Вредное воздействие ультразвука на организм человека. Показания и противопоказания к применению ультразвуковой терапии. Влияние ультразвука на организм человека. Свойства ультразвука и его применение

Ультразвуки (неслышимые звуки) представляют собой механические колебания упругой среды и отличаются от звуковых волн более высокой частотой, превышающей верхний порог слышимости (20 000 Гц); диапазон ультразвуковых колебаний чрезвычайно широк - от 2·104 до 109 Гц (табл. 32).

Ультразвуковые волны распространяются в любой упругой среде (жидкой, твердой, газообразной), лучше в металлах, воде, хуже в воздухе.

Зависимость между длиной волны (λ), частотой (f) и скоростью (с) выражается формулой:
λ=c/f
При попадании на границу двух различных сред часть энергии проходит в другую среду, часть отражается. Чем больше акустическое сопротивление сред (произведение плотности среды на скорость распространения в ней ультразвука), тем меньше переход ультразвуков из одной среды в другую. Например, почти 10% ультразвуковой энергии переходят из железа в воду и только 0,1% поступает из железа в воздух. Наибольшее отражение ультразвуковых колебаний наблюдается на границе вода - воздух; хорошо ультразвук проходит из воды в биологические ткани. При прохождении в различных средах ультразвуковые волны в разной степени поглощаются ими, чем обусловлено избирательное действие. Например, абсорбционные свойства мышечной ткани выше жировой; в сером веществе мозга поглощение почти в 2 раза выше, чем в белом; наибольшее поглощение наблюдается в костной ткани, наименьшее - в спинномозговой жидкости.

Поглощение ультразвука сопровождается нагреванием среды. Термический эффект усиливается с повышением частоты колебаний. Помимо теплового действия, ультразвук вызывает в средах ряд других явлений. Например, прохождение ультразвука в жидкости сопровождается эффектом кавитации. При распространении упругих волн в жидкости возникают последовательно фазы сжатия и разрежения, в отдельных участках образуются разрывы или полости, которые заполняются парами жидкости и растворенными в ней газами. При этом в образовавшемся пузырьке создается большое давление, которое может достигать нескольких атмосфер. Последующее сжатие приводит к захлопыванию пузырька, что сопровождается гидравлическим ударом, обладающим большой разрушительной силой. Этим обусловлено механическое действие ультразвука. Образование кавитационных полостей сопровождается распространением на пограничных поверхностях электрических зарядов, вызывающих люминесцентное свечение, ионизацию молекул воды. С этими явлениями связан ряд химических эффектов: окисляющее действие ультразвука, ускорение химических реакций, разрушение органических соединений.

Впервые ультразвуки были применены французом Ланжевеном и русским инженером Н. К. Шиловским в 1916 г., в целях гидролокации. Начало промышленному применению ультразвуков было положено советским ученым С. Я. Соколовым, который в 1927 г. разработал первый в мире ультразвуковой дефектоскоп. В настоящее время ультразвуки применяются в машиностроении, металлургии, радиотехнической, химической, фармацевтической, легкой и других отраслях промышленности.

В технике ультразвук используется в целях интенсификации технологических процессов - при очистке и обезжиривании деталей, механической обработке твердых и хрупких материалов (сверлении, резании), при сварке, пайке, лужении; для ускорения химических реакций в гальванотехнике, при получении эмульсий; мойке стеклотары, для анализа и контроля (дефектоскопия, определение вязкости, плотности, температуры исследуемых материалов и т. п.).

В качестве источников ультразвука применяются акустические преобразователи: пьезоэлектрические, магнитострикционные, аэродинамические, гидродинамические (свистки, сирены), электродинамические. Наиболее распространены в промышленности пьезоэлектрические и магнитострикционные преобразователи. Пьезоэлектрические преобразователи используются преимущественно в контрольно-измерительных приборах, дефектоскопах. Для этих целей чаще применяются ультразвуки высокой частоты (порядка нескольких мегагерц), но небольшой мощности (100-300 вт). Более широко распространены в промышленности магнитострикционные преобразователи. Они применяются для генерирования ультразвука при интенсификации технологических процессов. В технологических целях используются низкочастотные ультразвуки 24 000-30 000 Гц. Мощность применяемых преобразователей в зависимости от технологического процесса различна и колеблется от 100 вт до 5-10 кет. Именно эта область применения ультразвука должна в первую очередь привлекать внимание врача.

Основными элементами ультразвукового оборудования являются генератор и акустический преобразователь. Под действием переменного электрического тока, подаваемого с генератора, в преобразователе возбуждаются Механические колебания.

При процессах, протекающих в жидкости (очистка и обезжиривание деталей, электрические процессы в гальванотехнике), пластинчатый преобразователь встроен в дно ванны. От излучающей поверхности ere колебания передаются жидкости, в которую погружаются обрабатываемые детали. Процессы, связанные с возбуждением ультразвука в твердых средах (сверление, сварка, резание и др.), осуществляются на станках, машинах и агрегатах. Встроенные в них стержневые преобразователи скреплены с инструментом (сверлом, резцом), через который ультразвуковые колебания воздействуют на обрабатываемую деталь.

