Биохимия питания. Углеводы. Углеводы легко усваиваются Пищевые источники углеводов биохимия

Потребность в углеводах взрослого организма составляет 350-400 г в сутки, при этом целлюлозы и других пищевых волокон должно быть не менее 30-40 г.

С пищей в основном поступают крахмал, гликоген, целлюлоза, сахароза, лактоза, мальтоза, глюкоза и фруктоза, рибоза.

Переваривание углеводов в желудочно-кишечном тракте

Ротовая полость

Со слюной сюда поступает кальций-содержащий фермент α-амилаза . Оптимум ее рН 7,1-7,2, активируется ионами Cl – . Являясь эндоамилазой , она беспорядочно расщепляет внутренние α1,4-гликозидные связи и не влияет на другие типы связей.

В ротовой полости крахмал и гликоген способны расщепляться α-амилазой до декстринов и мальтозы . Дисахариды ничем не гидролизуются.

Желудок

Из-за низкой рН амилаза инактивируется, хотя некоторое время расщепление углеводов продолжается внутри пищевого комка.

Кишечник

В полости тонкого кишечника работают совместно панкреатическая α-амилаза , разрывающая внутренние α1,4-связи, изомальтаза , разрывающая α1,6-связи изомальтозы, олиго-α1,6-глюкозидаза , действующая на точки ветвления крахмала и гликогена.

Кроме полостного, имеется еще и пристеночное пищеварение, которое осуществляют:

  • сахаразо-изомальтазный комплекс (рабочее название сахараза ) – в тощей кишке гидролизует α1,2-, α1,4-, α1,6-гликозидные связи, расщепляет сахарозу, мальтозу, мальтотриозу, изомальтозу,
  • гликоамилазный комплекс – находится в нижних отделах тонкого кишечника, расщепляет α1,4-гликозидные связи и отщепляет концевые остатки глюкозы в олигосахаридах с восстанавливающего конца,
  • β-гликозидазный комплекс (рабочее название лактаза ) – гидролизует β1,4-гликозидные связи между галактозой и глюкозой (лактозу). У детей активность лактазы очень высока уже до рождения и сохраняется на высоком уровне до 5-7 лет, после чего снижается.

Роль целлюлозы в пищеварении

Целлюлоза ферментами человека не переваривается, т.к. не образуются соответствующие ферменты. Но в толстом кишечнике под действием ферментов микрофлоры некоторая часть ее может гидролизоваться с образованием целлобиозы и глюкозы. Глюкоза частично используется самой микрофлорой и окисляется до органических кислот (масляной, молочной), которые стимулируют перистальтику кишечника. Малая часть глюкозы может всасываться в кровь.

Углеводы - обширная группа органических веществ, которые вместе с белками и жирами составляют основу организма человека и животных. Углеводы присутствуют в каждой клетке организма, выполняют разнообразные функции. Небольшие молекулы углеводов, представленные, в основном, глюкозой, могут перемещаться по всему организму и выполнять энергетическую функцию. Крупные молекулы углеводов не перемещаются и выполняют, в основном, строительную функцию. Из пищи человек извлекает только мелкие молекулы, так как только они могут всосаться в клетки кишечника. Крупные же молекулы углеводов организму приходится строить самому. Совокупность всех реакций по расщеплению углеводов пищи до глюкозы и синтезу из нее новых молекул, а также другие многочисленные превращения этих веществ в организме, называют в биохимии обменом углеводов.

Классификация

В зависимости от строения, различают несколько групп углеводов.

Моносахариды - мелкие молекулы, которые не расщепляются в пищеварительном тракте. Это глюкоза, фруктоза, галактоза.

Дисахариды - мелкие молекулы углеводов, которые в пищеварительном тракте расщепляются на два моносахарида. Например, лактоза - на глюкозу и галактозу, сахароза - на глюкозу и фруктозу.

Полисахариды - крупные молекулы, состоящие из сотен тысяч остатков моносахаридов (в основном, глюкозы), соединенных между собой. Это крахмал, гликоген мяса.

Углеводы и диеты

Время расщепления полисахаридов в пищеварительном тракте отличается, что зависит от их способности растворяться в воде. Одни полисахариды расщепляются в кишечнике быстро. Тогда при их распаде, быстро попадает в кровь. Такие полисахариды называют «быстрыми». Другие хуже растворяются в водной среде кишечника, поэтому медленнее расщепляются, а глюкоза медленнее поступает в кровь. Такие полисахариды называют «медленными». Некоторые из этих элементов вообще не расщепляются в кишечнике. Их называют нерастворимыми пищевыми волокнами.

Обычно под названием «медленные или быстрые углеводы» имеются в виду не сами полисахариды, а продукты, которые их содержат в большом количестве.

Список углеводов - быстрых и медленных, представлен в таблице.

Быстрые углеводы Медленные углеводы
жареный картофель Хлеб с отрубями
Белый хлеб Необработанные зерна риса
Картофельное пюре Горох
Мед Овсяные хлопья
Морковь Гречневая каша
Кукурузные хлопья Ржаной хлеб с отрубями
Сахар Свежевыжатый фруктовый сок без сахара
Мюсли Макароны из муки грубого помола
Шоколад Красная фасоль
Вареный картофель Молочные продукты
Бисквит Свежие фрукты
Кукуруза Горький шоколад
Белый рис Фруктоза
Черный хлеб Соя
Свекла Зеленые овощи, помидоры, грибы
Бананы -
Джем -

При выборе продуктов для составления рациона диетолог всегда опирается на список быстрых углеводов и медленных. Быстрые в сочетании с жирами в одном продукте или приеме пищи приводят к отложению жира. Почему? Быстрое повышение содержания глюкозы в крови стимулирует выработку инсулина, который обеспечивает запас глюкозы в организме, включая и путь образования из нее жира. В результате при поедании пирожных, мороженого, жареной картошки вес набирается очень быстро.

Переваривание

С точки зрения биохимии, обмен углеводов проходит в три этапа:

  • Пищеварение.Оно начинается еще в ротовой полости в процессе пережевывания пищи.
  • Собственно метаболизм углеводов.
  • Образование конечных продуктов обмена.

Углеводы - основа пищевого рациона человека. Согласно формуле рационального питания, в составе пищи их должно быть в 4 раза больше, чем белков или жиров. Потребность в углеводах индивидуальна, но, в среднем, человеку необходимо 300-400 г в сутки. Из них около 80% приходится на крахмал в составе картофеля, макарон, круп и 20% - на быстрые углеводы (глюкоза, фруктоза).

Обмен углеводов в организме также начинается в ротовой полости. Здесь на полисахариды - крахмал и гликоген действует фермент слюны амилаза. Амилаза гидролизует (расщепляет) полисахариды на крупные осколки - декстрины, которые попадают в желудок. Здесь нет ферментов, действующих на углеводы, поэтому декстрины в желудке никак не изменяются и проходят дальше по пищеварительному тракту, попадая в тонкий кишечник. Здесь на углеводы действует несколько ферментов. Амилаза панкреатического сока гидролизует декстрины до дисахарида мальтозы.

