Вредное пространство и его физиологическое значение. Анатомическое и альвеолярное мертвое пространство. Регионарные различия вентиляции легких

Изучение мертвого пространства в дыхательном тракте человека связано со многими неясностями и противоречиями. Некоторые его аспекты не решены еще до настоящего времени.

Определение Vd возможно при помощи нескольких методов, но оно редко осуществимо в условиях подводного погружения. Наиболее широко используют метод как можно более точного вычисления Vd. В водолазной практике рассматривают два вида мертвого пространства: собственно индивидуальное мертвое пространство водолаза и мертвое пространство его дыхательного аппарата.

В настоящее время существует единое мнение в отношении вопроса об объемах дыхательного мертвого пространства у здоровых людей, находящихся в состоянии покоя. Величина их объемов зависит от размера тела водолаза. Radford в 1955 г. заметил, что у взрослых людей объем мертвого пространства (в миллилитрах), как правило, приблизительно равен массе тела человека, выраженной в фунтах. Множество разногласий среди ученых вызывает изменение мертвого пространства во время физической нагрузки, и они до сих пор еще полностью не решены.

Эти разногласия частично обусловлены тем, что некоторые авторы используют значение Ретсо2 (Рсо2 в конце дыхательного объема) вместо величины Расо2 в уравнении, предложенном Bohr. В действительности во время физической нагрузки РАСО2 может отличаться от Ретсо2. Возможно, что наиболее приемлемой является информация, полученная при обследовании здоровых молодых мужчин, проведенном в 1956 г. Asmussen, Nielsen. Эти авторы установили, что средние величины общего или физиологического мертвого пространства составляли от 170 мл (в состоянии покоя) до 350 мл во время тяжелой физической нагрузки.

Самая высокая из зарегистрированных величин составляла 450 мл. Увеличение объема мертвого пространства носило характер линейной зависимости от дыхательного объема, изменяющегося в пределах приблизительно 0,5-3,3 л на один акт дыхания.

Аналогичных измерений в водолазной практике еще не проводилось, поэтому приходится считать указанные величины приемлемыми для практики. Логично допустить, что величина индивидуального мертвого пространства у работающего водолаза составляет 0,3 л при BTPS.

Неожиданно большое значение VD недавно получено при расчете по уравнению, предложенному Bohr, у водолазов, находящихся в сухой камере под абсолютным давлением 46,7 кгс/см2. Позже такое же значение получили Salzano и соавт. (1981) в исследованиях, проводимых по программе «Atlantis» у водолазов, находящихся в сухой камере под более высоким давлением. Авторы полагают, что полученные результаты могли быть обусловлены крайне высокой плотностью дыхательных газовых смесей.

Применение дыхательного аппарата обусловливает значительное дополнение объема мертвого пространства водолаза. Любую часть аппарата, имеющую двусторонне направленную вентиляцию, следует считать «мертвой» до тех пор, пока не будет доказано противоположное. Вопрос ставится однозначно: будет ли во время выдоха эта часть аппарата содержать выдыхаемую двуокись углерода, которая затем возвращается в дыхательные пути водолаза при вдохе? Мертвое пространство почти неизбежно присутствует в конструкциях обычных соединенных с загубником легочных автоматов.

В таких случаях объем мертвого пространства , как правило, достигает 0,1 л и попытки его уменьшения значительно повышают риск чрезмерного сужения воздухоносных путей аппарата.

Величина явного объема мертвого пространства аппарата может быть определена либо с помощью заполнения его водой, либо расчетным путем. Иногда при осмотре нельзя с уверенностью определить является ли конкретный объем «функционально мертвым» или нет, или только отчасти таковым. В этих ситуациях следует использовать метод, при помощи которого определяют дыхательное мертвое пространство у человека. Водолазная маска, закрывающая все лицо, осложняет определение мертвого пространства. В случаях, когда объем мертвого пространства в отдельных образцах дыхательных аппаратов достигает 0,5 л, оно чаще представляет собой сплошной внутренний объем газа между маской и лицом, чем при использовании дыхательных аппаратов с надежным разделением между ротоносовой и глазной областями лица.
В этих случаях вдыхаемый и выдыхаемый газы могут не смешиваться в целом по всему объему, и мертвое пространство будет относительно небольшим.

