Биография джеймса максвелла. Джеймс Кларк Максвелл: ученый и его демон Теория электромагнитных явлений джеймса максвелла

"... произошел великий перелом, который навсегда связан с именами Фарадея, Максвелла, Герца. Львиная доля в этой революции принадлежит Максвеллу… После Максвелла физическая реальность мыслилась в виде непрерывных, не поддающихся механическому объяснению полей... Это изменение понятия реальности является наиболее глубоким и плодотворным из тех, которые испытала физика со времен Ньютона".

Эйнштейн

Афоризмы и цитаты Джеймса Максвелла.
«Когда какое-нибудь явление можно описать как частный случай какого-нибудь общего, приложимого к другим явлениям принципа, то говорят, что это явление получило объяснение»

«…Для развития науки требуется в каждую данную эпоху не только, чтобы люди мыслили вообще, но чтобы они концентрировали свои мысли на той части обширного поля науки, которое в данное время требует разработки»

«Из всех гипотез…выбирайте ту, которая не пресекает дальнейшего мышления об исследуемых вещах»

«Чтобы вполне правильно вести научную работу посредством систематических опытов и точных демонстраций, требуется стратегическое искусство»

«…История науки не ограничивается перечислением успешных исследований. Она должна сказать нам о безуспешных исследованиях и объяснить, почему некоторые из самых способных людей не смогли найти ключа знания и как репутация других дала лишь большую опору ошибкам, в которые они впали»


«Всякий великий человек является единственным в своем роде. В историческом шествии ученых у каждого из них своя определенная задача и свое определенное место»

«Действительный очаг науки - не тома научных трудов, но живой ум человека, и для того чтобы продвигать науку, нужно направить человеческую мысль в научное русло. Это можно сделать различными способами: огласив какое-либо открытие, отстаивая парадоксальную идею, или изобретая научную фразу, или изложив систему доктрины»



Максвелл и теория электромагнитного поля.
Максвелл изучал электрические и магнитные явления, когда многие из них уже были хорошо исследованы. Был создан закон Кулона, закон Ампера, также было доказано, что магнитные взаимодействия связаны действием электрических зарядов. Многие ученые того времени были сторонниками теории дальнодействия, которая утверждает, что взаимодействие происходит мгновенно и в пустом пространстве.

Главную роль в теории близкодействия сыграли исследования Майкла Фарадея (30-е годы XIX века). Фарадей утверждал, что природа электрического заряда основана на окружающем пространстве электрического поля. Поле одного заряда связано с соседним в двух направлениях. Токи взаимодействуют при помощи магнитного поля. Магнитные и электрические поля по Фарадею описаны им в виде силовых линий, которые являются упругими линиями в гипотетической среде - в эфире.

Максвелл объяснил идеи Фарадея в математическом виде, в чем очень нуждалась физика. При введении понятия поля законы Кулона и Ампера стали более убедительными и глубоко осмысленными. В понятии электромагнитной индукции Максвелл сумел рассмотреть свойства самого поля. Под действием переменного магнитного поля в пустом пространстве зарождается электрическое поле с замкнутыми силовыми линиями. Такое явление называется вихревым электрическим полем.
Максвелл показал, что переменное электрическое поле может порождать магнитное поле, на подобии обычного электрического тока. Эту теорию назвали - гипотезой о токе смещения. В дальнейшем поведение электромагнитных полей Максвелл выразил в своих уравнениях.


Справка. Уравнения Максвелла - это уравнения описывающие электромагнитные явления в различных средах и вакуумном пространстве, а также относятся к классической макроскопической электродинамике. Это логический вывод, сделанный с опытов, основанных на законах электрических и магнитных явлений.
Основным выводом уравнений Максвелла является конечность распространения электрических и магнитных взаимодействий, что разграничивало теорию близкодействия и теорию дальнодействия. Скоростные характеристики приблизились к скорости света 300000 км/с. Это дало повод Максвеллу утверждать, что свет это явление, связанное с действием электромагнитных волн.

Молекулярно-кинетическая теория газов Максвелла.

Максвелл внес свою лепту в изучение молекулярно-кинетической теории (сегодня она называется статистической механикой). Ему первому пришла в голову идея о статистическом характере законов природы. Максвелл создал закон распределения молекул по скоростям, а так же ему удалось рассчитать вязкость газов в отношении скоростных показателей и длины свободного пробега молекул газа. Благодаря работам Максвелла мы имеем ряд соотношений термодинамики.