Секретируют клетки самого кишечника. Фермент мальтаза гидролизует мальтозу до моносахарида глюкозы, лактаза - лактозу до глюкозы и галактозы, сахараза - сахарозу до глюкозы и фруктозы. Полученные монозы всасываются из кишечника в кровь и по воротной вене попадают в печень.

Роль печени в обмене углеводов

Этот орган обеспечивает поддержание определенного уровня глюкозы в крови за счет реакций синтеза и распада гликогена.

В печени идут реакции взаимопревращений моносахаридов - фруктоза и галактоза превращаются в глюкозу, а глюкоза может превратиться во фруктозу.

В этом органе идут реакции глюконеогенеза - синтеза глюкозы из неуглеводных предшественников - аминокислот, глицерина, молочной кислоты. Также здесь нейтрализуется гормон инсулин с помощью фермента инсулиназы.

Метаболизм глюкозы

Глюкоза играет ключевую роль в биохимии обмена углеводов и в общем метаболизме организма, поскольку она является главным источником энергии.

Уровень глюкозы в крови является постоянной величиной и составляет 4 - 6 ммоль/л. Основными источниками этого элемента в крови являются:

  • Углеводы пищи.
  • Гликоген печени.
  • Аминокислоты.

Расходуется глюкоза в организме на:

  • образование энергии,
  • синтез гликогена в печени и мышцах,
  • синтез аминокислот,
  • синтез жиров.

Природный источник энергии

Глюкоза - универсальный источник энергии для всех клеток организма. Энергия необходима для построения собственных молекул, сокращения мышц, выработки тепла. Последовательность реакций превращения глюкозы, приводящих к выделению энергии, называют гликолизом. Реакции гликолиза могут идти в присутствии кислорода, тогда говорят об аэробном гликолизе, или в бескислородных условиях, тогда процесс является анаэробным.

В ходе анаэробного процесса одна молекула глюкозы превращается в две молекулы молочной кислоты (лактата) и выделяется энергия. Анаэробный гликолиз дает мало энергии: из одной молекулы глюкозы получается две молекулы АТФ - вещества, химические связи которого аккумулируют энергию. Этот способ получения энергии используется для кратковременной работы скелетных мышц - от 5 секунд до 15 минут, то есть в то время, пока механизмы снабжения мышц кислородом не успевают включиться.

В ходе реакций аэробного гликолиза одна молекула глюкозы превращается в две молекулы пировиноградной кислоты (пирувата). Процесс с учетом трат энергии на собственные реакции дает 8 молекул АТФ. Пируват вступает в дальнейшие реакции окисления - окислительное декарбоксилирование и цитратный цикл (цикл Кребса, цикл трикарбоновых кислот). В результате этих превращений на молекулу глюкозы выделится 30 молекул АТФ.

Обмен гликогена

Функция гликогена - запасание глюкозы в клетках животного организма. Эту же функцию в растительных клетках выполняет крахмал. Гликоген иногда называют животным крахмалом. Оба вещества являются полисахаридами, построенными из многократно повторяющихся остатков глюкозы. Молекула гликогена более разветвленная и компактная, чем молекула крахмала.

Процессы обмена в организме углевода гликогена особенно интенсивно идут в печени и скелетных мышцах.

Гликоген синтезируется в течение 1-2 часов после еды, когда уровень в крови глюкозы высок. Для образования молекулы гликогена нужен праймер - затравка, состоящая из нескольких остатков глюкозы. К концу праймера последовательно присоединяются новые остатки в виде УТФ-глюкозы. Когда цепочка вырастает на 11-12 остатков, к ней присоединяется боковая цепь из 5-6 таких же фрагментов. Теперь у цепочки, идущей от праймера, есть два конца - две точки роста молекулы гликогена. Эта молекула будет многократно удлиняться и ветвиться до тех пор, пока сохраняется высокая концентрация в крови глюкозы.

Между приемами пищи гликоген распадается (гликогенолиз), освобождая глюкозу.

Полученная при распаде гликогена печени, она идет в кровь и используется для нужд всего организма. Глюкоза, полученная при распаде гликогена в мышцах, тратится на нужды только мышц.

Образование глюкозы из неуглеводных предшественников - глюконеогенез

Организму хватает энергии, запасенной в виде гликогена, только на несколько часов. Через сутки голодания этого вещества в печени не остается. Поэтому при безуглеводных диетах, полном голодании или при длительной физической работе нормальный уровень глюкозы в крови поддерживается за счет ее синтеза из неуглеводных предшественников - аминокислот, глицерина молочной кислоты. Все эти реакции протекают, в основном, в печени, а также в почках и слизистой кишечника. Таким образом, процессы обмена углеводов, жиров и белков тесно переплетены между собой.

Из аминокислот и глицерина глюкоза синтезируется при голодании. В условиях отсутствия еды тканей до аминокислот, жиры - до жирных кислот и глицерина.

Из молочной кислоты глюкоза синтезируется после интенсивной физической нагрузки, когда она накапливается в больших количествах в мышцах и печени в ходе анаэробного гликолиза. Из мышц молочная кислота переносится в печень, где из нее синтезируется глюкоза, которая вновь возвращается в работающую мышцу.

Регуляция углеводного обмена

Этот процесс осуществляется нервной системой, эндокринной системой (гормонами) и на внутриклеточном уровне. Задача регуляции - обеспечить стабильный уровень глюкозы в крови. Из гормонов, регулирующих процессы обмена углеводов, главными являются инсулин и глюкагон. Они вырабатываются в поджелудочной железе.

Основная задача инсулина в организме - снижение уровня глюкозы в крови. Добиться этого можно двумя путями: увеличив проникновение глюкозы из крови в клетки организма и усилив в них ее использование.

  1. Инсулин обеспечивает проникновение глюкозы в клетки определенных тканей - мышечной и жировой. Их называют инсулинзависимыми. В мозг, лимфатическую ткань, эритроциты глюкоза попадает без участия инсулина.
  2. Инсулин усиливает использование глюкозы клетками путем:
  • Активации ферментов гликолиза (глюкокиназа, фосфофруктокиназа, пируваткиназа).
  • Активации синтеза гликогена (за счет усиления превращения глюкозы в глюкозо-6-фосфат и стимуляции гликогенсинтазы).
  • Торможения ферментов глюконеогенеза (пируваткарбоксилаза, глюкозо-6-фосфатаза, фосфоенолпируваткарбоксикиназа).
  • Усиления включения глюкозы в пентозофосфатный цикл.

Все остальные гормоны, регулирующие углеводный обмен - это глюкагон, адреналин, глюкокортикоиды, тироксин, гормон роста, АКТГ. Они увеличивают содержание глюкозы в крови. Глюкагон активирует распад гликогена в печени и синтез глюкозы из неуглеводистых предшественников. Адреналин активирует распад гликогена в печени и мышцах.