Работа ультразвукового оборудования независимо от того, протекает ли процесс в жидкой или твердой среде, сопровождается распространением ультразвуковых колебаний в окружающей среде. Источником ультразвука является открытая поверхность преобразователя. При процессах, осуществляющихся в жидкости, ультразвуки поступают в воздух также с ее поверхности. Но изолированно ультразвуковые колебания в производственных условиях почти не встречаются. Генерирование ультразвуковых колебаний сопровождается слышимым шумом, который обусловлен кавитацией, колебаниями обрабатываемых деталей и металлических конструкций оборудования.

Воздействие звуковых и ультразвуковых колебаний на организм работающих происходит через воздух и вследствие непосредственного контакта рук работающего со средами, в которых возбуждены колебания (контактный путь воздействия).

В производственных помещениях суммарные уровни звукового и ультразвукового давления при разных технологических процессах колеблются от 90 до 130 дБ. Спектр колебаний, создаваемых ультразвуковым оборудованием в воздухе, характеризуется необычайной широтой. Он охватывает весь слышимый диапазон частот и продолжается в ультразвуковой области. При рабочей частоте оборудования 20 000 Гц в спектре наблюдаются ультразвуки с частотой до 100 000 Гц. Однако наиболее высокие уровни приходятся на область высоких звуковых и низких ультразвуковых частот, т. е. от 8000-10000 до 31000 Гц с максимумом на рабочей частоте. Своеобразный комплекс высокочастотных звуковых и низкочастотных ультразвуковых колебаний является особенностью условий труда. В случае применения ультразвуковых колебаний в жидкости повышение спектральных уровней может наблюдаться с 4000-6000 Гц. Увеличение рабочей частоты соответственно вызывает изменения спектрального состава: основная масса энергии размещается в области рабочей и близлежащих в ней частот (рис. 35).

Рис. 35. Спектр колебаний, создаваемых ультразвуковыми ваннами для очистки деталей.

1 - при рабочей частоте 20 кГц; 2 - при рабочей частоте 40 кГц.


Контактное воздействие ультразвука носит локальный, как правило, периодический и кратковременный характер. Воздействию подвергаются руки рабочего, чаще в период загрузки и выгрузки деталей при обслуживании ультразвуковых ванн, при удерживании детали руками во время обработки, при пайке и лужении, а иногда при сварке и очистке. Иногда такой контакт является следствием несоблюдения мер предосторожности работающими. Если учесть, что в средах, с которыми соприкасаются рабочие, интенсивность довольно высокая, даже кратковременный контакт является крайне нежелательным.

Из методов ультразвукового анализа и контроля наиболее широкое применение имеет дефектоскопия. При дефектоскопии, как правило, используются ультразвуки высокой частоты порядка сотен килогерц и нескольких мегагерц. При этом основное внимание следует уделить предотвращению контактного воздействия, особенно в период монтажа, наладки и испытания дефектоскопов. Исследования состояния здоровья работающих с дефектоскопами, по данным зарубежных авторов, не выявили заметных признаков воздействия ультразвука.

При работе сирен, свистков, электродинамических излучателей Синклера в воздухе могут создаваться ультразвуковые поля интенсивностью 140-160 дБ. Эти виды оборудования используются для экспериментальных работ, а в производственных условиях почти не встречаются.

Наиболее изучено биологическое действие ультразвука при контактном его воздействии. В эксперименте установлено, что ультразвуковые колебания, глубоко проникая в организм, могут вызвать серьезные локальные нарушения в тканях: воспалительную реакцию, геморрагии, а при высокой интенсивности - некроз.

В производственных условиях вследствие кратковременного воздействия ультразвука описанные выше контактные грубые нарушения не наблюдаются. При систематическом же контакте с источником ультразвука в жидкости (у медицинских работников) выявлены профессиональные заболевания - парезы кистей и предплечий. Имеются экспериментальные данные о действии ультразвука, распространяющегося в воздухе. Низкочастотные ультразвуки высокой интенсивности (160- 165 дБ), в течение нескольких минут вызывают гибель животных от паралича дыхательного центра при явлениях ожога кожи, гипертермии, паралича конечностей.

Результаты клинических наблюдений за состоянием здоровья работающих получены в условиях одновременного действия шума и ультразвука. Лица, обслуживающие ультразвуковое оборудование, предъявляют многообразные жалобы, главным образом на головную боль, головокружение, быструю утомляемость, расстройство сна, сонливость днем, раздражительность, повышение чувствительности к звукам. К концу смены может наблюдаться повышение температуры тела, урежение пульса, замедление рефлекторных реакций на внешние раздражения. При клиническом обследовании отмечается астенический синдром.