Справка. Распределение Максвелла - это теория распределения по скоростям молекул системы в условиях термодинамического равновесия. Термодинамическое равновесие - это условие поступательного движения молекул описанное законами классической динамики.
Научных труды Максвелла : «Теория теплоты», «Материя и движение», «Электричество в элементарном изложении». Он интересовался и историей науки. В свое время ему удалось опубликовать труды Кавендиша, которые Максвелл дополнил своими комментариями.
Максвелл вел активную работу по изучению электромагнитных полей. Его теория об их существовании получила всемирное признание только спустя десятилетие после его смерти.

Максвелл первый классифицировал материи и присвоил каждой свои законы, которые не сводились к законам механики Ньютона.

О писали многие ученные. Физик Фейнман сказал о Максвелле , что открывший законы электродинамики Максвелл , смотрел через века в будущее.

Джеймс Клерк Максвелл (1831-79) - английский физик, создатель классической электродинамики , один из основоположников статистической физики, организатор и первый директор (с 1871) Кавендишской лаборатории, предсказал существование электромагнитных волн, выдвинул идею электромагнитной природы света, установил первый статистический закон - закон распределения молекул по скоростям, названный его именем.

Развивая идеи Майкла Фарадея, создал теорию электромагнитного поля (уравнения Максвелла); ввел понятие о токе смещения, предсказал существование электромагнитных волн, выдвинул идею электромагнитной природы света. Установил статистическое распределение, названное его именем. Исследовал вязкость, диффузию и теплопроводность газов. Максвелл показал, что кольца Сатурна состоят из отдельных тел. Труды по цветному зрению и колориметрии (диск Максвелла), оптике (эффект Максвелла), теории упругости (теорема Максвелла, диаграмма Максвелла - Кремоны), термодинамике, истории физики и др.

Семья. Годы учения

Джеймс Максвелл родился 13 июня 1831, в Эдинбурге. Он был единственным сыном шотландского дворянина и адвоката Джона Клерка, который, получив в наследство поместье жены родственника, урожденной Максвелл, прибавил это имя к своей фамилии. После рождения сына семья переехала в Южную Шотландию, в собственное поместье Гленлэр («Приют в долине»), где и прошло детство мальчика.

В 1841 отец отправил Джеймса в школу, которая называлась «Эдинбургская академия». Здесь в 15 лет Максвелл написал свою первую научную статью «О черчении овалов». В 1847 он поступил в Эдинбургский университет, где проучился три года, и в 1850 перешел в Кембриджский университет, который окончил в 1854. К этому времени Джеймс Максвелл был первоклассным математиком с великолепно развитой интуицией физика.

Создание Кавендишской лаборатории. Преподавательская работа

По окончании университета Джеймс Максвелл был оставлен в Кембридже для педагогической работы. В 1856 он получил место профессора Маришал-колледжа в Абердинском университете (Шотландия). В 1860 избран членом Лондонского королевского общества. В том же году переехал в Лондон, приняв предложение занять пост руководителя кафедры физики в Кинг-колледже Лондонского университета, где работал до 1865 года.

Вернувшись в 1871 в Кембриджский университет, Максвелл организовал и возглавил первую в Великобритании специально оборудованную лабораторию для физических экспериментов, известную как Кавендишская лаборатория (по имени английского ученого Генри Кавендиша). Становлению этой лаборатории, которая на рубеже 19-20 вв. превратилась в один из крупнейших центров мировой науки, Максвелл посвятил последние годы своей жизни.

Вообще фактов из жизни Максвелла известно немного. Застенчивый, скромный, он стремился жить уединенно и не вел дневников. В 1858 Джеймс Максвелл женился, но семейная жизнь, видимо, сложилась неудачно, обострила его нелюдимость, отдалила от прежних друзей. Существует предположение, что многие важные материалы о жизни Максвелла погибли во время пожара 1929 в его гленлэрском доме, через 50 лет после его смерти. Он умер от рака в возрасте 48 лет.

Научная деятельность

Необычайно широкая сфера научных интересов Максвелла охватывала теорию электромагнитных явлений, кинетическую теорию газов, оптику, теорию упругости и многое другое. Одними из первых его работ были исследования по физиологии и физике цветного зрения и колориметрии, начатые в 1852. В 1861 Джеймс Максвелл впервые получил цветное изображение, спроецировав на экран одновременно красный, зеленый и синий диапозитивы. Этим была доказана справедливость трехкомпонентной теории зрения и намечены пути создания цветной фотографии. В работах 1857-59 Максвелл теоретически исследовал устойчивость колец Сатурна и показал, что кольца Сатурна могут быть устойчивы лишь в том случае, если состоят из не связанных между собой частиц (тел).