Основное затруднение , связанное с наличием очень большого мертвого пространства, обусловленного дыхательным аппаратом, состоит не столько в повышении требования к вентиляции, сколько в невозможности для водолаза полностью компенсировать нужную вентиляцию легких, что приводит к росту РАсо2. В одном из исследований было установлено, что прибавление к объему подводной дыхательной системы 0,5 л мертвого пространства увеличивает среднее Расо2 (измеренное к концу дыхательного объема) на 6 мм рт. ст. Это существенное увеличение, особенно при уже высоком Расо2 .

Вентиляция легких. Легочные объемы.

1. Дыхательны объем (ДО) - количество воздуха, которое человек вдыхает и выдыхает при спокойном дыхании (0,3-0,9 л, среднее 500 мл).

2. Резервный объем вдоха (РОвд.) - количество воздуха, которое можно еще вдохнуть после спокойного вдоха (1,5 - 2,0 л).

3. Резервный объем выдоха (РОвыд.) - количество воздуха, которое можно еще выдохнуть после спокойного выдоха (1,0 - 1,5 л).

4. Остаточный объем (ОО) - объем воздуха, остающийся в легких после максимального выдоха (1,0 - 1,5 л).

5. Жизненная емкость легких (ЖЕЛ) = ДО + РОвд.+ РОвыд.(0,5 + 1,5 + 1,5) = 3,5 л. Отражает силу дыхательной мускулатуры, растяжимость легких, площадь дыхательной мембраны, бронхиальную проходимость.

6. Функциональная остаточная емкость (ФОЕ) или альвеолярный воздух - количество воздуха, остающегося в легких после спокойного выдоха (2,5 л).

7. Общая емкость легких (ОЕЛ) - количество воздуха, содержащегося в легких на высоте максимального вдоха (4,5 - 6,0 л).

8. Емкость вдоха - включает дыхательный объем + резервный объем вдоха (2,0 л).

9. Таким образом, различают 4 первичных легочных объема и 4 емкости легких:

ЖЕЛ определяет собой максимальный объем воздуха, который может быть введен или выведен из легких в течение одного вдоха или выдоха. Она - показатель подвижности легких и грудной клетки.

Факторы, влияющие на ЖЕЛ:

· Возраст. После 40 лет ЖЕЛ понижается (снижение эластичности легких и подвижности грудной клетки).

· Пол. У женщин ЖЕЛ в среднем на 25% ниже, чем у мужчин.

· Размер тела. Размер грудной клетки пропорционален остальным размерам тела.

· Положение тела. В вертикальном положении она выше, чем в горизонтальном (большее кровенаполнение сосудов легких).

· Степень тренированности. У тренированных лиц повышается (особенно у пловцов, гребцов, где необходима выносливость).

Различают:

· анатомическое;

· функциональное (физиологическое).

Анатомическое мертвое пространство - объем воздухоносных путей, в которых не происходит газообмена (носовая полость, глотка, гортань, трахея, бронхи, бронхиолы, альвеолярные ходы).

Физиологическая роль его заключается в:

· очищение воздуха (слизистая оболочка улавливает мелкие частицы пыли, бактерии).

· Увлажнение воздуха (секрет железистых клеток эпителия).

· Согревание воздуха (t 0 выдыхаемого воздуха приблизительно равна 37 о С).



Объем анатомического мертвого пространства в среднем равен 150 мл (140 - 170 мл).

Следовательно, из 500 мл дыхательного объема в альвеолы поступит только 350 мл. Объем альвеолярного воздуха равен 2500 мл. Коэффициент легочной вентиляции при этом равняется 350: 2500 = 1/7, т.е. в результате 1 дыхательного цикла обновляется только 1/7 воздуха ФОЕ или полное обновление его происходит в результате не менее 7 дыхательных циклов.

Функциональное мертвое пространство - участки дыхательной системы, в которых не происходит газообмена, т. е. к анатомическому мертвому пространству добавляются такие альвеолы, которые вентилируются, но не перфузируются кровью.

В норме таких альвеол немного и поэтому в норме объем анатомического и функционального мертвого пространства совпадает.

Минутная вентиляция -- это общее количество вновь поступившего в дыхательные пути и в легкие воздуха и вышедшего из них в течение одной минуты, что равно дыхательному объему, умноженному на частоту дыхания. В норме дыхательный объем составляет приблизительно 500 мл, а частота дыхания -- 12 раз в минуту.

Таким образом, в норме вентиляционный минутный объем в среднем составляет около 6 л. При снижении минутной вентиляции до 1,5 л и уменьшении частоты дыхания до 2--4 в 1 мин человек может жить лишь очень непродолжительное время, если только у него не разовьется сильное угнетение метаболических процессов, как это бывает при глубокой гипотермии.