Исследования высшей нервной деятельности указывают на снижение активности торможения, силы раздражительного процесса и инертности его. У лиц, длительное время занятых экспериментальной работой на ультразвуковых установках, иногда наблюдаются диэнцефальные нарушения (потеря в весе, резкий подъем содержания сахара в крови с медленным падением до исходного уровня, гипертиреоз, повышение механической возбудимости мышц, зуд, пароксизмальные приступы типа висцеральных кризов). Нередки нарушения функции периферического отдела нервной системы, онемение, снижение всех видов чувствительности по типу коротких и длинных перчаток, гипергидроз. Наблюдаются также снижение слуха и своеобразные расстройства со стороны вестибулярного аппарата - отсутствие нистагма в одну или обе стороны при вестибулярных пробах, диссоциация между нистагменной и другими рефлекторными реакциями, диссоциация между вращательной: и калорической пробой. Изменения являются следствием комбинированного действия шума и ультразвука. Периферические нарушения обусловлены преимущественно контактным воздействием ультразвуковых колебаний. Мероприятия должны быть направлены на ограничение воздействия звуковых и ультразвуковых колебаний, передающихся по воздуху и контактным способом.

Основной мерой снижения шума и ультразвука является понижение их интенсивности в источнике, но этот путь не всегда технически возможен. На промышленных предприятиях нередко применяется завышенная интенсивность ультразвуковых колебаний, поэтому в первую очередь следует уделять внимание рациональному подбору мощности оборудования. В тех случаях, когда снижение интенсивности противоречит интересам технологии, наиболее эффективной мерой снижения шума и ультразвука является звукоизоляция оборудования.

В нашей стране уже имеется опыт применения звукоизолирующих устройств. Ванны в звукоизоляционном исполнении выпускаются серийно. Звукоизоляция обеспечивается кожухом из листовой стали о герметично закрывающейся крышкой. Внутренние стенки кожуха выстланы слоем пористой резины. Суммарный уровень звукового и ультразвукового давления снижается при этом на 25-30 дБ.

Следует иметь в виду, что в момент загрузки и выгрузки деталей звукоизоляция нарушается. Поэтому целесообразно предусматривать автоматическое выключение колебаний при открывании крышки кожуха. Желательно также применение звукоизолирующих устройств для мощных станков и сварочных машин.

Применение звукоизолирующего кожуха на станках позволяет снизить уровень звукового и ультразвукового давления на 30-40 дБ. Так как кожух полностью укрывает рабочую поверхность, то применение его создает неудобства при кратковременной обработке, требующей частой смены обрабатываемых деталей, но может с успехом применяться при длительном процессе.

Профилактика контактного воздействия ультразвука достигается путем выключения колебаний в период загрузки и выгрузки деталей, для чего рекомендуется применение автоблокировки.

В значительной мере можно ослабить интенсивность контактного воздействия применением специальных приспособлений для загрузки деталей (сеток, сосудов из оргстекла и др. с ручками, имеющими эластичное покрытие). При необходимости периодического кратковременного контакта рекомендуется применение зажимов, щипцов, ношение резиновых и хлопчатобумажных перчаток. На стенках и сварочных машинах должны быть предусмотрены специальные приспособления для закрепления деталей во время обработки.

Методическими указаниями для промышленно-санитарных врачей и медико-санитарных частей по профилактике вредного влияния ультразвука при применении его в промышленности № 424-63 (утверждены 31 января 1963 г. Министерством здравоохранения СССР) предусматривается систематический контроль за состоянием здоровья рабочих путем проведения предварительных осмотров в случае приема на работу и периодических медицинских осмотров работающих один раз в год.

Необычное ощущение, которое воспринимается нашим ухом как звук, является действием различного рода колебаний, так называемой плотной среды, в частности воздуха, на слуховой аппарат.

Но не все колебания которые, протекают в среде, вызывают ощущение звука. Наиболее низкие границы, с частотой колебаний которых слуховой аппарат способен распознать звук, является 20 герц.

Самый высокий порог составляет около 16 или 20 тысяч герц. Определение этих границ зависит от индивидуальных изменений.

Ультразвук при воздействии на человеческий организм , способен трансформироваться в тепловую энергию, что вызывает ощущение теплоты при его воздействии. Он вызывает так называемый микро массаж тканей (её сжатие и растяжение), которое благоприятно влияет на кровообращение, что в последствии, улучшает тканевые функции.

При его воздействии улучшаются обменные процессы организма , а также ультразвук оказывает некоторое нервно-рефлекторные воздействие .

Изменения после воздействия ультразвука, отмечаются не только в том месте, где конкретно был применен ультразвук, но и в других отделах организма. При его длительном воздействии , ультразвук способен привести к некоторому разрушению тканей.

Эксперты считают , что его разрушающее действие, связано с так называемым эффектом кавитации. Этот эффект приводит к образованию полостей в жидкости, что приводит к гибели клеток.

Такие полости были определены на экспериментах, поставленных на животных. Результаты показывают, что квитанционные пузырьки образовывались в межклеточном пространстве.

Ультразвук способен убить многие виды микроорганизмов . Способен инактивировать некоторые виды вирусов. Негативно влияет на структуру белков, нарушая ее и в конечном итоге разрушая её полностью. При воздействии ультразвука на молоко, разрушающее его свойство, полностью уничтожает содержание в нем витамина C.