В 1855 Д. Максвелл приступил к циклу своих основных работ по электродинамике. Были опубликованы статьи «О фарадеевых силовых линиях» (1855-56), «О физических силовых линиях» (1861-62), «Динамическая теория электромагнитного поля» (1869). Исследования были завершены выходом в свет двухтомной монографии «Трактат об электричестве и магнетизме» (1873).

Создание теории электромагнитного поля

Когда Джеймс Максвелл в 1855 начал исследования электрических и магнитных явлений, многие из них уже были хорошо изучены: в частности, установлены законы взаимодействия неподвижных электрических зарядов (закон Кулона) и токов (закон Ампера); доказано, что магнитные взаимодействия есть взаимодействия движущихся электрических зарядов. Большинство ученых того времени считало, что взаимодействие передается мгновенно, непосредственно через пустоту (теория дальнодействия).

Решительный поворот к теории близкодействия был сделан Майклом Фарадеем в 30-е гг. 19 в. Согласно идеям Фарадея, электрический заряд создает в окружающем пространстве электрическое поле. Поле одного заряда действует на другой, и наоборот. Взаимодействие токов осуществляется посредством магнитного поля. Распределение электрических и магнитных полей в пространстве Фарадей описывал с помощью силовых линий, которые по его представлению напоминают обычные упругие линии в гипотетической среде - мировом эфире.

Максвелл полностью воспринял идеи Фарадея о существовании электромагнитного поля, то есть о реальности процессов в пространстве возле зарядов и токов. Он считал, что тело не может действовать там, где его нет.

Первое, что сделал Д.К. Максвелл - придал идеям Фарадея строгую математическую форму, столь необходимую в физике. Выяснилось, что с введением понятия поля законы Кулона и Ампера стали выражаться наиболее полно, глубоко и изящно. В явлении электромагнитной индукции Максвелл усмотрел новое свойство полей: переменное магнитное поле порождает в пустом пространстве электрическое поле с замкнутыми силовыми линиями (так называемое вихревое электрическое поле).

Следующий, и последний, шаг в открытии основных свойств электромагнитного поля был сделан Максвеллом без какой-либо опоры на эксперимент. Им была высказана гениальная догадка о том, что переменное электрическое поле порождает магнитное поле, как и обычный электрический ток (гипотеза о токе смещения). К 1869 все основные закономерности поведения электромагнитного поля были установлены и сформулированы в виде системы четырех уравнений, получивших название Максвелла уравнений.

Уравнения Максвелла - основные уравнения классической макроскопической электродинамики, описывающие электромагнитные явления в произвольных средах и в вакууме. Уравнения Максвелла получены Дж. К. Максвеллом в 60-х гг. 19 в. в результате обобщения найденных из опыта законов электрических и магнитных явлений.

Из уравнений Максвелла следовал фундаментальный вывод: конечность скорости распространения электромагнитных взаимодействий. Это главное, что отличает теорию близкодействия от теории дальнодействия. Скорость оказалась равной скорости света в вакууме: 300000 км/с. Отсюда Максвелл сделал заключение, что свет есть форма электромагнитных волн.

Работы по молекулярно-кинетической теории газов

Чрезвычайно велика роль Джеймса Максвелла в разработке и становлении молекулярно-кинетической теории (современное название - статистическая механика). Максвелл первым высказал утверждение о статистическом характере законов природы. В 1866 им был открыт первый статистический закон - закон распределения молекул по скоростям (Максвелла распределение). Кроме того, он рассчитал значения вязкости газов в зависимости от скоростей и длины свободного пробега молекул, вывел ряд соотношений термодинамики.

Распределение Максвелла - распределение по скоростям молекул системы в состоянии термодинамического равновесия (при условии, что поступательное движение молекул описывается законами классической механики). Установлено Дж. К. Максвеллом в 1859.

Максвелл был блестящим популяризатором науки. Он написал ряд статей для Британской энциклопедии и популярные книги: «Теория теплоты» (1870), «Материя и движение» (1873), «Электричество в элементарном изложении» (1881), которые были переведены на русский язык; читал лекции и доклады на физические темы для широкой аудитории. Максвелл проявлял также большой интерес к истории науки. В 1879 он опубликовал труды Г. Кавендиша по электричеству, снабдив их обширными комментариями.