Частота дыхания иногда возрастает до 40--50 дыханий в минуту, а дыхательный объем может достигать величины, близкой к жизненной емкости легких (около 4500--5000 мл у молодых здоровых мужчин). Однако при большой частоте дыхания человек обычно не может поддерживать дыхательный объем на уровне, превышающем 40 % жизненной емкости легких (ЖЕЛ), в течение нескольких минут или часов.

Альвеолярная вентиляция

Основной функцией системы легочной вентиляции является постоянное обновление воздуха в альвеолах, где он вступает в тесный контакт с кровью в легочных капиллярах. Скорость, с которой вновь поступивший воздух достигает указанной области контакта, называется альвеолярной вентиляцией. При нормальной, спокойной вентиляции дыхательный объем заполняет дыхательные пути вплоть до терминальных бронхиол, и лишь небольшая часть вдыхаемого воздуха проходит весь путь и контактирует с альвеолами. Новые порции воздуха преодолевают короткую дистанцию от терминальных бронхиол до альвеол путем диффузии. Диффузия обусловлена передвижением молекул, причем молекулы каждого газа перемещаются с большой скоростью среди других молекул. Скорость движения молекул во вдыхаемом воздухе настолько велика, а расстояние от терминальных бронхиол до альвеол столь мало, что газы преодолевают это оставшееся расстояние в считанные доли секунды.

Мертвое пространство

Обычно не менее 30 % вдыхаемого человеком воздуха никогда не достигает альвеол. Этот воздух называют воздухом мертвого пространства, так как он бесполезен для процесса газообмена. В норме мертвое пространство у молодого мужчины с дыхательным объемом в 500 мл составляет примерно 150 мл (около 1 мл на 1 фунт массы тела), или приблизительно 30 % дыхательного объема.

Объем дыхательных путей, проводящих вдыхаемый воздух до места газообмена, называется анатомическим мертвым пространством. Иногда, однако, некоторые альвеолы не функционируют из-за недостаточного притока крови к легочным капиллярам. С функциональной точки зрения эти альвеолы без капиллярной перфузии рассматриваются как патологическое мертвое пространство.

С учетом альвеолярного (патологического) мертвого пространства общее мертвое пространство называют физиологически мертвым пространством. У здорового человека анатомическое и физиологическое мертвое пространство практически одинаковы по объему, так как все альвеолы функционируют. Однако у лиц с плохо перфузируемыми альвеолами общее (или физиологическое) мертвое пространство может превышать 60 % дыхательного объема.

Анатомическим мертвым пространством называют объем проводящих воздухоносных путей (рис. 1.3 и 1.4). В норме он составляет около 150 мл, возрастая при глубоком вдохе, так как бронхи растягиваются окружающей их паренхимой лег­ких. Объем мертвого пространства зависит также от размеров тела и позы. Существует приближенное правило, согласно которому у сидящего человека он примерно равен в милли­литрах массе тела в фунтах (1 фунт ==453,6 г).

Объем анатомического мертвого пространства можно из­мерить по методу Фаулера. При этом обследуемый дышит через систему клапанов и непрерывно измеряется содержание азота с помощью быстродействующего анализатора, забираю­щего воздух из трубки, начинающейся у рта (рис. 2.6, Л). Когда после вдыхания 100% Оа человек делает выдох, содер­жание N 2 постепенно увеличивается по мере замены воздуха мертвого пространства альвеолярным. В конце выдоха реги­стрируется практически постоянная концентрация азота, что соответствует чистому альвеолярному воздуху. Этот участок кривой часто называют альвеолярным “плато”, хотя даже у здоровых людей он не совсем горизонтальный, а у больных с поражениями легких может круто идти вверх. При данном методезаписывается также объем выдыхаемого воздуха.

Для определения объема мертвого пространства строят график, связывающий содержание N 2 с выдыхаемым объемом. Затем на этом графике проводят вертикальную линию таким образом, чтобы площадь А (см. рис. 2.6,5) была равна пло­щади Б. Объем мертвого пространства соответствует точке пересечения этой линии с осью абсцисс. Фактически этот метод дает объем проводящих воздухоносных путей до “сред­ней точки” перехода от мертвого пространства к альвеоляр­ному воздуху.