В медицине используется ультразвук в озвучении крови, что приводит к повышению её свойств свертывания. Можно сказать, что ультразвук душит клетки организма. Из-за него клетка не может нормально дышать и производить свои обменные процессы.

Опыты над животными показывают , что интенсивное воздействие ультразвука приводит к сильным болям, облысению, некоторые ожоги, помутняется роговица глаза и хрусталика, серьезные нарушения биохимического характера, гемолиз, а воздействии высоких частот, наступает смерть в следствии мелких кровоизлияний в различных органах организма

Экспериментальные данные показывают, что ультразвук может серьезно повлиять на восприимчивость слухового аппарата . Эксперты полагают, что большой процент населения Соединенных Штатов, имеющие нарушение слуха, связано с воздействием звуковых установок имеющее большое распространение на территории страны.

Лица, которые долго были подвержены воздействию ультразвука, ощущают некоторую сонливость и утомленность.

Противопоказано озвучивать растущий организм, половые органы, сердце. Это может вызвать крайне негативные последствия, связанные с нарушением сердечнососудистой деятельностью. Применение ультразвука также противопоказано при некоторых заболеваниях, а также при беременности.

В связи с возрастанием использования ультразвука, некоторые люди по неволе подвержены его воздействию. Для предотвращения негативных изменений в организме, следует проходить обследования и при наличии воздействия ультразвука, совершать профилактику для нейтрализации дальнейших изменений

Ультразвуки – механические колебания упругой среды, имеющие одинаковую со звуками физическую природу, но превышающие верхний порог слышимой частоты (свыше 20 кГц). Низкочастотные ультразвуки (частота – десятки килогерц) обладают способностью распространяться в воздухе, высокочастотные (частота – сотни килогерц) – быстро затухают. В упругих средах – воде, металле и др. – ультразвук хорошо распространяется, причем на скорость распространения существенное влияние оказывает температура этих сред.

Ультразвук часто встречается в природе, сопровождая шелест листьев, шум морского прибоя и др. В животном мире с его помощью выполняется ряд жизненно важных функций: эхолокация летучих мышей сигналы насекомых и др.

В механизме действия ультразвука на неживые и живые объекты имеют место механический, термический и физико-химический эффекты. Механический эффект обусловлен природой ультразвука (сжатие – растяжение), термический – переходом механической энергии в тепловую, что особенно усиливается на границе раздела двух сред: твердое тело – жидкость, жидкость – газы и др. Физико-химические эффекты связаны с тем, что при распространении ультразвука в жидкостях возникает так называемая кавитация – появление зон сжатия и разрыва вследствие движения упругих волн, которое вызывает образование пузырьков, заполненных парами жидкости и растворенным в ней газом. При прохождении волн они исчезают: при этом повышается температура и развивается давление (до миллионов атмосфер). Это сопровождается возникновением электрических зарядов, люминесцентным свечением, ионизацией. В воде образуются гидроксильные радикалы, атомарный водород (Н 2 О – НО + Н). При контактном озвучивании ультразвук вызывает инактивацию ферментов, распад белков, ускорение химических реакций, а при больших энергиях – ожоги и гибель живых организмов.

Ультразвук нашел широкое применение в медицине для диагностики и лечения многих заболеваний. В технике и промышленности высокочастотный ультразвук используют для дефектоскопии отливок, сварных швов, пластмасс и физико-химических исследований веществ – определения плотности, упругости, структуры и др. Низкочастотный ультразвук применяют для промывки, обезжиривания, эмульгации, измельчения твердых веществ в жидкостях, для резания, сварки металла, дробления, сверления хрупких материалов и т.п. Промышленные установки работают преимущественно на частотах 16-44 кГц (реже до 80).

В производственных условиях кратковременное и периодическое контактное воздействие ультразвука имеет место при удержании инструмента, обрабатываемой детали, загрузке изделий в ванны, выгрузке их и других операциях. При систематическом продолжительном контакте с источниками ультразвука у медицинских работников наблюдались профессиональные заболевания – парезы кистей и предплечий.


Изменения в состоянии здоровья работающих при воздушном пути передачи ультразвука являются следствием одновременного действия ультразвука и шума, интенсивность которого в области частот 8 – 16 кГц может достигать 100 дБ и более. При ультразвуковой очистке деталей воздушная среда нередко загрязнена токсическими веществами – парами бензина, ацетона, толуола и др. Нарушения здоровья проявляются преимущественно в форме астено-вегетативных реакций с жалобами на головную боль, расстройство сна, раздражительность, утомляемость и объективными признаками снижения слуха, вестибулярных нарушений и др.

8.3. Вибрация и её влияние на организм человека

Вибрация как производственная вредность представляет собой механические колебательные движения, непосредственной передаваемые телу человека или отдельным его участкам. Вследствие механизации многих видов работ и использования пневматических и электрических инструментов значение её резко возросло, и в настоящее время вибрационная болезнь среди профессиональных заболеваний занимает одно из первых мест.

