллов (с фтором, а на свету и с хлором). Однако при нагревании он вступает в реакции со многими элементами. Атомарный Водород обладает повышенной химические активностью по сравнению с молекулярным. С кислородом Водород образует воду:

Н 2 + 1 / 2 О 2 = Н 2 О

с выделением 285,937 кДж/моль, то есть 68,3174 ккал/моль тепла (при 25°С и 1 атм). При обычных температурах реакция протекает крайне медленно, выше 550°С - со взрывом. Пределы взрывоопасности водородо-кислородной смеси составляют (по объему) от 4 до 94% Н 2 , а водородо-воздушной смеси - от 4 до 74% Н 2 (смесь 2 объемов Н 2 и 1 объема О 2 называется гремучим газом). Водород используется для восстановления многих металлов, так как отнимает кислород у их оксидов:

CuO + H 2 = Cu + H 2 O,

Fe 3 O 4 + 4H 2 = 3Fe + 4Н 2 О, и т. д.

С галогенами Водород образует галогеноводороды, например:

Н 2 + Cl 2 = 2НСl.

При этом с фтором Водород взрывается (даже в темноте и при - 252°С), с хлором и бромом реагирует лишь при освещении или нагревании, а с иодом только при нагревании. С азотом Водород взаимодействует с образованием аммиака:

ЗН 2 + N 2 = 2NН 3

лишь на катализаторе и при повышенных температуpax и давлениях. При нагревании Водород энергично реагирует с серой:

Н 2 + S = H 2 S (сероводород),

значительно труднее с селеном и теллуром. С чистым углеродом Водород может реагировать без катализатора только при высоких температуpax:

2Н 2 + С (аморфный) = СН 4 (метан).

Водород непосредственно реагирует с некоторыми металлами (щелочными, щелочноземельными и другими), образуя гидриды:

Н 2 + 2Li = 2LiH.

Важное практическое значение имеют реакции Водорода с оксидом углерода (II), при которых образуются в зависимости от температуры, давления и катализатора различные органические соединения, например НСНО, СН 3 ОН и другие. Ненасыщенные углеводороды реагируют с Водородом, переходя в насыщенные, например:

С n Н 2n + Н 2 = С n Н 2n+2 .

Роль Водород и его соединений в химии исключительно велика. Водород обусловливает кислотные свойства так называемых протонных кислот. Водород склонен образовывать с некоторыми элементами так называемую водородную связь, оказывающую определяющее влияние на свойства многих органических и неорганических соединений.

Получение Водорода. Основные виды сырья для промышленного получения Водорода - газы природные горючие, коксовый газ и газы нефтепереработки. Водород получают также из воды электролизом (в местах с дешевой электроэнергией). Важнейшими способами производства Водорода из природного газа являются каталитическое взаимодействие углеводородов, главным образом метана, с водяным паром (конверсия):

СН 4 + H 2 О = СО + ЗН 2 ,

и неполное окисление углеводородов кислородом:

СН 4 + 1 / 2 О 2 = СО + 2Н 2

Образующийся оксид углерода (II) также подвергается конверсии:

СО + Н 2 О = СО 2 + Н 2 .

Водород, добываемый из природного газа, самый дешевый.

Из коксового газа и газов нефтепереработки Водород выделяют путем удаления остальных компонентов газовой смеси, сжижаемых более легко, чем Водород, при глубоком охлаждении. Электролиз воды ведут постоянным током, пропуская его через раствор КОН или NaOH (кислоты не используются во избежание коррозии стальной аппаратуры). В лабораториях Водород получают электролизом воды, а также по реакции между цинком и соляной кислотой. Однако чаще используют готовый заводской Водород в баллонах.