Нарушения обмена. Гипогликемия

Самыми распространенными нарушениями обмена углеводов являются гипо- и гипергликемии.

Гипогликемия - состояние организма, вызванное низким уровнем глюкозы в крови (ниже 3,8 ммоль/л). Причинами могут быть: снижение поступление этого вещества в кровь из кишечника или печени, повышение его использования тканями. К гипогликемии могут привести:

  • Патологии печени - нарушение синтеза гликогена или синтеза глюкозы из неуглеводных предшественников.
  • Углеводное голодание.
  • Патологии почек - нарушение обратного всасывания глюкозы из первичной мочи.
  • Нарушения пищеварения - патологии расщепления углеводов пищи или процесса всасывания глюкозы.
  • Патологии эндокринной системы - избыток инсулина или недостаток гормонов щитовидной железы, глюкокортикоидов, гормона роста (СТГ), глюкагона, катехоламинов.

Крайнее проявление гипогликемии - гипогликемическая кома, которая чаще всего развивается у больных сахарным диабетом I типа при передозировке инсулина. Низкое содержание глюкозы в крови приводит к кислородному и энергетическому голоданию мозга, что вызывает характерные симптомы. Отличается чрезвычайно быстрым развитием - если не предпринять нужных действий в течение нескольких минут, человек потеряет сознание и может погибнуть. Обычно пациенты с сахарным диабетом умеют распознавать признаки падения глюкозы в крови и знают, что нужно предпринять - выпить стакан сладкого сока или съесть сладкую булочку.

Гипергликемия

Еще одним видом нарушения углеводного обмена является гипергликемия - состояние организма, вызванное стойким высоким содержанием глюкозы в крови (выше 10 ммоль/л). Причинами могут быть:

  • патологии эндокринной системы. Самая частая причина гипергликемии - сахарный диабет. Различают сахарный диабет I и II типа. В первом случае причина болезни - дефицит инсулина, вызванный поражением клеток поджелудочной железы, секретирующих этот гормон. Поражение железы чаще всего имеет аутоиммунный характер. Сахарный диабет II типа развивается при нормальной выработке инсулина, поэтому называется инсулиннезависимым; но инсулин не выполняет свою функцию - не проводит глюкозу в клетки мышечной и жировой тканей.
  • неврозы, стрессы активируют выработку гормонов - адреналина, глюкокортикоидов, щитовидной железы, которые усиливают распад гликогена и синтез глюкозы из неуглеводных предшественников в печени, тормозят синтез гликогена;
  • патологии печени;
  • переедание.

В биохимии обмен углеводов - одна из самых интересных и обширных тем для изучения и исследований.

ГОУ ВПО УГМА Росздрава

кафедра биохимии

Утверждаю

Зав. каф. проф., д.м.н.

Мещанинов В.Н.

_____‘’_____________2007г

ЛЕКЦИЯ № 7

Тема: Переваривание и всасывание углеводов. Обмен гликогена

Факультеты: лечебно-профилактический, медико-профилактический, педиатрический.

Углеводы – это многоатомные спирты содержащие оксогруппу.

По количеству мономеров все углеводы делят на: моно-, ди-, олиго- и полисахариды.

Моносахариды по положению оксогруппы делятся альдозы и кетозы.

По количеству атомов углерода моносахариды делятся на триозы, тетрозы, пентозы, гексозы и т.д.

Функции углеводов

Моносахариды – углеводы, которые не гидролизуются до более простых углеводов.

Моносахариды:

· выполняют энергетическую функцию (образование АТФ).

· выполняют пластическую функцию (участвуют в образовании ди-, олиго-, полисахаридов, аминокислот, липидов, нуклеотидов).

· выполняют детоксикационную функцию (произ­водные глюкозы, глюкурониды, участвуют в обезвреживании токсичных метаболитов и ксенобиотиков).

· являются фрагментами гликолипидов (цереброзиды).

Дисахариды – углеводы, которые гидролизуются на 2 моносахарида. У человека образуется только 1 дисахарид - лактоза. Лактоза синтезируется при лактации в молочных железах и содержится в молоке. Она:

· является источником глюкозы и галактозы для новорожденных;

· участвует в формировании нормальной микрофлоры у новорожденных.

Олигосахариды – углеводы, которые гидролизуются на 3 - 10 моносахаридов.

Олигосахариды являются фрагментами гликопротеинов (ферменты, белки-транспортёры, белки-рецепторы, гормоны), гликолипидов (глобозиды, ганглиозиды). Они образуют на поверхности клетки гликокаликс.

Полисахариды – углеводы, которые гидролизуются на 10 и более моносахаридов. Гомополисахариды выполняют запасающую функцию (гликоген – форма хранения глюкозы). Гетерополисахариды (ГАГ) являются структурным компонентом межклеточного вещества (хондроитинсульфаты, гиалуроновая кислота), участвуют в пролиферации и дифференцировке клеток, препятствуют свертыванию крови (гепарин).

Углеводы пищи, нормы и принципы нормирования их суточной пищевой потребности. Биологическая роль. В пище человека в основном содержатся по­лисахариды - крахмал, целлюлоза растений, в меньшем количестве - гликоген животных. Источником сахарозы служат растения, особенно сахарная свёкла, сахарный тростник. Лактоза поступает с молоком млекопитающих (в коровьем мо­локе до 5% лактозы, в женском мо­локе - до 8%). Фрукты, мёд, соки содер­жат небольшое количество глюкозы и фруктозы. Мальтоза есть в солоде, пиве.

Углеводы пищи являются для организма человека в основном источником моносахаридов, преимущественно глюкозы. Некоторые полисахариды: целлюлоза, пектиновые вещества, декстраны, у человека практически не перевариваются, в ЖКТ они выполняют функцию сорбента (выводят холестерин, желчные кислоты, токсины и д.р.), необходимы для стимуляции перистальтики кишечника и формирования нормальной микрофлоры.

Углево­ды - обязательный компонент пищи, они составляют 75% массы пищевого рациона и дают более 50% необходимых калорий. У взрослого человека суточная потребность в углеводах 400г/сут, в целлюлозе и пектине до 10-15 г/сут. Рекомендуется употреблять в пищу больше сложных полисахаридов и меньше моносахаров.

Переваривание углеводов

Переваривание это процесс гидролиза веществ до их ассимилируемых форм. Переваривание бывает: 1). Внутриклеточное (в лизосомах); 2). Внеклеточное (в ЖКТ): а). полостное (дистантное); б). пристеночное (контактное).

Переваривание углеводов в ротовой полости (полостное)

В ротовой полости пища измельчается при пе­режёвывании и смачивается слюной. Слюна состоит на 99% из воды и обычно имеет рН 6,8. В слюне присутствует эндогликозидаза α-амилаза (α-1,4-гликозидаза), расщеп­ляющая в крахмале внутренние α-1,4-гликозидные связи с об­разованием крупных фрагментов - декстринов и небольшого количества мальтозы и изомальтозы. Необходим ион Cl - .