Рис. 2.6. Измерение объема анатомического мертвого пространства с помощью быстродействующего анализатора N2 по методу Фаулера. А. Пос­ле вдоха из емкости с чистым кислородом обследуемый делает выдох, и концентрация N 2 в выдыхаемом воздухе вначале повышается, а потом остается почти постоянной (кривая при этом практически выходит на плато, соответствующее чистому альвеолярному воздуху). Б. Зависимость концентрации от выдыхаемого объема. Объем мертвого пространства определяется точкой пересечения оси абсцисс с вертикальной пунктирной линией, проведенной таким образом, что площади А и Б равны

Функциональное мертвое пространство

Измерить объем мертвого пространства можно также ме­тодом Бора. Из ри2с. 2.5 видно, что выдыхаемый СО 2 посту­пает из альвеолярного воздуха, а не из воздуха мертвого про­странства. Отсюда

vt х-fe==va х fa.

Поскольку

v t = v a + v d ,

v a =v t -v d ,

после подстановки получаем

V T х F E=(V T- V D)- F A,

следовательно,

Поскольку парциальное давление газа пропорционально его содержанию, запишем

(уравнение Бора),

где А и Е относятся к альвеолярному и смешанному выдыхае­мому воздуху соответственно (см. приложение). При спокой­ном дыхании отношение объема мертвого пространства к ды­хательному объему в норме равно 0,2-0,35. У здоровых людей Рсо2 в альвеолярном воздухе и артериальной крови практически одинаковы, поэтому мы можем записать урав­нение Бора следующим образом:

аср2 "СО-г ^СОг

Необходимо подчеркнуть, что методами Фаулера и Бора измеряют несколько различные показатели. Первый метод дает объем проводящих дыхательных путей вплоть до того уровня, где поступающий при вдохе воздух быстро смеши­вается с уже находившимся в легких. Этот объем зависит от геометрии быстро ветвящихся с увеличением суммарного се­чения дыхательных путей (см. рис. 1.5) и отражает строение респираторной системы. В связи с этим его называют анато­мическим мертвым пространством. По методу же Бора опре­деляется объем тех отделов легких, в которых не происходит удаление СОа из крови; поскольку этот показатель связан с работой органа, он называется функциональным (физиоло­гическим) мертвым пространством. У здоровых лиц эти объ­емы практически одинаковы. Однако у больных с пораже­ниями легких второй показатель может значительно превы­шать первый в связи с неравномерностью кровотока и вентиляции в разных отделах легких (см. гл. 5).

Функциональная остаточная емкость имеет важное физиологическое значение, поскольку выравнивает колебания содержания газов в альвеолярном пространстве, которые могли бы измениться в связи со сменой фаз дыхательного цикла. Поступающие во время вдоха в альвеолы 350 мл воздуха смешивается с воздухом, содержащимся в легких, количество которого в среднем 2, 5 – 3,5 л. Поэтому при вдохе обновляется примерно 1/7 часть смеси газов в альвеолах. Поэтому газовый состав альвеолярного пространства существенно не изменяется.

В каждой альвеоле газообмен характеризуется своим вентиляционно-перфузионным отношением (ВПО). Нормальное соотношение между альвеолярной вентиляцией и лёгочным кровотоком составляет 4/5 = 0,8, т.е. в минуту в альвеолы поступает 4 л воздуха и через сосудистое русло легких протекает за это время 5 л крови (на верхушке легкого соотношение в целом больше, чем на основании легких). Такое соотношение вентиляции и перфузии обеспечивает потребление кислорода достаточное для метаболизма за время нахождения крови в капиллярах легкого. Величина легочного кровотока в покое составляет 5-6 л/мин, движущей силой является разница давления около 8 мм рт. ст. между легочной артерией и левым предсердием. При физической работе легочной кровоток увеличивается в 4 раза, а давление в легочной артерии в 2 раза. Это уменьшение сосудистого сопротивления происходит пассивно в результате расширения легочных сосудов и раскрытия резервных капилляров. В покое кровь протекает примерно только через 50% всех легочных капилляров. По мере возрастания нагрузки доля перфузируемых капилляров возрастает, параллельно увеличивается и площадь газообменной поверхности. Легочный кровоток отличается региональной неравномерностью, которая зависит, в основном, от положения тела. При вертикальном положении тела лучше снабжаются кровью основания легких. Основными факторами, от которых зависит насыщение крови в легких кислородом и удаление из нее углекислого газа, являются альвеолярная вентиляция, перфузия легких и диффузионная способность легких.