Применение Водорода. В промышленном масштабе Водород стали получать в конце 18 века для наполнения воздушных шаров. В настоящее время Водород широко применяют в химической промышленности, главным образом для производства аммиака. Крупным потребителем Водорода является также производство метилового и других спиртов, синтетического бензина и других продуктов, получаемых синтезом из Водорода и оксида углерода (II). Водород применяют для гидрогенизации твердого и тяжелого жидкого топлив, жиров и других, для синтеза HCl, для гидроочистки нефтепродуктов, в сварке и резке металлов кислородо-водородным пламенем (температура до 2800°С) и в атомно-водородной сварке (до 4000°С). Очень важное применение в атомной энергетике нашли изотопы Водорода - дейтерий и тритий.

Фенолы

Строение
Гидроксильная группа в молекулах органических соединений может быть связана с ароматическим ядром непосредственно, а может быть отделена от него одним или несколькими атомами углерода. Можно ожидать, что в зависимости от этого свойства веществ будут существенно отличаться друг от друга из-за взаимного влияния групп атомов (вспомните одно из положений теорииБутлерова). И действительно, органические соединения, содержащие ароматический радикал фенил С 6 Н 5 -, непосредственно связанный с гидроксильной группой, проявляют особые свойства, отличные от свойств спиртов. Такие соединения называют фенолами.

Фенолы - органические вещества, молекулы которых содержат радикал фенил, связанный с одной или несколькими гидроксигруппами.
Так же как и спирты, фенолы классифицируют по атомности, т. е. по количеству гидроксильных групп.Одноатомные фенолы содержат в молекуле одну гидроксильную группу:

Существуют и другие многоатомные фенолы , содержащие три и более гидроксиль-ные группы в бензольном кольце.
Познакомимся подробнее со строением и свойствами простейшего представителя этого класса - фенолом С6Н50Н. Название этого вещества и легло в основу названия всего класса - фенолы.

Физические свойства
Твердое бесцветное кристаллическое вещество, tºпл = 43 °С, tº кип = °С, с резким характерным запахом. Ядовит. Фенол при комнатной температуре незначительно растворяется в воде. Водный раствор фенола называют карболовой кислотой. При попадании на кожу он вызывает ожоги, поэтому с фенолом необходимо обращаться осторожно.
Строение молекулы фенола
В молекуле фенола гидроксил непосредственно связан с атомом углерода бензольного ароматического ядра.
Вспомним строение групп атомов, образующих молекулу фенола.
Ароматическое кольцо состоит из шести атомов углерода, образующих правильный шестиугольник, вследствие,sр 2 -гибридизации электронных орбиталей шести атомов углерода. Эти атомы связаны Þ-связями. Не участвующие в образовании ст-связей р-электроны каждого атома углерода, перекрывающиеся по разные стороны плоскости Þ-связей, образуют две части единого шестиэлектронного п -облака, охватывающего все бензольное кольцо (ароматическое ядро). В молекуле бензола С6Н6 ароматическое ядро абсолютно симметрично, единое электронное п -облако равномерно охватывает кольцо атомов углерода под и над плоскостью молекулы (рис. 24). Ковалентная связь между атомами кислорода и водорода гидроксиль-ного радикала сильно полярна, общее электронное облако связи О-Н смещено в сторону атома кислорода, на котором возникает частичный отрицательный заряд, а на атоме водорода - частичный положительный заряд. Кроме того, атом кислорода в гидроксильной группе имеет две неподеленные, принадлежащие только ему электронные пары.