Переваривание углеводов в желудке (полостное)

Действие амилазы слюны прекращается в кислой среде (рН <4) содержимого желудка, однако, внутри пищевого комка ак­тивность амилазы может некоторое время сохраняться. Желудочный сок не содержит фермен­тов, расщепляющих углеводы, в нем возможен лишь незначительный кислотный гидролиз гликозидных связей.

Переваривание углеводов в тонком кишечнике (полостное и пристеночное)

В двенадцатиперстной кишке кислое содержимое желу­дка нейтрализуется соком поджелудочной железы (рН 7,5-8,0 за счет бикарбонатов). С соком поджелудочной железы в кишечник поступает панкреатическая α-амилаза . Эта эндогликозидаза гидролизует внутренние α-1,4-гликозидные связи в крахмале и декстринах с образованием мальтозы (2 ос­татка глюкозы, связанные α-1,4-гликозидной связью), изомальтозы (2 ос­татка глюкозы, связанные α-1,6-гликозидной связью) и олигосахаридов, содержащих 3-8 остатков глюкозы, свя­занных α-1,4- и α-1,6-гликозидными связями.

Переваривание мальтозы, изомальтозы и олигосахаридов происходит под дей­ствием специфических ферментов - экзогликозидаз, образующих ферментативные комплексы. Эти комплексы находятся на поверхности эпителиаль­ных клеток тонкого ки­шечника и осуществляют пристеночное пищеварение.

Сахаразо-изомальтазный комплекс состоит из 2 пептидов, имеет доменное строение. Из первого пептида образован цитоплазматический, трансмембранный (фиксирует комплекс на мембране энтероцитов) и связывающий домены и изомальтазная субъединица. Из второго - сахаразная субъединица. Сахаразная субъединица гидролизует α-1,2-гликозидные связи в сахарозе, изомальтазная субъединица - α-1,6-гликозидные связи в изомальтозе, α-1,4-гликозидные связи в мальтозе и мальтотриозе. Комплекса много в тощей кишке, меньше в проксимальной и дистальной частях кишечника.

Гликоамилазный комплекс , содержит две каталитические субъединицы, имеющие небольшие различия в субстратной специфич­ности. Гидролизует α-1,4-гликозидные связи в олигосахаридах (с восстанавливающего конца) и в мальтозе. Наибольшая активность в нижних отделах тонкого кишеч­ника.

β-Гликозидазный комплекс (лактаза) гликопротеин, гидролизует β-1,4-гликозидные связи в лактозе. Активность лактазы зависит от возраста. У плода она особенно повышена в поздние сроки беременности и сохраняется на высоком уровне до 5-7-летнего возраста. Затем активность лактазы снижается, составляя у взрослых 10% от уровня активности, характерного для детей.Трегалаза гликозидазный комплекс, гидролизует α-1,1-гликозидные связи между глюкозами в трегалозе - дисахариде грибов.Переваривание углеводов заканчивается образованием моносахаридов – в основном глюкозы, меньше образуется фруктозы и галактозы, еще меньше – маннозы, ксилозы и арабинозы.Всасывание углеводов Моносахариды всасываются эпителиальными клетками тощей и подвздошной кишок. Транспорт моносахаридов в клетки слизистой оболочки кишечника может осуществляться путём диффузии (рибоза, ксилоза, арабиноза), облегчённой диффузии с помощью белков переносчиков (фруктоза, галактоза, глюкоза), и путем вторично-активного транспорта (галактоза, глюкоза). Вторично-активный транспорт галактозы и глюкозы из просвета кишечника в энтероцит осуществляется симпортом с Na + . Через белок-переносчик Na + двигается по градиенту своей концентрации и переносит с собой углеводы против их градиента концентраций. Градиент концентрации Na + создаётся Nа + /К + -АТФ-азой.
При низкой концентрации глюкозы в просвете кишечника она транспортируется в энтероцит только активным транспортом, при высокой концентрации - активным транспортом и облегчённой диффузией. Скорость всасывания: галактоза > глюкоза > фруктоза > другие моносахариды. Моносахариды выходят из энтероцитов в направлении кровеносного капилляра с помощью облегченной диффузии через белки-переносчики.

Нарушение переваривания и всасывания углеводов

Недостаточное переваривание и всасывание переваренных продуктов называют мальабсорбцией . В основе мальабсорбции углеводов могут быть причины двух типов:

1). Наследственные и приобретенные дефекты ферментов, участвующих в переваривании . Известны наследственные дефекты лактазы, α-амилазы, сахаразно-изомальтазного комплекса. Без лечения эти па­тологии сопровождаются хроническим дисбактериозом и нарушениями физического разви­тия ребёнка.

Приобретённые нарушения переваривания могут наблю­даться при кишечных заболеваниях, например гастритах, колитах, энтеритах, после операций на ЖКТ.

Дефицит лактазы у взрослых людей может быть связан со снижением экспрессии гена лактазы, что проявляться непе­реносимостью молока - наблюдается рвота, диарея, спазмы и боли в животе, метеоризм. Частота этой па­тологии составляет в Европе 7-12%, в Китае - 80%, в Африке - до 97%.

2). Нарушение всасывания моносахаридов в кишечнике.

Нарушения всасывания могут быть следствием дефекта какого-либо компонента, участвующего в системе транспорта моносахаридов через мембрану. Описаны патологии, связанные с дефектом натрийзависимого белка переносчика глюкозы.

Синдром мальабсорбции сопровождается осмотической диареей, усилением перистальтики, спазмами, болями, а также метеоризмом. Диарею вызывают нерасщеплённые дисахариды или невсосавшиеся моносахариды в дистальных отделах кишечника, а также органические кислоты, образованные микроорганизмами при неполном расщеплении углеводов.

Глава IV .11.

Обмен углеводов

Функции углеводов

1. Энергетическая (глюкоза, гликоген).

2. Структурная (гиалуроновая кислота).

3. Антикоагулирующая (гепарин).

4. Гомеостатическая (поддерживает, в частности, водно-электролитный баланс и осмотическое давление крови).

5. Механическая (входят в состав соединительной ткани).

Классификация углеводов

Моносахариды , которые не могут быть гидролизованы на более простые сахара. В зависимости от числа атомов углерода их подразделяют на триозы, тетрозы, пентозы, гексозы. В зависимости от присутствия альдегидной или кетоновой группы на альдозы и кетозы.

Дисахариды состоят из двух остатков моносахаридов:

1) сахароза состоит из остатков глюкозы и фруктозы, соединенных a -1,4-гликозидной связью;

2) лактоза состоит из остатков глюкозы и галактозы, соединенных b -1,4-гликозидной связью;

3) мальтоза состоит из двух остатков глюкозы, соединенных a -1,4-гликозидной связью;

4) целлобиоза состоит из двух остатков глюкозы, соединенных b -1,4-гликозидной связью.

