Гистология. Принципы организации тканей общая гистология - введение, понятие ткани

ИЖЕВСКАЯ ГОСУДАРСТВЕННАЯ МЕДИЦИНСКАЯ АКАДЕМИЯ

КАФЕДРА ГИСТОЛОГИИ. ЭМБРИОЛОГИИ И ЦИТОЛОГИИ

ОБЩАЯ ГИСТОЛОГИЯ

ИЖЕВСК–2002

Составители: докт.мед.наук Г.В.Шумихина, докт.мед.наук Ю.Г.Васильев, доц.А.А.Соловьев, канд.мед.наук В.М.Кузнецова, С.А.Соболевский, С.В.Кутявина, И.В.Титова, Т.Г.Глушкова

Рецензент: доктор мед.наук, профессор каф. мед.биологии ИГМА

Н.Н.Чучкова

Общая гистология:Учебно-методическое пособие /Сост.Г.В.Шумихина, Ю.Г.Васильев, А.А.Соловьев и др.–Ижевск, 2002.– с.

Иллюстрации: доктор мед.наук Ю.Г.Васильев

Данное методическое пособие составлено согласно программе по гистологии, цитологии и эмбриологии для студентов высших учебных заведение ВУНМЦ МЗ РФ (Москва, 1997).

Пособие предназначено для студентов медицинских вузов всех факультетов. Приведены современные представления о микроанатомической, гистологической и клеточной организации тканей человека. Пособие изложено в лаконичной форме, сопровождается вопросами для самоконтроля, клиническими примерами, иллюстрациями.

Издание подготовлено сотрудниками кафедры гистологии, эмбриологии и цитологии Ижевской государственной медицинской академии.

Предназначено для студентов лечебного, педиатрического, стоматологического факультетов.

Г.В.Шумихина, Ю.Г.Ва-

сильев, А.А.Соловьев и

др., составления, 2002.

ВВЕДЕНИЕ В ТКАНИ

Ткань – это возникшая в процессе эволюции (филогенезе) система из взаимодействующих между собой и нередко общих по происхождению гистологических элементов (клеток и их производных), обладающая собственной особенностью строения и специфическими функциями.

Ткани возникли в ходе эволюции у многоклеточных организмов на определённых этапах филогенеза. Первые признаки примитивных тканей можно обнаружить у таких представителей животного мира, как губки и кишечно-полостные. В процессе индивидуального развития (онтогенеза), в значительной мере повторяющего филогенез, их источниками являются эмбриональные зачатки. Теория дивергентного развития тканей; развития тканей в фило- и онтогенезе (Н.Г. Хлопин), предполагает, что ткани возникли в результате дивергенции (расхождения признаков), в ходе которой однотипные клетки тканевого зачатка постепенно приобретают по мере развития всё более выраженные различия в структуре и функции, приспосабливаясь к новым условиям существования. Иными словами, тканевые элементы эволюционных и эмбриональных зачатков тканей, попадая в разные условия (окружение), дают большое разнообразие морфофункциональных типов вследствие приспособления их строения к новым условиям функционирования. Причины эволюции тканей описывает теория параллельных рядов тканевой эволюции (А.А. Заварзин), согласно которой ткани, выполняющие сходные функции, имеют сходное строение. В ходе филогенеза одинаковые ткани возникали параллельно в разных эволюционных ветвях животного мира, т.е. совершенно разные филогенетические типы первоначальных тканей, попадая в сходные условия существования внешней или внутренней среды, давали сходные морфофункциональные типы тканей. Эти типы возникают в филогенезе независимо друг от друга, т.е. параллельно, у абсолютно разных групп животных при стечении одинаковых обстоятельств эволюции. Эти две взаимодополняющие друг друга теории объединены в единую эволюционнную концепцию тканей (А.А. Браун и П.П. Михайлов), согласно которой сходные тканевые структуры в различных ветвях филогенетического древа возникали параллельно в ходе дивергентного развития.

С теориями эволюции и происхождения тканей тесно связана их классификация.