В молекуле фенола гидроксильный радикал взаимодействует с ароматическим ядром, при этом неподеленные электронные пары атома кислорода взаимодействуют с единым тс-облаком бензольного кольца, образуя единую электронную систему. Такое взаимодействие неподеленных электронных пар и облаков тг-связей называют сопряжением. В результате сопряжения неподеленной электронной пары атома кислорода гидроксигруппы с электронной системой бензольного кольца уменьшается электронная плотность на атоме кислорода. Это снижение компенсируется за счет большей поляризации связи О-Н, что, в свою очередь, приводит к увеличению положительного заряда на атоме водорода. Следовательно, водород гидроксильной группы в молекуле фенола имеет «кислотный» характер.
Логично предположить, что сопряжение электронов бензольного кольца и гидроксильной группы сказывается не только на ее свойствах, но и на реакционной способности бензольного кольца.
В самом деле, как вы помните, сопряжение неподеленных пар атома кислорода с л-облаком бензольного кольца приводит к перераспределению электронной плотности в нем. Она понижается у атома углерода, связанного с ОН-группой (сказывается влияние электронных пар атома кислорода) и повышается у соседних с ним атомов углерода (т. е. положения 2 и 6, или орто-положения). Очевидно, что повышение электронной плотности у этих атомов углерода бензольного кольца приводит к локализации (сосредоточению) отрицательного заряда на них. Под влиянием этого заряда происходит дальнейшее перераспределение электронной плотности в ароматическом ядре - смещение ее от 3-го и 5-го атомов (.мета-положение) к 4-му (орто-положение). Эти процессы можно выразить схемой:

Таким образом, наличие гидроксильного радикала в молекуле фенола приводит к изменению л-облака бензольного кольца, увеличению электронной плотности у 2, 4 и 6-го атомов углерода (орто-, дара-положения) и уменьшению электронной плотности у 3-го и 5-го атомов углерода (мета-положения).
Локализация электронной плотности в орто- и пара-положениях делает их наиболее вероятными для атак электрофильных частиц при взаимодействии с другими веществами.
Следовательно, влияние радикалов, составляющих молекулу фенола, взаимно, и оно определяет его характерные свойства.
Химические свойства фенола
Кислотные свойства
Как уже было сказано, атом водорода гидроксильной группы фенола обладает кислотным характером. Кислотные свойства у фенола выражены сильнее, чем у воды и спиртов. В отличие от спиртов и воды фенол реагирует не только с щелочными металлами, но и с щелочами с образованием фенолятов.
Однако кислотные свойства у фенолов выражены слабее, чем у неорганических и карбоновых кислот. Так, например, кислотные свойства фенола примерно в 3000 раз меньше, чем у угольной кислоты. Поэтому, пропуская через водный раствор фенолята натрия углекислый газ, можно выделить свободный фенол:

Добавление к водному раствору фенолята натрия соляной или серной кислоты также приводит к образованию фенола.
Качественная реакция на фенол
Фенол реагирует с хлоридом железа(ІІІ) с образованием интенсивно окрашенного в фиолетовый цвет комплексного соединения.
Эта реакция позволяет обнаруживать его даже в очень незначительных количествах. Другие фенолы, содержащие одну или несколько гидроксильных групп в бензольном кольце, также дают яркое окрашивание сине-фиолетовых оттенков в реакции с хлоридом железа(ІІІ).
Реакции бензольного кольца
Наличие гидроксильного заместителя значительно облегчает протекание реакций электрофильного замещения в бензольном кольце.
1. Бромирование фенола. В отличие от бензола для бромирования фенола не требуется добавления катализатора (бромида железа(ІІІ)).
Кроме того, взаимодействие с фенолом протекает селективно (избирательно): атомы брома направляются в орто- и пара-положения, замещая находящиеся там атомы водорода. Селективность замещения объясняется рассмотренными выше особенностями электронного строения молекулы фенола. Так, при взаимодействии фенола с бромной водой образуется белый осадок 2,4,6-трибромфенола.
Эта реакция, так же как и реакция с хлоридом железа(ІІІ), служит для качественного обнаружения фенола.

2. Нитрование фенола также происходит легче, чем нитрование бензола. Реакция с разбавленной азотной кислотой идет при комнатной температуре. В результате образуется смесь орто- и пара-изомеров нитрофенола:

3. Гидрирование ароматического ядра фенола в присутствии катализатора происходит легко.
4. Поликонденсация фенола с альдегидами, в частности, с формальдегидом, происходит с образованием продуктов реакции - фенолформальдегидных смол и твердых полимеров.
Взаимодействие фенола с формальдегидом можно описать схемой:

Вы, наверное, заметили, что в молекуле димера сохраняются «подвижные» атомы водорода, а значит, возможно дальнейшее продолжение реакции при достаточном количестве реагентов.
Реакция поликонденсации, т. е. реакция получения полимера, протекающая с выделением побочного низкомолекулярного продукта (воды), может продолжаться и далее (до полного израсходования одного из реагентов) с образованием огромных макромолекул. Процесс можно описать суммарным уравнением:

Образование линейных молекул происходит при обычной температуре. Проведение же этой реакции при нагревании приводит к тому, что образующийся продукт имеет разветвленное строение, он твердый и нерастворимый в воде. В результате нагревания феноло-формальдегидной смолы линейного строения с избытком альдегида получаются твердые пластические массы с уникальными свойствами. Полимеры на основе феноло-формальдегидных смол применяют для изготовления лаков и красок, пластмассовых изделий, устойчивых к нагреванию, охлаждению, действию воды, щелочей и кислот, они обладают высокими диэлектрическими свойствами. Из полимеров на основе фенолформальдегидных смол изготавливают наиболее ответственные и важные детали электроприборов, корпуса силовых агрегатов и детали машин, полимерную основу печатных плат для радиоприборов.

Клеи на основе феноло-формальдегидных смол способны надежно соединять детали самой различной природы, сохраняя высочайшую прочность соединения в очень широком диапазоне температур. Такой клей применяется для крепления металлического цоколя ламп освещения к стеклянной колбе. Теперь вам стало понятно, почему фенол и продукты на его основе находят широкое применение (схема 8).

Приступая к рассмотрению химических и физических свойств водорода, необходимо отметить, что в привычном состоянии, этот химический элемент находится в газообразном виде. Бесцветный газ водород не имеет запаха, он безвкусен. Впервые данный химический элемент был назван водородом после того, как ученым А. Лавуазье были проведены опыты с водой, по результатам которых, мировая наука узнала, что вода – это многокомпонентная жидкость, в состав которой входит Водород. Событие это произошло в 1787 году, но задолго до этой даты водород был известен ученым под названием «горючий газ».

Водород в природе

По данным ученых, водород содержится в земной коре и в воде (приблизительно 11,2% в общем объеме воды). Этот газ входит в состав многих полезных ископаемых, которые человечество на протяжении веков извлекает из недр земли. Частично свойства водорода характерны для нефти, природных газов и глины, для организмов животных и растений. Но в чистом виде, то есть, не соединенный с другими химическими элементами таблицы Менделеева, этот газ встречается крайне редко в природе. Этот газ может выходить на поверхность земли при извержении вулканов. Свободный водород в ничтожных количествах присутствует в атмосфере.

Химические свойства водорода

Поскольку химические свойства водорода неоднообразны, то этот химический элемент относится как к I группе системы Менделеева, так и к VII группе системы. Являясь представителем первой группы, водород является, по сути, щелочным металлом, который имеет степень окисления +1 в большей части соединений, в которые он входит. Такая же валентность характерна для натрия и других щелочных металлов. Ввиду таких химических свойств, водород рассматривается, как элемент, подобный этим металлам.

Если же речь идет о гидридах металлов, то ион водорода имеет отрицательную валентность – его степень окисления равна -1. Na+H- строится по той же схеме, что и хлориду Na+Cl-. Этот факт и является причиной того, чтобы отнести водород к VII группе системы Менделеева. Водород, будучи в состоянии молекулы, при условии, что он пребывает в обычной среде, малоподвижен, и может соединяться исключительно с неметаллами, более активными за него. К таким металлам можно отнести фтор, при наличии света, водород соединяется с хлором. Если водород нагревать, то он становится более активным, вступая в реакции со многими элементами периодической системы Менделеева.