Гомополисахариды - длинные разветвленные цепи, состоящие из одних и тех же моносахаридов:

1) крахмал - полимер глюкозы, соединенной a -1,4 и a -1,6-гликозидными связями. При этом неразветвленные цепи образуют амилозу (20%), а разветвленные амилопектин (80%);

2) гликоген - животный крахмал, состоящий из остатков глюкозы. Это более разветвленный полимер, чем крахмал. При частичном гидролизе крахмала или гликогена образуются декстрины (более короткие разветвленные цепи);

3) целлюлоза - главный компонент структурной основы растительных клеток. Это линейный полимер глюкозы, соединенной b -1,4-гликозидными связями.

Гетерополисахариды состоят из разных мономеров:

1) гепарин содержит остатки D -глюконат-2-сульфита и N -ацетилглюкозамин-6-сульфата;

2) гиалуроновая кислота состоит из остатков D -глюкуроновой кислоты и остатков N -ацетилглюкозамина. Входит в состав соединительной ткани и участвует в регуляции проницаемости кканей.

Переваривание и всасывание углеводов

У моногастричных животных в ротовой полости под действием амилазы (a , b ) слюны происходит частичный гидролиз гликозидных связей полисахаридов (крахмала). Но активность этого фермента низкая, особенно у плотояндых.

В желудке специфических ферментов нет, а амилаза при низкой рН быстро инактивируется.

В тонком отделе кишечника происходит основной гидролиз сахаров. Крахмал под действием амилазы поджелудочной железы, протоки которой открываются в 12-перстную кишку расщепляется до мальтозы и изомальтозы. Этот дисахарид, а также сахароза и лактоза расщепляются специфическими гликозидазами - мальтазой , изомальтазой ,сахаразой и лактазой . Эти ферменты продуцируются клетками слизистой и не поступают в просвет, а действуют на поверхности оболочки кишечника. Это т.н. пристеночное пищеварение. Дисахариды расщепляются до моносахаридов: глюкозы, фруктозы и галактозы, которые всасываются в стенки кишечника и поступают в кровь. Проникновение моносахаридов через клеточные мембраны происходит путем облегченной диффузии при участии специальных ферментов транслоказ. Глюкоза и галактоза еще проникают и путем активного транспорта за счет градиента концентраций ионов Na + , который создается Na + -К + -АТФ-азой (насос).

У полигастричных животных в ротовой полости переваривание сахаров не происходит из-за отсутствия ферментов.

В рубце (первом из преджелудков) происходит 50% переваривания сахаров. Ферменты вырабатываются микрофлорой рубца (мальтаза , сахараза, целлюлаза ). Образовавшиеся в результате ферментативного гидролиза поли- и дисахаридов моносахарапод действием бактерий рубца подвергаются процессам брожения, среди которых выделяют следующие виды:

1) уксуснокислое (Глю = уксусная кислота + СО 2);

2) пропионовокислое (Глю = пропионовая кислота + СО 2);

3) маслянокислое (Глю = масляная кислота + СО 2);

4) молочнокислое (Глю = молочная кислота + СО 2).

Все эти кислоты называются летучими жирными кислотами (ЛЖК). Наилучший вариант, когда уксуснокислое брожение составляет 70% и хуже когда преобладает маслянокислое. ЛЖК всасываются в стенки сетки и книжки и идут на энергетические нужды организма.

В сычуге (истинный желудок, имеет строение как и у моногастричных) переваривания углеводов не происходит из-за отсутствия ферментов.

В тонком отделе кишечника идет переваривание остатков сахаров как и у моногастричных животных.

Гликолиз

Последовательные реакции гликолиза катализируются группой из 11 ферментов. Процесс представляет собой две стадии (рис.4.11.1.). На первой из них глюкоза (Г) фосфорилируетсяи затем расщепляетсяс образованием двух молекул трехуглеродного соединения- глицеральдегид-3-фосфата. Эту стадию рассматривают как подготовительную. Именно на ней различные гексозы вовлекаются в гликолиз, фосфорилируются за счет АТФ и в итоге образуют общий продукт (Г-3-Ф). Вторая стадия представляет процесс общий для всех сахаров. Он включает и окислительно-восстановительные реакции и этапы образования АТФ (т.е. накопления энергии).

Первая стадия

1) Фосфорилирование Г за счет АТФ до образования глюкозо-6-фосфата (Г-6-Ф).

Эта реакция является пусковой для всего процесса и идет в одном направлении.

Е: гексокиназа и глюкокиназа. Гексокиназа более важный фермент, он используется в большинстве клеток. Он фосфорилирует еще фруктозу, маннозу. Глюкокиназа содержится только в гепатоцитах и обладает сродством только к глюкозе.

Кофакторами этой реакции являются ионы магния и марганца.

2) Превращение Г-6-Ф во фруктозо-6-фосфат (Ф-6-Ф). Эта реакция изомеризации.

Е: фосфоглюкоизомераза. Реакция обратимая.

Кофакторы: иона магния и марганца.

3) Фосфорилирование Ф-6-Ф до фруктозо-1,6-дифосфата (Ф-1,6-ДФ).

Эта вторая пусковая реакция гликолиза требует затраты еще одной молекулы АТФ. Реакция необратима.

Е: фосфофруктокиназа .

Кофактор: ионы магния.Донорами фосфата могут быть помимо АТФУТФ.

Активность этого фермента активируется АДФ и АМФ и ингибируется АТФ.

4) Расщепления Ф-1,6-ДФ на две молекулы глицеральдегид-3-фосфат (ГА-3-Ф).

Е: альдолаза . Содержит свободные SH -группы. Реакция обратимая и идет в две стадии. Вначале образуется одна молекула ГА-3-Ф и диоксиацетонфосфат, а затем последний превращается в еще одну молекулу ГА-3-Ф.

Данная реакция завершает подготовительную стадию, на которой было истрачено 2 молекулы АТФ и образовалось 2 молекулы ГА-3-Ф.

Вторая стадия

Здесь все реакции идут двумя параллельными путями.

5) Окисление ГА-3-Ф до 1,3-дифосфоглицерата (1,3-ДФГ).

Энергия, освобождающаяся при окислении альдегидной группы ГА-3-Ф, сохраняется в форме высокоэргического продукта 1,3 - ДФГ.

Е: глицеральдегид-3-фосфатдегидрогеназа (ГА-3-Ф-ДГ).

Кофермент : НАД, который в ходе реакции восстанавливается.

6) Превращение 1,3-ДФГ в 3-фосфоглицерат (3-ФГ).

Е: фосфоглицераткиназа. Образуется одна молекула АТФ.

7) Превращение 3-ФГ в 2-фосфоглицерат (2-ФГ). Это реакция изомеризации.

Е: фосфоглицеромутаза .

Кофактор : ионы магния.