Оценка работ Максвелла

Работы ученого не были по достоинству оценены его современниками. Идеи о существовании электромагнитного поля казались произвольными и неплодотворными. Только после того, как Генрих Герц в 1886-89 экспериментально доказал существование электромагнитных волн, предсказанных Максвеллом, его теория получила всеобщее признание. Произошло это спустя десять лет после смерти Максвелла.

После экспериментального подтверждения реальности электромагнитного поля было сделано фундаментальное научное открытие: существуют различные виды материи, и каждому из них присущи свои законы, не сводимые к законам механики Ньютона. Впрочем, сам Максвелл вряд ли отчетливо это сознавал и первое время пытался строить механические модели электромагнитных явлений.

О роли Максвелла в развитии науки превосходно сказал американский физик Ричард Фейнман: «В истории человечества (если посмотреть на нее, скажем, через десять тысяч лет) самым значительным событием 19 столетия, несомненно, будет открытие Максвеллом законов электродинамики. На фоне этого важного научного открытия гражданская война в Америке в том же десятилетии будет выглядеть провинциальным происшествием».

Джеймс Максвелл скончался 5 ноября 1879, Кембридж. Он похоронен не в усыпальнице великих людей Англии - Вестминстерском аббатстве, - а в скромной могиле рядом с его любимой церковью в шотландской деревушке, недалеко от родового поместья.

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

Джеймс Кларк Максвелл прожил всего 48 лет, но его вклад в математику, физику и механику трудно переоценить. Сам Альберт Эйнштейн заявил, что теорией относительности он обязан уравнениям Максвелла для электромагниного поля.

В Эдинбурге на улице Индии есть дом, на стене которого висит мемориальная доска:
"Джеймс Кларк Максвелл
Естествоиспытатель
Родился здесь 13 июня 1831 года".

Будущий великий ученый принадлежал к старинной дворянской семье и большую часть детства провел в имении своего отца Миддлби, располагавшемся в Южной Шотландии. Он рос любопытным и активным ребенком, и уже тогда родные отмечали, что его любимые вопросы: "Как это сделать?" и "Как это происходит?".

Когда Джеймсу исполнилось десять, по решению семьи, он поступил в Эдинбургскую академию, где учился прилежно, хотя и не проявляя никаких особых талантов. Однако увлекшись геометрией, Максвелл изобрел новый способ рисования овалов. Содержание его работы, посвященной геометрии овальных кривых, было изложено в "Трудах Эдинбургского королевского общества" за 1846 год. Автору тогда исполнилось только четырнадцать лет. В шестнадцать Максвелл отправился в Эдинбургский университет, выбрав основными предметами физику и математику. Кроме того, он заинтересовался проблемами философии, прослушал курсы логики и метафизики.

Уже упомянутые "Труды Эдинбургского королевского общества" опубликовали еще два сочинения талантливого студента - о кривых качения и об упругих свойствах твердых тел. Последняя тема имела важное значение для строительной механики.

Проучившись в Эдинбурге, девятнадцатилетний Максвелл перебрался в Кембриджский университет, сначала в колледж Святого Петра, потом в более престижный колледж Святой Троицы. Изучение математики там было поставлено на более глубоком уровне, и требования к студентам заметно выше, чем в Эдинбурге. Несмотря на это, Максвеллу удалось показать второй результат на публичном трехступенчатом экзамене по математике на степень бакалавра.

В Кембридже Максвелл много общался с разными людьми, вступил в клуб апостолов, состоявший из 12 членов, объединенных широтой и оригинальностью мышления. Он участвовал в деятельности Рабочего колледжа, созданного для образования простых людей, читал там лекции.

Осенью 1855 года, когда Максвелл закончил учебу, его приняли в состав колледжа Святой Троицы и предложили остаться преподавать. Чуть позже он вошел в Эдинбургское королевское общество - национальное научное объединение Шотландии. В 1856 году Максвелл покинул Кембридж ради профессорского места в Маришальском колледже шотландского города Абердина.