Атомарный водород проявляет более активные химические свойства, чем молекулярный. Молекулы кислорода с формируют воду - Н2 + 1/2О2 = Н2О. При взаимодействии водорода с галогенами, образуются галогеноводороды Н2 + Cl2 = 2НСl, причем в эту реакцию водород вступает при отсутствии света и при достаточно больших отрицательных температурах – до - 252°С. Химические свойства водорода позволяют использовать его для восстановления многих металлов, поскольку вступая в реакцию, водород поглощает у оксидов металлов кислород, например, CuO + H2 = Cu + H2O. Водород участвует в формировании аммиака, взаимодействуя с азотом в реакции ЗН2 + N2 = 2NН3, но при условии, что будет использоваться катализатор, а температура и давление – повышены.

Энергичная реакция происходит при взаимодействии водорода с серой в реакции Н2 + S = H2S, результатом которой становится сероводород. Немного менее активно взаимодействие водорода с теллуром и селеном. Если нет катализатора, то вступает в реакцию с чистым углеродом, водород только при условии, что будут созданы высокие температуры. 2Н2 + С (аморфный) = СН4 (метан). В процессе активности водорода с некоторыми щелочными и прочими металлами, получаются гидриды, например, Н2 + 2Li = 2LiH.

Физические свойства водорода

Водород является очень легким химическим веществом. По крайней мере, ученые утверждают, что на данный момент, нет легче вещества, чем водород. Его масса в 14,4 раза легче за воздух, плотность составляет 0,0899 г/л при 0°С. При температурах в -259,1°С водород способен плавится – это очень критическая температура, которая не характерна для преобразования большинства химических соединений из одного состояния в другое. Только такой элемент, как гелий, превышает физические свойства водорода в этом плане. Сжижение водорода затруднительно, так как его критическая температура равна (-240°С). Водород – наиболее теплопродный газ из всех, известных человечеству. Все, описанные выше свойства, являются наиболее значимыми физическими свойствами водорода, которые используются человеком для конкретных целей. Также данные свойства являются наиболее актуальными для современной науки.

Водород – первый химический элемент Периодической Системы химических элементов Д.И. Менделеева. Химический элемент водород расположен в первой группе, главной подгруппе, первом периоде Периодической Системы.

Относительная атомная масса водорода = 1.

Водород имеет наиболее простое строение атома, он состоит из единственного электрона, который находится в околоядерном пространстве. Ядро атома водорода состоит из одного протона.

Атом водорода, в химических реакциях может как отдавать, так и присоединять электрон, образуя два вида ионов:

H0 + 1ē → H1− H0 – 1ē → H1+.

Водород – самый распространённый элемент во Вселенной. На его долю приходится около 88,6% всех атомов (около 11,3% составляют атомы гелия, доля всех остальных вместе взятых элементов – порядка 0,1%). Таким образом, водород – основная составная часть звёзд и межзвёздного газа. В межзвёздном пространстве этот элемент существует в виде отдельных молекул, атомов и ионов и может образовывать молекулярные облака, значительно различающиеся по размерам, плотности и температуре.

Массовая доля водорода в земной коре составляет 1%. Это девятый по распространённости элемент. Значение водорода в химических процессах, происходящих на Земле, почти так же велико, как и кислорода. В отличие от кислорода, существующего на Земле и в связанном, и в свободном состояниях, практически весь водород на Земле находится в виде соединений; лишь в очень незначительном количестве водород в виде простого вещества содержится в атмосфере (0,00005% по объёму для сухого воздуха).

Водород входит в состав практически всех органических веществ и присутствует во всех живых клетках.

Физические свойства водорода

Простое вещество, образованное химическим элементом водородом, имеет молекулярное строение. Его состав отвечает формуле Н2. Как и химический элемент, простое вещество также называют водородом.

Водород – бесцветный газ без запаха и вкуса, практически нерастворим в воде. При комнатной температуре и нормальном атмосферном давлении растворимость составляет 18,8 мл газа на 1 л воды.

Водород – самый легкий газ, его плотность составляет 0,08987 г/л. Для сравнения: плотность воздуха равна 1,3 г/л.