8) Превращение 2-ФГ в фосфоенолпируват .

Е: енолаза .

Кофакторы : ионы магния и марганца.

Ингибитор : фторид.

9) Превращение фосфоенолпирувата в пируват . Образуется одна молекула АТФ.

Е: пируваткиназа .

Кофакторы: ионы магния, марганца, калия.

Ингибирор: ионы кальция (конкурируют с марганцем).

10) Восстановление пирувата до лактата . Источником электронов служит ГА-3-Ф, а их переносчиком является НАДН.

Е: лактатдегидрогеназа .

Лактат (молочная кислота) - конечный продукт анаэробного гликолиза. Выделяется через плазматическую мембрану как конечный метаболит. При усиленной работе мышц возникает дефицит кислорода и окисление глюкозы идет до лактата, при этом в мышечной ткани из-за накопления кислоты возникает ацидоз.

Пентозофосфатный путь (ПФП)

Наряду с гликолитическим путем распада глюкозы во многих клетках работает пентозофосфатный путь (гексамонофосфатный шунт). Он не является основным для метаболизма глюкозы и служит для генерации в цитоплазме клеткивосстановленных форм НАДФ . Данный кофермент необходим для реакций восстановительного синтеза жирных кислот и стероидов, а также используется как донор водорода в реакциях гидроксилированияс участием цитохром-Р450-зависимой системы. Все эти процессы протекают преимущественно в клетках печени, молочной железы, коры надпочечников и жировой ткани. Скелетные мышцы, где синтез жирных кислот протекает вяло, практически лишены пентозофосфатного пути метаболизма глюкозы.

Реакции представлены окислительной и неокислительной ветвями.

Окислительная ветвь :

1. Дегидрирование 1-го углеродного атома глюкозо-6-фосфата .

Е: глюкозо-6-фосфатдегидрогеназа . В качестве акцептора электронов выступает НАДФ + . Образуется 6-фосфоглюколактон - внутренний эфир.

2. 6-фосфоглюколактон очень нестабильное соединение,легко гидролизуется до свободной кислоты с образованием 6-фосфоглюконата .

Е: фосфоглюколактоназа.

3. Окислительное декарбоксилирование 6-фосфоглюконата с образованием рибулозо-5-фосфата .

Е: 6-фосфоглюконатдекарбоксилазы и 6-фосфоглюконатдегидрогеназы (акцептор - НАДФ +).

Т.о. окислительная ветвь завершается восстановлением двух молекул НАДФ +

Неокислительная ветвь это реакции изомеризации :

1. Рибулозо-5-фосфат превращается в рибозо-5-фосфат .

Е: фосфопентозоизомераза.

2. Рибозо-5-фосфатпревращается в ксилулозо-5-фосфат .

Е: пентозофосфатизомераза .

3. Ксилулозо-5-фосфат взаимодействует с рибозо-5-фосфатомпревращается в седогептулозо-7-фосфат и глицеральдегид-3-фосфат . Последнее вещество является также продуктом гликолиза.

Е: транскетолаза (простетическая група ТДФ).

4. Седогептулозо-7-фосфат и глицеральдегид-3-фосфат взаимодействуют между собой и превращаются в фруктозо-6-фосфат (также продукт гликолиза) и эритрозо-4-фосфат .

Е: трансальдолаза .

5. Эритрозо-4-фосфат и ксилулозо-5-фосфат взаимодействуют между собой и певращаются в два продукта гликолиза фруктозо-6-фосфат и глицеральдегид-3-фосфат.

Е: транскетолаза .

Часть метаболитов реакций неокислительного этапа ПФП является одновременно и метаболитами гликолиза, а это означает, что между двумя метаболическими путями глюкозы существуеттесная связь и в зависимости от условий, возникающих в клетке, возможно "переключение" с одного пути на другой.

При сбалансированной потребности клетки в НАДФН и рибозо-5-фосфате, ПФП заканчивается на окислительной этапе.

Если потребность в рибозо-5-фосфате превышает потребность в НАДФН, то окислительный этап ПФП "обходится" за счет гликолиза. Метаболиты гликолиза: фруктозо-6-фосфат и глицеральдегид-3-фосфат превращаются в рибозо-5-фосфат.

Если больший дефицит в НАДФН, чем в рибозо-5-фосфате, то

1. при высоком энергетическом статусе клетки рибозо-5-фосфат превращается в глицеральдегид-3-фосфат и фруктозо-6-фосфат, а последние идут не на путь гликолиза, а на глюконеогенез, т.к.нет потребности в генерации АТФ;

2. при низком энергетическом статусе клетки фруктозо-6-фосфат и глицеральдегид-3-фосфат образовавшиеся из рибозо-5-фосфат, включаются в гликолиз и превращаются в пируват. В этом случае синтезируется АТФ.

Биологический смысл ПФП:

В результате реакций окислительной ветви образуются две молекулы НАДФН, которые не окисляютсяв дыхательнойцепи (как НАДН), а служат донорами водорода в ряде восстановительных реакций;

В неокислительной ветви генерируется рибозо-5-фосфат, необходимый для синтезаРНК, ДНК, НАД, ФАД;

ПФП называют еще и пентозофосфатным шунтом т.к. это процесс паралельный основному пути окисления глюкозы - гликолизу и при определенных условиях (см.выше) происходит переключение с дополнительного ПФП на основной гликолиз и наоборот.

Цикл трикарбоновых кислот (ЦТК, цикл лимонной кислоты, цикл Кребса)

Аэробный путь окисления глюкозы начинается с того, что пировиноградная кислота (ПВК, пируват) не превращается в лактат, а поступает в ЦТК.

ЦТК представляет собой серию реакций, протекающих в матриксе митохондрий, в ходе которых осуществляется катаболизм ацетильных групп (до СО 2) и образование НАДН 2 и ФАДН 2 . Восстановленные коферменты переносят водород на дыхательную цепь, где осуществляется окислительное фосфорилирование (см. главу "Обмен веществ и энергии").

Суммарное уравнение аэробного окисления одной молекулы глюкозы:

1-Глюк + 6 О 2 = 6 СО 2 + 6 Н 2 О + 38 АТФ

Прежде чем ПВК вступит на путь ЦТК она подвергается окислительному декарбоксилированию при участии комплекса ферментов. Результатом такого взаимодействия является образование ацетил-КоА . В таком виде это соединение поступает на путь ЦТК


ГОУ ВПО УГМА Росздрава

кафедра биохимии

Утверждаю

Зав. каф. проф., д.м.н.

Мещанинов В.Н.

_____‘’_____________2007г

ЛЕКЦИЯ № 7

Тема: Переваривание и всасывание углеводов. Обмен гликогена

Факультеты: лечебно-профилактический, медико-профилактический, педиатрический.

Углеводы – это многоатомные спирты содержащие оксогруппу.

По количеству мономеров все углеводы делят на: моно-, ди-, олиго- и полисахариды.