Подружившись с директором колледжа преподобным Дэниэлом Дьюаром, Максвелл познакомился с его дочерью Кэтрин Мэри. Они объявили о помолвке в конце зимы 1858 года, а в июне обвенчались. По воспоминаниям биографа и друга ученого Льюиса Кэмпбелла, их брак оказался примером невероятной преданности. Известно, что Кэтрин помогала мужу в лабораторных исследованиях.

В целом, абердинский период был очень плодотворным в жизни Максвелла. Еще в Кембридже он занялся исследованием строения колец Сатурна, и в 1859 году в свет вышла его монография, где он доказывал, что они представляют собой твердые тела, вращающиеся вокруг планеты. Тогда же ученый написал статью "Пояснения к динамической теории газов", в которой вывел функцию, отражающую распределение молекул газа в зависимости от их скорости, впоследствии названную распределением Максвелла. Это был один из первых примеров статистических законов, которые описывают поведение не одного объекта или отдельной частицы, а поведение множества объектов или частиц. Придуманный исследователем позже "демон Максвелла" - мысленный эксперимент, в котором некое разумное бестелесное существо разделяет молекулы газа по скоростям, - продемонстрировал статистический характер второго закона термодинамики.

В 1860 году несколько колледжей объединили в Абердинский университет и часть кафедр упразднили. Под сокращение попал и молодой профессор Максвелл. Но он недолго оставался без работы, практически сразу его пригласили преподавать в Лондонский королевский колледж, где он пробыл последующие пять лет.

В том же году на собрании Британской ассоциации ученый прочел доклад о своих разработках, касающихся восприятия цвета, за которые позже получил медаль Румфорда от Лондонского королевского общества. Доказывая правоту собственной теории цвета, Максвелл предъявил на суд публики новинку, поразившую ее воображение, - цветную фотографию. До него никто не мог ее получить.

В 1861 году Максвелл получил назначение в Комитет по эталонам, созданный для того, чтобы определить главные электрические единицы.

Кроме того, Максвелл не отказался от исследований упругости твердых тел и за полученные результаты удостоился премии Кейта Эдинбургского королевского общества.

Работая в Лондонском королевском колледже, Максвелл завершил создание своей теории электромагнитного поля. Саму идею поля предложил знаменитый физик Майкл Фарадей, но его знаний не хватало, чтобы представить свое открытие на языке формул. Математическое описание электромагнитных полей стало главной научной проблемой для Максвелла. Опираясь на метод аналогий, благодаря которому было зафиксировано сходство между электрическим взаимодействием и теплопередачей в твердом теле, ученый перенес данные исследований теплоты на электричество и первым смог математически обосновать передачу электрического действия в среде.

1873 год ознаменовался выходом "Трактата об электричестве и магнетизме", чье значение сопоставимо со значением "Математических начал философии" Ньютона. С помощью уравнений Максвелл описал электромагнитные явления, сделал выводы о том, что существуют электромагнитные волны, что они распространяются со скоростью света и сам свет имеет электромагнитную природу.

"Трактат" издали, когда Максвелл уже два года (с 1871) занимал должность главы физической лаборатории Кембриджского университета, чье создание означало признание в ученом сообществе огромной важности экспериментального подхода к исследованиям.

Не менее значимой задачей Максвелл видел популяризацию науки. Для этого он писал статьи для энциклопедии "Британника", работы, где пытался на простом языке объяснить основные представления о материи, движении, электричестве, атомах и молекулах.

В 1879 году здоровье Максвелла сильно пошатнулось. Он знал, что тяжело болен, и его диагноз - рак. Понимая, что обречен, он мужественно переносил боли и спокойно встретил смерть, наступившую 5 ноября 1879 года.

Хотя труды Максвелла получили достойную оценку еще при жизни ученого, но их настоящая значимость стала понятна только годы спустя, когда в ХХ веке понятие поля надежно закрепилось в научном обиходе, а Альберт Эйнштейн заявил, что уравнения Максвелла для электромагнитного поля предшествовали его теории относительности.

Память ученого увековечена в названиях одного из строений Эдинбургского университета, главного корпуса и концертного холла Сэлфордского университета, Центра Джеймса Клерка Максвелла Эдинбургской академии. В Абердине и Кембридже можно найти улицы, названные в его честь. В Вестминстерском аббатстве есть мемориальная плита, посвященная Максвеллу, а посетители картинной галереи Абердинского университета могут увидеть бюст ученого. В 2008 году в Эдинбурге был установлен бронзовый памятник Максвеллу.