В отношении опасности вибрационной болезни наибольшее значение имеет вибрация с частотой 16-250 Гц.

Принято различать местную (локальную) и общую вибрацию: первая передается на руки или другие ограниченные участки тела, вторая – всему организму (пребывание на колеблющейся платформе, сиденьи).

Действие вибрации на рабочих нередко сочетается с влиянием других производственных вредностей: шума, охлаждающего микроклимата, неудобного положения тела.

Влияние вибрации на организм. Вибрация в зависимости от её параметров (частота, амплитуда) может оказывать как положительное, так и отрицательное влияние на отдельные ткани и организм в целом. С физиотерапевтической целью вибрацию используют для улучшения трофики, кровообращения в тканях при лечении некоторых заболеваний. Однако производственная вибрация, передаваясь здоровым тканям и органам и имея значительную амплитуду и продолжительность действия, оказывается вредно влияющим фактором.

Вибрация вызывает прежде всего нейротрофические и гемодинамические нарушения. В сосудах мелкого калибра (капилляры, артериолы) возникают спастико-атонические состояния, возрастает их проницаемость, нарушается нервная регуляция. Изменяется вибрационная, температурная и болевая чувствительность кожи. При работе с ручным механизированным инструментом может возникнуть симптом «мёртвого пальца»: потеря чувствительности, побеление пальцев, кистей рук. Рабочие жалуются на зябкость рук, ноющие боли в них после работы и по ночам. Кожные покровы между приступами имеют мраморный вид, цианотичны. В некоторых случаях обнаруживаются отечность, изменение кожи на кистях (трещины, огрубение), гипергидроз ладоней. Характерны костно-суставные и мышечные изменения. Дистрофические процессы вызывают изменение структуры костей (остеопороз, разрастания и др.), атрофию мышц. Возможна деформация кистевого, локтевого, плечевого суставов с нарушением опорно-двигательной функции.

Заболевание носит общий характер, о чем свидетельствуют быстрая утомляемость, головные боли, головокружение, повышенная возбудимость. Возможны жалобы на боли в области сердца и желудка, повышенную жажду: похудание, бессонницу. Астено-вегетативный синдром сопровождается сердечно-сосудистыми нарушениями: гипотонией, брадикардией, изменениями ЭКГ. При врачебном осмотре могут быть выявлены изменения кожной чувствительности, тремор рук, языка и век.

При воздействии общей вибрации более выражены изменения со стороны центральной нервной системы: жалобы на головокружение, шум в ушах, сонливость, боли в икроножных мышцах. Объективно выявляются изменения ЭЭГ, условных и безусловных рефлексов, ухудшение памяти, нарушение координации движений. Наблюдается возрастание энерготрат и похудание. Чаще, чем при действии локальной вибрации, выявляются вестибулярные расстройства. В сочетании с шумом вибрация ведет к изменению слуха. При этом характерно ухудшение восприятия звуков не только высоких, но и низких частот. Иногда выявляются зрительные расстройства: изменение цветоощущения, границ поля зрения, снижение остроты зрения. Со стороны сердечно-сосудистой системы наблюдается неустойчивость артериального давления, преобладание гипертонических явлений, а иногда резкое падение артериального давления к концу работы. Возможны случаи спазма коронарных сосудов, развития миокардиодистрофии. Поражения костно-суставного аппарата преимущественно локализуются в ногах и позвоночнике. Действие общей вибрации может способствовать расстройствам функционального состояния внутренних органов, появлению болей в желудке, отсутствию аппетита, тошноте, частому мочеиспусканию. Патологические изменения в органах малого таза могут сопровождаться у мужчин импотенцией, у женщин – нарушением менструального цикла, опущением органов малого таза, повышенной гинекологической заболеваемостью.

Начальные формы вибрационной болезни легче поддаются обратному развитию после временного прекращения контакта с источниками вибрации, внедрения рационального режима труда, использования массажа, водных процедур и др. В более поздних стадиях болезни необходимо длительное лечение и полное устранение действия вибрации во время работы.

Теоретически, казалось бы, безразлично, каким инструментом вызывается вибрация: при прочих равных условиях основную роль играют её параметры. В принципе так дело и обстоит, но это верно лишь «при прочих равных условиях». В действительности же характер профессии определяет некоторые особенности в протекании болезни, например, более остро развивается какой-либо локальный процесс. Так, как отмечают исследователи Японии, у шоферов грузовых машин широко распространены желудочные заболевания. Известно также, что у водителей трелёвочных тракторов на лесозаготовках симптомы вибрационной болезни сопровождаются радикулитом. У пилотов, особенно работающих на вертолетах, часто наблюдается потеря остроты зрения. Как показано в специальных исследованиях, однократная, причём кратковременная – порядка 20-30 мин. вибрация, увеличивает время решения элементарных задач, т.е. ухудшает внимание и умственную деятельность, при этом до 30 % решений оказывается ошибочным.