Водород способен растворяться в металлах, так например, в одном объеме палладия может раствориться до 850 объемов водорода. Из-за крайне малого размера молекул водород способен к диффузии через многие материалы

Подобно другим газам водород при низких температурах конденсируется в бесцветную прозрачную жидкость, это происходит при температуре –252,8°С. При достижении температуры –259,2°С водород кристаллизуется в виде белых кристаллов, похожих на снег.

В отличие от кислорода, для водорода не характерна аллотропия

Применение водорода

Водород используют в различных отраслях промышленности. Много водорода уходит на производство аммиака (NH3). Из аммиака получают азотные удобрения, синтетические волокна и пластмассы, лекарства.

В пищевой промышленности водород используют при производстве маргарина, в состав которого входят твердые жиры. Чтобы их получить из жидких жиров, через них пропускают водород.

Когда водород горит в кислороде, то температура пламени составляет около 2500°C. При такой температуре можно плавить и сваривать тугоплавкие металлы. Таким образом, водород используется при сварке.

Смесь жидких водорода и кислорода применяют как ракетное топливо.

В настоящее время в ряде стран начаты исследования по замене невозобновляемых источников энергии (нефти, газа, угля) на водород. При сгорании водорода в кислороде образуется экологически чистый продукт – вода, а не углекислый газ, вызывающий парниковый эффект.

Ученые предполагают, что в середине XXI века должно быть начато серийное производство автомобилей на водороде. Широкое применение найдут домашние топливные элементы, работа которых также основана на окислении водорода кислородом.

В конце XIX – начале ХХ веков, на заре эры воздухоплавания, водородом заполняли воздушные шары, дирижабли и аэростаты, так как он намного легче воздуха. Однако эпоха дирижаблей начала стремительно уходить в прошлое после катастрофы, случившейся с дирижаблем Гинденбург. 6 мая 1937 года дирижабль, заполненный водородом, загорелся, что повлекло за собой гибель десятков его пассажиров.

Водород крайне взрывоопасен в определенной пропорции с кислородом. Несоблюдение правил техники безопасности и привело к воспламенению и взрыву дирижабля.

  • Водород – первый химический элемент Периодической Системы химических элементов Д.И. Менделеева
  • Водород расположен в I группе, главной подгруппе, 1 периоде Периодической Системы
  • Валентность водорода в соединениях – I
  • Водород – бесцветный газ без запаха и вкуса, практически нерастворим в воде
  • Водород – самый легкий газ
  • При низких температурах получают жидкий и твердый водород
  • Водород способен растворяться в металлах
  • Сферы применения водорода разнообразны

Рассмотрим, что собой представляет водород. Химические свойства и получение этого неметалла изучают в курсе неорганической химии в школе. Именно этот элемент возглавляет периодическую систему Менделеева, а потому заслуживает детального описания.

Краткие сведения об открытии элемента

Прежде чем рассматривать физические и химические свойства водорода, выясним, как был найден этот важный элемент.

Химики, которые работали в шестнадцатом и семнадцатом веках, неоднократно упоминали в своих трудах о горючем газе, который выделяется при воздействии на кислоты активными металлами. Во второй половине восемнадцатого века Г. Кавендишу удалось собрать и проанализировать этот газ, дав ему название «горючий газ».

Физические и химические свойства водорода на тот момент времени не были изучены. Только в конце восемнадцатого века А. Лавуазье удалось путем анализа установить, что получить этот газ можно путем анализа воды. Чуть позже он стал называть новый элемент hydrogene, что в переводе означает «рождающий воду». Своим современным русским названием водород обязан М. Ф. Соловьеву.

Нахождение в природе

Химические свойства водорода можно анализировать только на основании его распространенности в природе. Данный элемент присутствует в гидро- и литосфере, а также входит в состав полезных ископаемых: природного и попутного газа, торфа, нефти, угля, горючих сланцев. Сложно себе представить взрослого человека, который бы не знал о том, что водород является составной частью воды.

Кроме того, данный неметалл находится в организмах животных в виде нуклеиновых кислот, белков, углеводов, жиров. На нашей планете данный элемент встречается в свободном виде достаточно редко, пожалуй, только в природном и вулканическом газе.