Множество организаций и наград также связаны с именем Максвелла. Физическая лаборатория, которой он руководил, учредила стипендию для самых способных аспирантов. Британский Институт физики вручает медаль и премию Максвелла молодым физикам, которые внесли значительный вклад в науку. В Университете Лондона есть должность максвелловского профессора и студенческое общество Максвелла. Созданный в 1977 году, Фонд Максвелла организует конференции по физике и математике.

Наряду с признанием Максвелл был назван самым известным шотландским ученым по итогам опроса 2006 года, всё это свидетельствует о той великой роли, которую он сыграл в истории науки.

Джеймс-Клерк МАКСВЕЛЛ (Maxwell)

(13.6.1831, Эдинбург, - 5.11.1879, Кембридж)

Джеймс-Клерк Максвелл -- английский физик, создатель классической электродинамики, один из основателей статистической физики, родился в Эдинбурге в 1831 году.
Максвелл - сын шотландского дворянина из знатного рода Клерков. Учился в Эдинбургском (1847-50) и Кембриджском (1850-54) университетах. Член Лондонского королевского общества (1860). Профессор Маришал-колледжа в Абердине (1856-60), затем Лондонского университета (1860-65). С 1871 года Максвелл -- профессор Кембриджского университета. Там он основал первую в Великобритании специально оборудованную физическую лабораторию - Кавендишскую лабораторию, директором которой он был с 1871 года.
Научная деятельность Максвелла охватывает проблемы электромагнетизма, кинетической теории газов, оптики, теории упругости и многое другое. Свою первую работу "О черчении овалов и об овалах со многими фокусами" Максвелл выполнил, когда ему ещё не было 15 лет (1846 г., опубликована в 1851 г.). Одними из первых его исследований были работы по физиологии и физике цветного зрения и колориметрии (1852-72). В 1861 году Максвелл впервые демонстрировал цветное изображение, полученное от одновременного проецирования на экран красного, зелёного и синего диапозитивов, доказав этим справедливость трёхкомпонентной теории цветного зрения и одновременно наметив пути создания цветной фотографии. Он создал один из первых приборов для количественного измерения цвета, получившего название диска Максвелл.
В 1857-59 гг. Максвелл провёл теоретическое исследование устойчивости колец Сатурна и показал, что кольца Сатурна могут быть устойчивыми лишь в том случае, если они состоят из не связанных между собой твёрдых частиц.
В исследованиях по электричеству и магнетизму (статьи "О фарадеевых силовых линиях", 1855-56 гг.; "О физических силовых линиях", 1861-62 гг.; "Динамическая теория электромагнитного поля", 1864 г.; двухтомный фундаментальный "Трактат об электричестве и магнетизме", 1873 г.) Максвелл математически развил воззрения Майкла Фарадея на роль промежуточной среды в электрических и магнитных взаимодействиях. Он попытался (вслед за Фарадеем) истолковать эту среду как всепроникающий мировой эфир, однако эти попытки не были успешны.
Дальнейшее развитие физики показало, что носителем электромагнитных взаимодействий является электромагнитное поле , теорию которого (в классической физике) Максвелл и создал. В этой теории Максвелл обобщил все известные к тому времени факты макроскопической электродинамики и впервые ввёл представление о токе смещения, порождающем магнитное поле подобно обычному току (току проводимости, перемещающимся электрическим зарядам). Максвелл выразил законы электромагнитного поля в виде системы 4 дифференциальных уравнений в частных производных (уравнения Максвелла ).
Общий и исчерпывающий характер этих уравнений проявился в том, что их анализ позволил предсказать многие неизвестные до того явления и закономерности.
Так, из них следовало существование электромагнитных волн, впоследствии экспериментально открытых Г. Герцем. Исследуя эти уравнения, Максвелл пришёл к выводу об электромагнитной природе света (1865 г.) и показал, что скорость любых других электромагнитных волн в вакууме равна скорости света.
Он измерил (с большей точностью, чем В. Вебер и Ф. Кольрауш в 1856 году) отношение электростатической единицы заряда к электромагнитной и подтвердил его равенство скорости света. Из теории Максвелл вытекало, что электромагнитные волны производят давление.
Давление света было экспериментально установлено в 1899 П. Н. Лебедевым.
Теория электромагнетизма Максвелл получила полное опытное подтверждение и стала общепризнанной классической основой современной физики. Роль этой теории ярко охарактеризовал А. Эйнштейн: "... тут произошел великий перелом, который навсегда связан с именами Фарадея, Максвелла, Герца. Львиная доля в этой революции принадлежит Максвеллу… После Максвелла физическая реальность мыслилась в виде непрерывных, не поддающихся механическому объяснению полей... Это изменение понятия реальности является наиболее глубоким и плодотворным из тех, которые испытала физика со времен Ньютона ".
В исследованиях по молекулярно-кинетической теории газов (статьи "Пояснения к динамической теории газов", 1860 г., и "Динамическая теория газов", 1866 г.) Максвелл впервые решил статистическую задачу о распределении молекул идеального газа по скоростям (распределение Максвелла ). Максвелл рассчитал зависимость вязкости газа от скорости и длины свободного пробега молекул (1860), вычислив абсолютную величину последней, вывел ряд важных соотношений термодинамики (1860). Экспериментально измерил коэффициент вязкости сухого воздуха (1866). В 1873-74 гг. Максвелл открыл явление двойного лучепреломления в потоке (эффект Максвелла ).
Максвелл был крупным популяризатором науки. Он написал ряд статей для Британской энциклопедии, популярные книги - такие как "Теория теплоты" (1870), "Материя и движение" (1873), "Электричество в элементарном изложении" (1881), переведённые на русский язык. Важным вкладом в историю физики является опубликование Максвеллом рукописей работ Г. Кавендиша по электричеству (1879) с обширными комментариями.