3. Жизненная емкость легких.

Жизненная ёмкость лёгких это объем воздуха, который человек может выдохнуть после максимально глубокого вдоха. Это сумма дыхательного объёма и резервных объёмов вдоха и выдоха (у человека среднего возраста и среднего телосложения равен около 3,5л).

Дыхательный объём - это количество воздуха, которое человек вдыхает при спокойном дыхании (около 500 мл). Воздух, поступающий в легкие после окончания спокойного вдоха дополнительно, называется резервным объёмом вдоха (около 2500 мл), дополнительный выдох после спокойного выдоха - резервным объёмом выдоха (около 1000 мл). Воздух, остающийся после максимально глубокого выдоха - остаточный объём (около 1500 мл). Сумма остаточного объема и жизненной емкости легких называется общей емкостью легких. Объем легких после окончания спокойного выдоха называется функциональной остаточной емкостью. Она слагается из остаточного объема и резервного объема выдоха. Воздух, находящийся в спавшихся легких при пневмотораксе, называется минимальным объемом.

4. Альвеолярная вентиляция.

Лёгочная вентиляция - движение воздуха в лёгких во время дыхания. Она характеризуется минутным объёмом дыхания (МОД). Минутным объемом дыхания называется объем воздуха, вдыхаемого или выдыхаемого за 1 минуту. Он равен произведению дыхательного объема и частоты дыхательных движений. Частота дыхательных движений у взрослого человека в покое равна 14 л/мин. Минутный объем дыхания равен примерно 7 л/мин. При физической нагрузке может достигать 120 л/мин.

Альвеолярная вентиляция характеризует обмен воздуха в альвеолах и определяет эффективность вентиляции. Альвеолярной вентиляцией называется часть минутного объема дыхания, достигающая альвеол. Объём альвеолярной вентиляции равен разнице между дыхательным объёмом и объёмом воздуха мёртвого пространства, умноженной на число дыхательных движений в 1 минуту. (V альвеолярной вентиляции = (ДО - V мёртвого пространства) х ЧД/мин). Таким образом, при общей вентиляции легких 7 л/мин альвеолярная вентиляция равна 5 л/мин.

Анатомическое мертвое пространство. Анатомическим мертвым пространством называется объем, заполняющий воздухоносные пути, в которых не происходит газообмен. Оно включает носовую, ротовую полости, глотку, гортань, трахею, бронхи и бронхиолы. Этот объем у взрослых равен примерно 150 мл.

Функциональное мертвое пространство. К нему относятся все участки дыхательной системы, в которых не происходит газообмен, включая не только воздухоносные пути, но и те альвеолы, которые вентилируются, но не перфузируются кровью. Альвеолярным мертвым пространством обозначается объем альвеол апикальных участков легких, которые вентилируются, но не перфузируются кровью. Оно может оказать отрицательное влияние на газообмен в легких при снижении минутного объема крови, снижении давления в сосудистой системе легких, анемии, снижении воздушности легких. Сумма объемов «анатомического» и альвеолярного обозначается как функциональное или физиологическое мертвое пространство.

Заключение

Нормальная жизнедеятельность клеток организма возможна при условии постоянного поступления кислорода и удаления углекислого газа. Обмен газами между клетками (организмом) и окружающей средой называется дыханием.

Поступление воздуха в альвеолы обусловлено разностью давлений между атмосферой и альвеолами, которая возникает в результате увеличения объема грудной клетки, плевральной полости, альвеол и понижения в них давления по отношению к атмосферному. Возникающая разность давлений между атмосферой и альвеолами обеспечивает поступление атмосферного воздуха по градиенту давления в альвеолы. Выдох совершается пассивно в результате расслабления инспираторных мышц и превышения альвеолярного давления над атмосферным.

Учебно-контрольные вопросы по теме лекции

1. Значение дыхания. Внешнее дыхание. Механизм вдоха и выдоха.

2. Отрицательное внутриплевральное давление, его значение для дыхания и кровообращения. Пневмоторакс. Типы дыхания.

3. Лёгочная и альвеолярная вентиляция. Жизненная ёмкость лёгких и дыхательные объемы.

Организационно-методические указания по материально-техническому обеспечению лекции.

1. За 15 мин до лекции подготовить мультимедийный проектор.

2. По окончании лекции выключить проектор, диск вернуть на кафедру.

Заведующий кафедрой, профессор Э.С. Питкевич

Похожие статьи