В исследованиях была выявлена очень важная биологическая закономерность. Оказывается, что ослабление внимания наблюдается только при определённых частотах порядка 10-12 Гц, другие же частоты, выше и ниже, но с тем же ускорением, подобных изменений не вызывают. Эта закономерность даёт ключ к выяснению особенностей заболеваний вибрационной болезнью, связанных с той или иной производственной деятельностью. Каждая машина или агрегат генерирует наряду с массой побочных частот (гармоник) одну основную для данной машины. Эта частота и определяет специфику заболеваний.

Если вибрация частотой выше 15 Гц (особенно частотой 60-90 Гц) воздействует на человека вдоль его туловища в направлении вертикальной оси, то острота зрения снижается, способность следить за колебательными движениями объекта утрачивается уже на частотах 1-2 Гц и почти исчезает при 4 Гц. Из этого простого примера видно, какую опасность представляет транспортная вибрация: шоферы, летчики, водители других транспортных средств перестают различать движущиеся объекты.

Частота вибрации, вызванная неровностями дороги и несовершенством наземного транспорта, лежит в диапазоне до 15 Гц, т.е. представляет собой реальную опасность и может послужить причиной аварий.

Вибрация нарушает речь человека. При частотах от 4 до 10 Гц речь искажается, а иногда прерывается. Для сохранения отчетливой и правильной речи нужна специальная тренировка, так как разборчивую речь трудно поддерживать при уровне вибрации 0,3 дБ. Легко понять, как это отражается на связи летчиков и космонавтов с наземными пунктами управления.

У летчиков, шоферов, машинистов возникают те же признаки вибрационной болезни, что и у рабочих. Особенно тяжелыми бывают заболевания у пилотов вертолётов. В полёте возникают низкочастотные колебания, которые плохо гасятся телом человека и разрушающе действуют на весь организм, прежде всего на нервную систему. Нарушения нервной и сердечно-сосудистой деятельности у лётчиков встречаются почти в 4 раза чаще, чем у представителей других профессий, и вибрация здесь играет немалую роль.

КЛАССИФИКАЦИЯ УЛЬТРАЗВУКА

ОСНОВНЫЕ СВЕДЕНИЯ ОБ УЛЬТРАЗВУКЕ И ЕГО ИСТОЧНИКИ

Ультразвук область акустических колебаний с частотой выше 20 кГц, неслышимых человеческим ухом.

Ультразвук наряду со слышимыми звуками издают тикающие часы, летящий самолет, телефонный звонок.

По своей природе ультразвуковые волны ничем не отличаются от звуковых волн слышимого диапазона. Распространение ультразвука подчиняется основным законам, общим для акустических волн любого диапазона частот.

Вместе с тем, ультразвук, обладая высокими частотами и, следовательно, малыми длинами волн, характеризуется особыми свойствами. Из – за малых длин ультразвуковые волны легче сфокусировать и соответственно получать более узкое и направленное излучение, т.е. сосредотачивать всю энергию ультразвука в нужном направлении и концентрировать её в небольшом объеме. Кроме того, ультразвуковые волны можно визуально наблюдать оптическими методами.

Источниками ультразвука являются все виды технологического оборудования, ультразвуковые приборы и аппараты промышленного, медицинского и бытового назначения, генерирующие ультразвуковые колебания в диапазоне частот от 18 кГц до 100 МГц и выше, а также оборудование, при эксплуатации которого ультразвуковые колебания возникают как сопутствующий фактор.

В настоящее время ультразвук широко применяется в различных отраслях экономики: геологии, медицине, металлургии, химической промышленности, машиностроении, радиоэлектронике и др.

Низкочастотные ультразвуковые волны, распространяющиеся контактным или воздушным путем, применяют для активного воздействия на вещества и технологические процессы: очистка, обезжиривание, сварка, механическая и термическая обработка материалов, коагуляция аэрозолей и многие другие.

В медицине ультразвук применяется для диагностики заболеваний, микромассажа тканей, ультразвуковой хирургии, стерилизации рук медперсонала и др.

При пропускании ультразвуковых колебаний через исследуемую деталь можно обнаружить в ней дефекты по характерному рассеиванию пучка и появлению ультразвуковой тени. На этом основана целая отрасль науки – ультразвуковая дефектоскопия.

Для неразрушающего контроля и в медицине – для диагностики и лечения различных заболеваний используются высокочастотный ультразвук, распространяющийся исключительно контактным путем.

Для унификации критериев и методов оценки условий труда установлена гигиеническая классификация ультразвука, воздействующего на человека (таблица 7) (СанПиН 2.2.4/2.1.8.582-96» Гигиенические требования при работах с источниками воздушного и контактного ультразвука промышленного, медицинского и бытового назначения»).



Ультразвуковые волны могут вызывать в организме человека различные биологические эффекты, характер которых определяется:

1. характеристиками ультразвуковых колебаний:

- интенсивностью;

- частотой;

- временными параметрами (постоянный, импульсный);

2. длительностью воздействия ;

3. чувствительностью тканей человека .