Максвелл, Джеймс Клерк – английский математик и физик шотландского происхождения. Основатель современной классической электродинамики, кинетической теории газов. Провел ряд важных исследований в термодинамике, молекулярной физике. Создатель количественной теории цветов, заложил основы принципов цветного фотографирования.

Биография

Джеймс Клерк Максвелл появился на свет 13 июня 1831 в шотландской столице Эдинбурге. Отец, Джон Клерк Максвелл. Был членом адвокатской коллегии, владел поместьем в Южной Шотландии. Мать, Фрэнсис Кей, была дочерью судьи Адмиралтейского суда.

Мать Джеймса умерла, когда ему было восемь лет. Отцу пришлось воспитывать самостоятельно. На всю жизнь Джеймс сохранил очень теплые чувства к отцу, который действительно всегда заботился о нем.

Когда настала пора получать образование, для Джеймса поначалу приглашали учителей на дом. Впрочем, эти учителя были невежественными и грубыми, а других найти не удавалось. Поэтому отец принял решение отправить сына в Эдинбургскую академию.

Поначалу юный Максвелл относился к учебе в академии довольно настороженно, но постепенно втянулся. Уроки вызывали у него подлинный интерес, особое внимание привлекала к себе геометрия. Именно эта наука стала той основой, на которой выросли все будущие научные достижения Максвелла.

Максвелл подарил академии на прощанье гимн, который после этого с удовольствием распевало не одно поколение студентов. Затем Джеймс поступает в Эдинбургский университет. Здесь он исследует теорию упругости, результаты данной работы получают высокую оценку специалистов.

В 1850 году Максвелл уезжает в Кембридж, несмотря на недовольство отца этим решением. Сначала учится в колледже св. Петра, затем переходит в Тринити-Колледж. Он просто поражал преподавателей своими знаниями и занял второе место на выпуске. Получив степень бакалавра, Максвелл остается в Тринити-Колледже работать преподавателем. В этот период он занимается проблемой цветов, геометрией, электричеством. В 1854 году в письме одному из друзей

Джеймс заявил о намерении «атаковать электричество». Это удалось – вскоре был опубликован труд «О фарадеевых силовых линиях», — одна из трех самых крупных работ Максвелла. Главный труд этого периода жизни ученого – создание теории цветов. Он экспериментальным путем доказал, как смешиваются цвета. Эти исследования впоследствии легли в основу цветной фотографии.

В 1856 году Максвелл становится профессором натуральной философии абердинского Маришаль-Колледжа. Он, по сути, создал здесь с нуля кафедру физики. В 1858 году Максвелл женился на Кэтрин Мери Дьюар, которая была дочерью руководителя Маришаль-Колледжа.

В этот период ученый занимается расчетом движения колец Сатурна, издает трактат «Об устойчивости движения колец Сатурна». Эта работа впоследствии стала классической.

Тогда же Максвелл сосредотачивается на кинетической теории газов. В июне 1860 года он делает доклад по этой теме на съезде Британской ассоциации в Оксфорде.