Моносахариды по положению оксогруппы делятся альдозы и кетозы.

По количеству атомов углерода моносахариды делятся на триозы, тетрозы, пентозы, гексозы и т.д.

Функции углеводов

Моносахариды – углеводы, которые не гидролизуются до более простых углеводов.

Моносахариды:

    выполняют энергетическую функцию (образование АТФ).

    выполняют пластическую функцию (участвуют в образовании ди-, олиго-, полисахаридов, аминокислот, липидов, нуклеотидов).

    выполняют детоксикационную функцию (произ­водные глюкозы, глюкурониды, участвуют в обезвреживании токсичных метаболитов и ксенобиотиков).

    являются фрагментами гликолипидов (цереброзиды).

Дисахариды – углеводы, которые гидролизуются на 2 моносахарида. У человека образуется только 1 дисахарид - лактоза. Лактоза синтезируется при лактации в молочных железах и содержится в молоке. Она:

    является источником глюкозы и галактозы для новорожденных;

    участвует в формировании нормальной микрофлоры у новорожденных.

Олигосахариды – углеводы, которые гидролизуются на 3 - 10 моносахаридов.

Олигосахариды являются фрагментами гликопротеинов (ферменты, белки-транспортёры, белки-рецепторы, гормоны), гликолипидов (глобозиды, ганглиозиды). Они образуют на поверхности клетки гликокаликс.

Полисахариды – углеводы, которые гидролизуются на 10 и более моносахаридов. Гомополисахариды выполняют запасающую функцию (гликоген – форма хранения глюкозы). Гетерополисахариды (ГАГ) являются структурным компонентом межклеточного вещества (хондроитинсульфаты, гиалуроновая кислота), участвуют в пролиферации и дифференцировке клеток, препятствуют свертыванию крови (гепарин).

Углеводы пищи, нормы и принципы нормирования их суточной пищевой потребности. Биологическая роль.

В пище человека в основном содержатся по­лисахариды - крахмал, целлюлоза растений, в меньшем количестве - гликоген животных. Источником сахарозы служат растения, особенно сахарная свёкла, сахарный тростник.Лактоза поступает с молоком млекопитающих (в коровьем мо­локе до 5% лактозы, в женском мо­локе - до 8%). Фрукты, мёд, соки содер­жат небольшое количество глюкозы и фруктозы. Мальтозаесть в солоде, пиве.

Углеводы пищи являются для организма человека в основном источником моносахаридов, преимущественно глюкозы. Некоторые полисахариды: целлюлоза, пектиновые вещества, декстраны, у человека практически не перевариваются, в ЖКТ они выполняют функцию сорбента (выводят холестерин, желчные кислоты, токсины и д.р.), необходимы для стимуляции перистальтики кишечника и формирования нормальной микрофлоры.

Углево­ды - обязательный компонент пищи, они составляют 75% массы пищевого рациона и дают более 50% необходимых калорий. У взрослого человека суточная потребность в углеводах 400г/сут, в целлюлозе и пектине до 10-15 г/сут. Рекомендуется употреблять в пищу больше сложных полисахаридов и меньше моносахаров.

Переваривание углеводов

Переваривание это процесс гидролиза веществ до их ассимилируемых форм. Переваривание бывает: 1). Внутриклеточное (в лизосомах); 2). Внеклеточное (в ЖКТ): а). полостное (дистантное); б). пристеночное (контактное).

Переваривание углеводов в ротовой полости (полостное)

В ротовой полости пища измельчается при пе­режёвывании и смачивается слюной. Слюна состоит на 99% из воды и обычно имеет рН 6,8. В слюне присутствует эндогликозидаза α -амилаза ( α -1,4-гликозидаза), расщеп­ляющая в крахмале внутренние α-1,4-гликозидные связи с об­разованием крупных фрагментов - декстринов и небольшого количества мальтозы и изомальтозы. Необходим ион Cl - .

Переваривание углеводов в желудке (полостное)

Действие амилазы слюны прекращается в кислой среде (рН

Переваривание углеводов в тонком кишечнике (полостное и пристеночное)

В двенадцатиперстной кишке кислое содержимое желу­дка нейтрализуется соком поджелудочной железы (рН 7,5-8,0 за счет бикарбонатов). С соком поджелудочной железы в кишечник поступает панкреатическая α - амилаза . Эта эндогликозидаза гидролизует внутренние α-1,4-гликозидные связи в крахмале и декстринах с образованием мальтозы (2 ос­татка глюкозы, связанные α-1,4-гликозидной связью), изомальтозы (2 ос­татка глюкозы, связанные α-1,6-гликозидной связью) и олигосахаридов, содержащих 3-8 остатков глюкозы, свя­занных α-1,4- и α-1,6-гликозидными связями.

Переваривание мальтозы, изомальтозы и олигосахаридов происходит под дей­ствием специфических ферментов - экзогликозидаз, образующих ферментативные комплексы. Эти комплексы находятся на поверхности эпителиаль­ных клеток тонкого ки­шечника и осуществляют пристеночное пищеварение.

Сахаразо-изомальтазный комплекс состоит из 2 пептидов, имеет доменное строение. Из первого пептида образован цитоплазматический, трансмембранный (фиксирует комплекс на мембране энтероцитов) и связывающий домены и изомальтазная субъединица. Из второго - сахаразная субъединица. Сахаразная субъединица гидролизует α-1,2-гликозидные связи в сахарозе, изо мальтазная субъединица - α-1,6-гликозидные связи в изомальтозе, α-1,4-гликозидные связи в мальтозе и мальтотриозе. Комплекса много в тощей кишке, меньше в проксимальнойи дистальной частях кишечника.

Гликоамилазный комплекс , содержит две каталитические субъединицы, имеющие небольшие различия в субстратной специфич­ности. Гидролизует α-1,4-гликозидные связи в олигосахаридах (с восстанавливающего конца) и в мальтозе. Наибольшая активность в нижних отделах тонкого кишеч­ника.

β-Гликозидазный комплекс (лактаза) гликопротеин, гидролизует β-1,4-гликозидные связи в лактозе. Активность лактазы зависит от возраста. У плода она особенно повышена в поздние сроки беременности и сохраняется на высоком уровне до 5-7-летнего возраста. Затем активность лактазы снижается, составляя у взрослых 10% от уровня активности, характерного для детей.

Трегалаза гликозидазный комплекс, гидролизует α-1,1-гликозидные связи между глюкозами в трегалозе - дисахариде грибов.

Переваривание углеводов заканчивается образованием моносахаридов – в основном глюкозы, меньше образуется фруктозы и галактозы, еще меньше – маннозы, ксилозы и арабинозы.