Эффекты, вызываемые в организме человека, условно подразделяются на:

- механические , вызываемые знакопеременным смещением среды;

- физико – химические , связанные с ускорением процессов диффузии через мембраны, изменением скорости биологических реакций;

- термические , проявляемые в результате выделения тепла при поглощении тканями энергии ультразвуковых колебаний;

Эффекты, связанные с возникновением в тканях ультразвуковой кавитации (пустоты), то есть с образованием и последующим захлопыванием парогазовых пузырьков.

Происходящие под воздействием контактного или воздушного ультразвука изменения в организме человека имеют общие закономерности: малые интенсивности стимулируют, активируют, средние и большие угнетают, тормозят и могут полностью подавлять функции.

Так, при воздействии на человека контактного ультразвука низкой интенсивности (до 1,5 Вт/см 2)происходит ускорение обменных процессов в организме, легкий нагрев тканей, микромассаж. Морфологических изменений внутри клеток не происходит.

Ультразвук средней интенсивности (1,5÷3,0 Вт/см 2)за счет увеличения переменного звукового давления вызывает обратимые реакции угнетения, в частности нервной ткани.

Таблица 7 – Гигиеническая классификация ультразвука

Классифицируемый признак Характеристика классифицируемого признака
1. Способ распространения ультразвуковых колебаний Контактный способ – ультразвук распространяется при соприкосновении рук или других частей тела человека с источником ультразвука, обрабатываемыми деталями и т.д.
Воздушный способ – ультразвук распространяется по воздуху
2. Тип источников ультразвуковых колебаний Ручные источники
Стационарные источники
3. Спектральная характеристика ультразвука Низкочастотный ультразвук - 16÷63 кГц
Среднечастотный ультразвук - 125÷250 кГц
Высокочастотный ультразвук - 1÷31,5 МГц
4. Режим генерирования ультразвуковых колебаний Постоянный ультразвук
Переменный ультразвук
5. Способ излучения ультразвуковых колебаний Источники ультразвука с магнитострикционным генератором
Источники ультразвука с пьезоэлектрическим генератором.

Контактный ультразвук высокой интенсивности (3,0÷10,0 Вт/см 2) вызывает необратимые реакции угнетения, переходящие в процесс полного разрушения клеток.

Ультразвуковые колебания, генерируемые в импульсном режиме, оказывают менее выраженное, более мягкое действие на человека, чем постоянные колебания. Мягкость действия импульсного ультразвука связана с преобладанием физико – химических эффектов действия над тепловым и механическим.

Действие ультразвука на организм человека приводит к изменениям почти во всех тканях, органах и системах: центральной и периферической нервной системе, сердечно – сосудистой, эндокринной системах, слуховом и вестибулярном анализаторах и др.

При систематическом воздействии интенсивного низкочастотного ультразвука наиболее характерным является наличие вегетососудистой дистонии и астенического синдрома.

Высокочастотный ультразвук вызывает, прежде всего, поражения нейрососудистого, нейромышечного аппарата, изменение костной структуры в виде остеопороза, остеосклероза и других изменений дегенеративно - дистрофического характера.

Лица, длительное время обслуживающие ультразвуковые установки, страдают также от головных болей, головокружений, общей слабости, болевых ощущений в области сердца, ухудшения памяти.

С 1989 г. вегетативно – сенсорная полинейропатия рук, развивающая при воздействии контактного ультразвука, признана профессиональным заболеваний и внесена в список профзаболеваний.

Влияние ультразвука на здоровье человека и воздействие на организм животных

Ультразвук – явление широко распространённое в современном мире. Оно не сугубо искусственное, как может показаться на первый взгляд. Летучие мыши, бабочки, некоторые виды птиц, рыб, обладают ультразвуковыми органами чувств, что позволяет им перемещаться в пространстве. Со временем, технология ультразвука нашла своё успешное применение в медицине, промышленности, биологии, физике. Не так давно ультразвуковые приборы вошли и в повседневную жизнь.


Ультразвук - это самый высокий звук в природе

В общем о применении ультразвука

  • На основе распространения ультразвукового сигнала устроены
    эхолокаторы;
  • отпугиватели животных, насекомых
    и птиц;
  • устройства для стирки
    вещей;
  • УЗИ, к примеру, работает благодаря отражению ультразвуковых волн от препятствий, которыми являются человеческие органы. Одни проходят глубже, другие отражаются, благодаря чему на мониторе высвечивается чёрно-белая картинка;
  • Схожая технология применяется
    и в эхолокации.

Ультразвуковое излучение – это звуковой сигнал на высокой частоте, в большинстве своих проявлений не слышимый человеческому уху.


Ультразвук в медицине

Принцип работы ультразвукового стирального устройства легко понять, сравнив его с процессом выбивания ковра. Где функцию палки выполняют звуковые колебания.

Отпугиватели построены на принципе распространения сигнала особой интенсивности. Однако есть немаловажная деталь: распространение ограничивается физическими границами помещения, ультразвук не проникает сквозь стены.