В том же 1860 году Максвеллу пришлось распрощаться с профессорской должностью в Маришаль-колледже. Вскоре после этого его приглашают в Кингс-колледж на должность профессора кафедры натуральной философии.

17 мая 1861 года ученый продемонстрировал первую в мире цветную фотографию. Спустя сто лет компания «Кодак» доказала, что Максвеллу тогда просто повезло – его способом получить зеленое и красное изображение было нельзя, эти цвета образовались случайно. Тем не менее, принципы были все же правильными, пусть и с небольшими ошибками.

После этого Максвелл сосредотачивается на исследовании электромагнетизма. Публикуются работы «О физических силовых линиях» и «Динамическая теория электромагнитного поля». С этого времени и вплоть до конца своей жизни ученый работает над проблемами электрических измерений.

В 1865 году состояние здоровья Максвелла ухудшается, и в следующем году он выезжает из Лондона в свое имение Гленлэр. В 1867 году он отправляется для поправки здоровья в Италию. В этот период публикуются книги «Теория теплоты» и «Теория тепла».

В 1871 году Максвелл становится профессором Кембриджского университета. Спустя два года ученый заканчивает труд всей своей жизни – двухтомник «Трактат по электричеству и магнетизму». Затем вышли книги «Материя и движение»,

С 1874 по 1879 годы Максвелл обрабатывал труды Генри Кавендиша, которые были ему торжественно вручены герцогом Девонширским.

К этому времени состояние его здоровья сильно ухудшается. Вскоре был поставлен диагноз – рак. 5 ноября 1879 года Джеймс Клерк Максвелл скончался. Его тело похоронили в деревне Партон, рядом с родителями.

Основные достижения Максвелла

  • При жизни Максвелла многие его труды не были оценены должным образом, но потом в истории науки его работы заняли достойное место.
  • Исследования в области теории электромагнитного поля стали основой идеи о поле в физике XX века. На это указывали многие ученые, в том числе Леопольд Инфельд, Альберт Эйнштейн, Рудольф Пайерлс.
  • Вклад в молекулярно-кинетическую теорию.
  • Разработка статистических методов, которые поспособствовали развитию статистической механики. Ввел термин «статистическая механика».
  • Создание теории цветов. Электромагнитная теория света.
  • Развитие динамической теории газов.

Важные даты биографии Максвелла

  • 13 июня 1831 года – в Эдинбурге.
  • 1841 год – поступление в Эдинбургскую академию.
  • 1846 год – первая научная работа «О свойствах овалов и о кривых с многими фокусами».
  • 1847 год – поступление в Эдинбургский университет.
  • 1850 год – доклад «О равновесии упругих тел». Поступление в Кембриджский университет.
  • 1854 год – окончание университета. Начало профессорской деятельности.
  • 1856 год – смерть отца. Максвелл становится членом Эдинбургского королевского общества.
  • 1857 год – работа «О фарадеевских силовых линиях».
  • 1858 год – женился на Кетрин Мери Дьюар.
  • 1859 год – первая статья по кинетической теории газов.
  • 1860 год – профессор физики в Лондонском университете.
  • 1860 год – получает Румфордовскую медаль за исследования оптики и цветов.
  • 1861 год – первая в мире цветная фотография.
  • 1861-1864 годы – публикация работ «Динамическая теория электромагнитного поля», «О физических линиях сил».
  • 1865 год – переезд в Гленлэр.
  • 1867 год – поездка в Италию.
  • 1871 год – профессор экспериментальной физики Кембриджского университета.
  • 1873 год – публикация работ «Материя и движение», «Трактат по электричеству и магнетизму».
  • 1874 год – начало работы Кавендишской лаборатории.
  • 1878-1879 годы – публикация статей «О напряжениях, возникающих в разреженных газах за счет неравенства температур», «Гармонический анализ».
  • 5 ноября 1879 года — Джеймс Клерк Максвелл умер в своем кембриджском доме.
  • Единственная деталь рельефа Венеры, названная мужским именем – горный хребет Джеймса Максвелла.
  • В школе Максвелл очень плохо знал арифметику.
  • После получения сообщения об обязательном посещении богослужения в Кембриджском университете сказал: «Я в это время только ложусь спать».
  • Любил исполнять шотландские песни, аккомпанируя себе на гитаре.
  • В восьмилетнем возрасте мог процитировать практически любой стих из Книги Псалмов.

Похожие статьи