Существуют 2 основных принципа классификации тканей:

1.Гистогенетическая классификация основывается на происхождении тканей в процессах онто- и филогенеза из разных зачатков. Она логически связана с теорией дивергентного развития Н.Г. Хлопина и частоошибочно носит его имя. Наличие общих свойств у тканей, развившихся из одного эмбрионального зачатка, позволяет объединять их в единый тканевой тип. Выделяют ткани: а) эктодермального типа, б) энтодермального типа, в) нейрального типа, г) мезенхимального типа, д) мезодермального типа.

2. Морфофункциональная классификация , наиболее распространенная среди гистологов в настоящее время, объединяет ткани в четыре группы по признакам сходства их строения и (или) выполняемой функции. Различают: а) эпителиальные, б) соединительные (ткани внутренней среды), в) мышечные и г) нервную. Каждая морфофункциональная группа может включать в себя ряд подгрупп. Эту классификацию обычно связывают с именем А.А. Заварзина, на примере эволюции тканей показавшем тесную взаимосвязь строения и выполняемой функции.

Генетическая и морфофункциональная классификации тканей не универсальны и дополняют друг друга, поэтому часто при характеристике тканей указывают на их происхождение, например: эктодермальный эпителий, мышечная ткань мезенхимального типа. На этом принципе построена классификация эпителиальных тканей по Н.Г. Хлопину, который онтогенетически в данной морфофункциональной группе выделяет: эпидермальные эпителии; энтеродермальные эпителии; целонефродермальные эпителии; эпендимоглиальные эпителии и эпителии ангиодермального типа.

Принципы структурной организации тканей. Некоторые ткани состоят преимущественно из клеток (эпителиальная, нервная, гладкая и сердечная мышечные ткани). В тканях внутренней среды (кровь, соединительные, скелетные ткани) помимо клеток хорошо выражено межклеточное вещество. Основным компонентом скелетной мышечной ткани являются мышечные волокна. Эти разнообразные структурно-функциональные составляющие тканей в гистологии называются гистологические элементы и подразделяются на 2 основных типа:

1. Гистологические элементы клеточного типа обычно являются живыми структурами с собственным метаболизмом, ограниченные плазматической мембраной, и представляют собой клетки и их производные, возникшие в результате специализации. К ним относятся:

а) Клетки – главные элементы тканей, определяющие их основные свойства;

б) Постклеточные структуры , в которых утеряны важнейшие для клеток признаки (ядро, органоиды), например: эритроциты, роговые чешуйки эпидермиса, а также тромбоциты, вообще являющиеся частями клеток;

в) Симпласты – структуры, образованные в результате слияния отдельных клеток в единую цитоплазматическую массу с множеством ядер и общей плазмолеммой, например: волокно скелетной мышечной ткани, остеокласт;

г) Синцитии – структуры, состоящие из клеток, объединенных в единую сеть цитоплазматическими мостиками вследствие неполного разделения, например: сперматогенные клетки на стадиях размножения роста и созревания.

2. Гистологические элементы неклеточного типа представлены веществами и структурами, которые вырабатываются клетками и выделяются за пределы плазмолеммы, объединенными под общим названием «межклеточное вещество» (тканевой матрикс). Межклеточное вещество обычно включает в себя следующие разновидности:

а) Аморфное (основное) вещество – представлено бесструктурным скоплением органических (гликопротеины, гликозоаминогликаны, протеогликаны) и неорганических (соли) веществ, находящихся между клетками ткани в жидком, гелеобразном или твердом, иногда кристаллизованном состоянии (основное вещество костной ткани);

б) Волокна– состоят из фибриллярных белков (эластин, различные виды коллагена), часто образующих в аморфном веществе пучки разной толщины, взаимодействующие с клеточными элементами тканей. Среди них различают: 1) коллагеновые, 2) ретикулярные и 3) эластические волокна . Фибриллярные белки участвуют также в формировании капсул клеток (хрящи, кости) и базальных мембран (эпителии).

Клеточные популяции . У человека более 120 типов клеток, которые можно идентифицировать на этапах их дифференцировки. Тканевые признаки клеток базируются на наличии или отсутствии межклеточных контактов, взаимоотношениями с межклеточным веществом и структурными элементами других тканей. Специфику клеток каждой разновидности тканей определяют размеры, форма, специальные структуры поверхностей, органоиды, ферменты и другие параметры. Тканевые признаки трудно идентифицировать у родоначальных (стволовых) клеток.