О восприятии

Не вдаваясь в технические подробности, можно сказать, что иногда человек может услышать ультразвук. К примеру, в сиренах или свисте. Но зачастую частота превышает установленный природой (до 20 Дб) порог слышимости в зависимости от источника. Будь то медицинский аппарат, эхолот или станок для резки металла. Ультразвук в отпугивателях основывается на частоте, которая возбуждает у животных ощущение беспокойства. Эти звуковые колебания вызывают желание скорее покинуть зону их распространения.


Опасное влияние ультразвука

Вредно ли влияние ультразвука на здоровье человека и животных

Ультразвук активно применяется в лечении опухолей, нервной системы, при заболеваниях позвоночника. В 2006 году канадские врачи научились даже выращивать утерянные зубы.


Лечение зубов ультразвуком

Использование ультразвуковых технологий в промышленности в случае мощного излучения может быть опасно для здоровья. Контактное воздействие ультразвука меньших частот сопровождается увеличением температуры, ощущениями покалывания, зуда, а затем временного онемения облучённой части тела. Наблюдается прямая зависимость от интенсивности и времени воздействия ультразвука.

Степень разработанности темы нашла своё применение в МСанПиН 001-96 "Санитарные нормы допустимых уровней физических факторов при применении товаров народного потребления в бытовых условиях" (утв. постановлением Госкомсанэпиднадзора РФ от 19 января 1996 г. N 2 и Минздравом Республики Беларусь от 8 июня 1995 г. N 9-29-95). В приведенной ниже таблице "Допустимые уровни ультразвука" указаны нормы безопасного воздействия ультразвука.

Влияние ультразвука на животных основывается на особенном воздействии на их слух. Они реагируют на звуки несколько иначе, чем человек, в силу разницы воспринимаемого диапазона частот. Кстати, здоровье животных при этом не ухудшается, собственно, как и человеческое самочувствие.

Допустимые уровни ультразвука

Способы защиты от воздействия ультразвука

Средства защиты от воздействия ультразвука на организм представляют собой установку дюралевых или стальных щитов со звукопоглощающим покрытием. Однако бытовые ультразвуковые приборы являются безопасными для организма человека и животных. Производитель заявляет частоту их работы в диапазоне до 70 кГц. Влияние ультразвука на здоровье в допустимых пределах незначительное , использование бытовых ультразвуковых устройств не требует средств индивидуальной защиты.


Бытовой ультразвук эффективен и безопасен

Ультразвуковые бытовые приборы эффективны, недороги и просты в эксплуатации. Они компактны и долговечны. Основанные на современных технологиях, они призваны по-новому решать старые проблемы. Отпугиватели, к примеру, функционально бывают очень разные, в отличие от мышеловок и огородных пугал. В масштабах комнаты, автомобиля, сада, огорода или даже склада – особый диапазон действия в зависимости от потребностей.

Существуют даже карманные отпугиватели на случай нападения собак. Резонно предположить, что работающий отпугиватель крыс будет раздражать домашнего пса или, к примеру, хомячка. В принципе, это возможно, но выход очень прост: устройство ограничивается во времени использования или охватываемая территория попросту изолируется от домашнего животного.

Резюме

Отсутствие вреда для здоровья человека и животных делает их приобретение выгодным и полезным вложением денег. Многообразие моделей позволяет выбрать наиболее подходящий прибор. А невысокая цена делает использование ультразвуковых приборов доступнее.

Разделы и статьи про ультразвуковые отпугиватели:

Пуб.: 2013-06-13

Изм.: 2017-09-06

  • 2590 руб.

    Ультразвуковой отпугиватель грызунов SD-002 имеет площадь защиты до 400 кв. м. Применяется против крыс и мышей, а отпугивает тараканов, муравьев и других насекомых. Питание: от сети.

  • 1790 руб.

    3 вида волн. Прибор идеально подходит для использования в небольших жилых и нежилых помещениях, работает от сети 220В и эффективен против грызунов и ползающих мелких насекомых.

  • 2100 руб.

    Торнадо ОГ.08-400 предназначен для защиты помещений от грызунов. Для установки в зернохранилищах, складских, бытовых и производственных помещениях. Эффективная площадь действия 400 кв. м., питание: сеть 220 В.

  • 3150 руб.

    Торнадо ОГ.08-800 предназначен для защиты помещений от обитания вредителей. Отпугиватель грызунов, крыс, мышей для тоннелей, подземных коммуникаций и пр. удлиненных объектов. Эффективная площадь действия 800 кв. м, питание: сеть 220 В.

  • 1500 руб.

    Для установки в любых типах жилых и нежилых помещений. Имеет широкий угол излучения ультразвука и два режима работы (звуковой и беззвучный). Эффективная площадь 400 кв. м.

  • 1300 руб.

    Для установки на площади до 400 кв. м. Для помещений, где постоянно находятся люди, так и для нежилых объектов с температурой в диапазоне от -15 до +45 градусов. Бесшумен.

Похожие статьи