В виде плазмы водород составляет примерно половину массы звезд и Солнца, кроме того, входит в состав межзвездного газа. Например, в свободном виде, а также в форме метана, аммиака этот неметалл присутствует в составе комет и даже некоторых планет.

Физические свойства

Прежде чем рассматривать химические свойства водорода, отметим, что при нормальных условиях он является газообразным веществом легче воздуха, имеющим несколько изотопных форм. Он почти нерастворим в воде, имеет высокую теплопроводность. Протий, имеющий массовое число 1, считается самой легкой его формой. Тритий, который обладает радиоактивными свойствами, образуется в природе из атмосферного азота при воздействии на него нейронов УФ-лучей.

Особенности строения молекулы

Чтобы рассмотреть химические свойства водорода, реакции, характерные для него, остановимся и на особенностях его строения. В этой двухатомной молекуле ковалентная неполярная химическая связь. Образование атомарного водорода возможно при взаимодействии активных металлов на растворы кислот. Но в таком виде этот неметалл способен существовать только незначительный временной промежуток, практически сразу же он рекомбинируется в молекулярный вид.

Химические свойства

Рассмотрим химические свойства водорода. В большей части соединений, которые образует данный химический элемент, он проявляет степень окисления +1, что делает его похожим с активными (щелочными) металлами. Основные химические свойства водорода, характеризующие его в качестве металла:

  • взаимодействие с кислородом с образованием воды;
  • реакция с галогенами, сопровождающаяся образованием галогеноводорода;
  • получение сероводорода при соединении с серой.

Ниже представлено уравнение реакций, характеризующих химические свойства водорода. Обращаем внимание на то, что в качестве неметалла (со степенью окисления -1) он выступает только в реакции с активными металлами, образуя с ними соответствующие гидриды.

Водород при обычной температуре неактивно вступает во взаимодействие с другими веществами, поэтому большая часть реакций осуществляется только после предварительного нагревания.

Остановимся подробнее на некоторых химических взаимодействиях элемента, который возглавляет периодическую систему химических элементов Менделеева.

Реакция образования воды сопровождается выделением 285,937 кДж энергии. При повышенной температуре (больше 550 градусов по Цельсия) данный процесс сопровождается сильным взрывом.

Среди тех химических свойств газообразного водорода, которые нашли существенное применение в промышленности, интерес представляет его взаимодействие с оксидами металлов. Именно путем каталитического гидрирования в современной промышленности осуществляют переработку оксидов металлов, например выделяют из железной окалины (смешанного оксида железа) чистый металл. Данный способ позволяет вести эффективную переработку металлолома.

Синтез аммиака, который предполагает взаимодействие водорода с азотом воздуха, также востребован в современной химической промышленности. Среди условий протекания этого химического взаимодействия отметим давление и температуру.

Заключение

Именно водород является малоактивным химическим веществом при обычных условиях. При повышении температуры его активность существенно возрастает. Данное вещество востребовано в органическом синтезе. Например, путем гидрирования можно восстановить кетоны до вторичных спиртов, а альдегиды превратить в первичные спирты. Кроме того, путем гидрирования можно превратить ненасыщенные углеводороды класса этилена и ацетилена в предельные соединения ряда метана. Водород по праву считают простым веществом, востребованным в современном химическом производстве.

Химические свойства водорода

При обычных условиях молекулярный Водород сравнительно мало активен, непосредственно соединяясь лишь с наиболее активными из неметаллов (с фтором, а на свету и с хлором). Однако при нагревании он вступает в реакции со многими элементами.