Всасывание углеводов

Моносахариды всасываются эпителиальными клетками тощей и подвздошной кишок. Транспорт моносахаридов в клетки слизистой оболочки кишечника может осуществляться путём диффузии (рибоза, ксилоза, арабиноза), облегчённой диффузии с помощью белков переносчиков (фруктоза, галактоза, глюкоза), и путем вторично-активного транспорта (галактоза, глюкоза). Вторично-активный транспорт галактозы и глюкозы из просвета кишечника в энтероцит осуществляется симпортом с Na + . Через белок-переносчик Na + двигается по градиенту своей концентрации и переносит с собой углеводы против их градиента концентраций. Градиент концентрации Na + создаётся Nа + /К + -АТФ-азой.

При низкой концентрации глюкозы в просвете кишечника она транспортируется в энтероцит только активным транспортом, при высокой концентрации - активным транспортом и облегчённой диффузией. Скорость всасывания: галактоза > глюкоза > фруктоза > другие моносахариды. Моносахариды выходят из энтероцитов в направлении кровеносного капилляра с помощью облегченной диффузии через белки-переносчики.

Нарушение переваривания и всасывания углеводов

Недостаточное переваривание и всасывание переваренных продуктов называют мальабсорбцией . В основе мальабсорбции углеводов могут быть причины двух типов:

1). Наследственные и приобретенные дефекты ферментов, участвующих в переваривании . Известны наследственные дефекты лактазы, α-амилазы, сахаразно-изомальтазного комплекса. Без лечения эти па­тологии сопровождаются хроническим дисбактериозом и нарушениями физического разви­тия ребёнка.

Приобретённые нарушения переваривания могут наблю­даться при кишечных заболеваниях, например гастритах, колитах, энтеритах, после операций на ЖКТ.

Дефицит лактазы у взрослых людей может быть связан со снижением экспрессии гена лактазы, что проявляться непе­реносимостью молока - наблюдается рвота, диарея, спазмы и боли в животе, метеоризм. Частота этой па­тологии составляет в Европе 7-12%, в Китае - 80%, в Африке - до 97%.

2). Нарушение всасывания моносахаридов в кишечнике.

Нарушения всасывания могут быть следствием дефекта какого-либо компонента, участвующего в системе транспорта моносахаридов через мембрану. Описаны патологии, связанные с дефектом натрийзависимого белка переносчика глюкозы.

Синдром мальабсорбции сопровождается осмотической диареей, усилением перистальтики, спазмами, болями, а также метеоризмом. Диарею вызывают нерасщеплённые дисахариды или невсосавшиеся моносахариды в дистальных отделах кишечника, а также органические кислоты, образованные микроорганизмами при неполном расщеплении углеводов.

Транспорт глюкозы из крови в клетки

Глюкоза поступает из кровотока в клетки путём облегчённой диффузии с помощью белков-переносчиков - ГЛЮТов. Глюкозные транспортёры ГЛЮТы имеют доменную организацию и обнаружены во всех тканях. Выделяют 5 типов ГЛЮТов:

ГЛЮТ-1 - преимущественно в мозге, плаценте, почках, толстом кишечнике;

ГЛЮТ-2 - преимущественно в печени, почках, β-клетках поджелудочной железы, энтероцитах, есть в эритроцитах. Имеет высокую Км;

ГЛЮТ-3 - во многих тканях, включая мозг, плаценту, почки. Обладает большим, чем ГЛЮТ-1, сродством к глюкозе;

ГЛЮТ-4 - инсулинзависимый, в мышцах (скелетной, сердечной), жировой ткани;

ГЛЮТ-5 - много в клетках тонкого кишечника, является переносчиком фруктозы.

ГЛЮТы, в зависимости от типа, могут находиться преимущественно как в плазматической мембране, так и в цитозольных везикулах. Трансмембранный перенос глюкозы происходит только тогда, когда ГЛЮТы находятся в плазматической мембране. Встраивание ГЛЮТов в мембрану из цитозольных везикул происходит под действием инсулина. При снижении концентрации инсулина в крови эти ГЛЮТы снова перемещаются в цитоплазму. Ткани, в которых ГЛЮТы без инсулина почти полностью находятся в цитоплазме клеток (ГЛЮТ-4, и в меньшей мере ГЛЮТ-1), оказываются инсулинзависимыми (мышцы, жировая ткань), а ткани, в которых ГЛЮТы преимущественно находятся в плазматической мембране (ГЛЮТ-3) - инсулиннезависимыми.

Известны различные нарушения в работе ГЛЮТов. Наследственный дефект этих белков может лежать в основе инсулинонезависимого сахарного диабета.

Метаболизм моносахаридов в клетке

После всасывания в кишечнике глюкоза и другие моносахариды поступают в воротную вену и далее в печень. Моносахариды в печени превращаются в глюкозу или продукты её метаболизма. Часть глюкозы в печени депонируется в виде гликогена, часть идет на синтез новых веществ, а часть через кровоток, направляется в другие органы и ткани. При этом печень поддерживает концентрацию глюкозы в крови на уровне 3,3-5,5 ммоль/л.

Фосфорилирование и дефосфорилирование моносахаридов

В клетках глюкоза и другие моносахариды с использованием АТФ фосфорилируются до фосфорных эфиров: глюкоза + АТФ → глюкоза-6ф + АДФ. Для гексоз эту необратимую реакцию катализирует фермент гексокиназа , которая имеет изоформы: в мышцах - гексокиназа II, в печени, почках и β-клетках поджелудочной железы - гексокиназа IV (глюкокиназа), в клетках опухолевых тканей - гексокиназа III. Фосфорилирование моносахаридов приводит к образованию реакционно-способных соединений (реакция активации), которые не способны покинуть клетку т.к. нет соответствующих белков-переносчиков. Фосфорилирование уменьшает количество свободной глюкозы в цитоплазме, что облегчает ее диффузию из крови в клетки.

Гексокиназа II фосфорилирует D-глюкозу, и с меньшей скоростью, другие гексозы. Обладая высоким сродством к глюкозе (Кm

Глюкокиназа (гексокиназа IV) имеет низкое сродство к глюкозе (Кm - 10 ммоль/л), активна в печени (и почках) при повышении концентрации глюкозы (в период пищеварения). Глюкокиназа не ингибируется глюкозо-6-фосфатом, что дает возможность печени без ограничений удалять излишки глюкозы из крови.

Глюкозо-6-фосфатаза катализирует необратимое отщепление фосфатной группы гидролитическим путём в ЭПР: Глюкозо-6-ф + Н 2 О → Глюкоза + Н 3 РО 4 , есть только в печени, почках и клетках эпителия кишечника. Образовавшаяся глюкоза способна диффундировать из этих органов в кровь. Таким образом, глюкозо-6-фосфатаза печени и почек позволяет повышать низкий уровень глюкозы в крови.

БиохимииКнига >> Медицина, здоровье

Конт-рольные работы Сам. работа лекции лабораторные занятия 7 34 34 ... выпота. 6. Клиническая биохимия заболеваний почек Исследование функции почек . Биохимия мочи. Образование и... нарушениями обмена аминокислот, липидов, углеводов , соединительной ткани. Подходы...

Похожие статьи