Водород вступает в реакции с простыми и сложными веществами:

- Взаимодействие водорода с металлами приводит к образованию сложных веществ - гидридов, в химических формулах которых атом металла всегда стоит на первом месте:


При высокой температуре Водород непосредственно реагирует с некоторыми металлами (щелочными, щелочноземельными и другими), образуя белые кристаллические вещества - гидриды металлов (Li Н, Na Н, КН, СаН 2 и др.):

Н 2 + 2Li = 2LiH

Гидриды металлов легко разлагаются водой с образованием соответствующей щелочи и водорода:

СаH 2 + 2Н 2 О = Са(ОН) 2 + 2Н 2

- При взаимодействии водорода с неметаллами образуются летучие водородные соединения. В химической формуле летучего водородного соединения, атом водорода может стоять как на первом так и на втором месте, в зависимости от местонахождения в ПСХЭ (см. табличку в слайде):

1). С кислородом Водород образует воду:

Видео "Горение водорода"

2Н 2 + О 2 = 2Н 2 О + Q

При обычных температурах реакция протекает крайне медленно, выше 550°С - со взрывом (смесь 2 объемов Н 2 и 1 объема О 2 называется гремучим газом ) .

Видео "Взрыв гремучего газа"

Видео "Приготовление и взрыв гремучей смеси"

2). С галогенами Водород образует галогеноводороды, например:

Н 2 + Cl 2 = 2НСl

При этом с фтором Водород взрывается (даже в темноте и при - 252°С), с хлором и бромом реагирует лишь при освещении или нагревании, а с йодом только при нагревании.

3). С азотом Водород взаимодействует с образованием аммиака:

ЗН 2 + N 2 = 2NН 3

лишь на катализаторе и при повышенных температуpax и давлениях.

4). При нагревании Водород энергично реагирует с серой :

Н 2 + S = H 2 S (сероводород),

значительно труднее с селеном и теллуром.

5). С чистым углеродом Водород может реагировать без катализатора только при высоких температуpax:

2Н 2 + С (аморфный) = СН 4 (метан)


- Водород вступает в реакцию замещения с оксидами металлов , при этом образуются в продуктах вода и восстанавливается металл. Водород - проявляет свойства восстановителя:


Водород используется для восстановления многих металлов , так как отнимает кислород у их оксидов:

Fe 3 O 4 + 4H 2 = 3Fe + 4Н 2 О, и т. д.

Применение водорода

Видео "Применение водорода"

В настоящее время водород получают в огромных количествах. Очень большую часть его используют при синтезе аммиака, гидрогенизации жиров и при гидрировании угля, масел и углеводородов. Кроме того, водород применяют для синтеза соляной кислоты, метилового спирта, синильной кислоты, при сварке и ковке металлов, а также при изготовлении ламп накаливания и драгоценных камней. В продажу водород поступает в баллонах под давлением свыше 150 атм. Они окрашены в тёмно-зелёный цвет и снабжаются красной надписью "Водород".

Водород используется для превращения жидких жиров в твердые (гидрогенизация), производства жидкого топлива гидрогенизацией углей и мазута. В металлургии водород используют как восстановитель оксидов или хлоридов для получения металлов и неметаллов (германия, кремния, галлия, циркония, гафния, молибдена, вольфрама и др.).

Практическое применение водорода многообразно: им обычно заполняют шары-зонды, в химической промышленности он служит сырьём для получения многих весьма важных продуктов (аммиака и др.), в пищевой - для выработки из растительных масел твёрдых жиров и т. д. Высокая температура (до 2600 °С), получающаяся при горении водорода в кислороде, используется для плавления тугоплавких металлов, кварца и т. п. Жидкий водород является одним из наиболее эффективных реактивных топлив. Ежегодное мировое потребление водорода превышает 1 млн. т.

ТРЕНАЖЕРЫ

№2. Водород

ЗАДАНИЯ ДЛЯ ЗАКРЕПЛЕНИЯ

Задание №1
Составьте уравнения реакций взаимодействия водорода со следующими веществами: F 2 , Ca, Al 2 O 3 , оксидом ртути (II), оксидом вольфрама (VI). Назовите продукты реакции, укажите типы реакций.

Задание №2
Осуществите превращения по схеме:
H 2 O -> H 2 -> H 2 S -> SO 2

Задание №3.
Вычислите массу воды, которую можно получить при сжигании 8 г водорода?

Похожие статьи