В ходе дифференцировки клетки приобретают не только специфичные для каждого дифферона структурно-функциональные признаки, но и особый спектр рецепторов к регуляторам их жизненной активности (гормонам, медиаторам, факторам роста, кейлонам, цитокинам и другим). Указанные факторы носят системообразующий характер и определяют специфику жизнедеятельности того или иного вида тканей.

Сообщества клеток, входящих в ткани, принято называть клеточными популяциями. В широком понимании клеточные популяции – это совокупность клеток организма или ткани, сходных между собой по какому-либо признаку.

Например, по способности к самообновлению путём деления выделяют 4 категории клеточных популяций (по Леблону):

    Эмбриональная (быстро делящаяся клеточная популяция) – все клетки популяции активно делятся, специализированные элементы отсутствуют.

    Стабильная клеточная популяция – долгоживущие, активно функционирующие клетки, которые вследствие крайней специализации утратили способность к делению. Например, нейроны, кардиомиоциты.

    Растущая (лабильная) клеточная популяция – специализированные клетки которой способны делиться в определённых условиях. Например, эпителии почки, печени.

    Обновляющаяся популяция состоит из постоянно и быстро делящихся клеток и их специализированных функционирующих потомков, продолжительность жизни которых ограничена. Например, эпителии кишечника, форменные элементы крови.

В узком смысле клеточная популяция – это однородная группа клеток (клеточный тип), сходных по строению, функции и происсхождению, а также по уровеню дифференцировки . Например, популяция стволовых клеток крови. К особому типу клеточных популяций относят клон группу идентичных клеток, происходящих от одной родоначальной клетки-предшественницы. Понятие клон как самое узкое толкование клеточной популяции часто используется в иммунологии, например, клон Т-лимфоцитов.

Детерминация и дифференцировка клеток, дифферон. Развитие тканей в фило- и эмбриогенезе связано с процессами детерминации и дифференцировки их клеток. Детерминация – это процесс, определяющий направление развития клеток, тканей. В ходе детерминации клетки получают возможность развиваться в определённом направлении (т.е. происходит ограничение их потенций). На молекулярно-биологическом уровне этот механизм осуществляется поэтапным блокированием части клеточного генома и уменьшением числа разрешённых к экспрессии генов. Ступенчатое, согласованное с программой развития организма, ограничение возможных путей развития вследствие детерминации называется коммитированием . Детерминация клеток и тканей в организме, как правило, необратима.

Дифференцировка. В ходе дифференцировки происходит постепенное формирование морфологических и функциональных признаков специализации клеток тканей (образование клеточных типов). Дифференцировка направлена на создание в многоклеточном организме нескольких структурно-функциональных типов клеток. У человека таких типов клеток более 120. Ткань обычно содержит популяции клеток с разным уровнем дифференцировки. Поэтому клеточные популяции ткани можно рассматривать как совокупность клеточных форм (видов клеток), находящихся на разных этапах своего развития, от наименее дифференцированных (стволовых), до зрелых, наиболее дифференцированных. Такой гистогенетический ряд развивающихся клеток одинакового происхождения, но находящихся на разных этапах дифференцировки , в гистологии принято называть диффероном .

Многие ткани содержат не один, а несколько клеточных дифферонов , которые взаимодействуют друг с другом. Поэтому ткань нельзя рассматривать как систему клеток одного типа, сходных по строению, функции и происхождению. В составе дифферона последовательно (по степени дифференцировки) различают следующие клеточные популяции: а) стволовые клетки - наименее дифференцированные клетки данной ткани, способные делиться и являющиеся источником развития других её клеток; б) полустволовые клетки -предшественники имеют ограничения в способности формировать различные типы клеток, вследствие коммитирования, но способны к активному размножению; в) клетки-бласты , вступившие в дифференцировку но сохраняющие способность к делению; г) созревающие клетки , заканчивающие дифференцировку; д)зрелые (дифференцированные) клетки. Последние заканчивают гистогенетический ряд, способность к делению у них, как правило, исчезает, в ткани они активно функционируют. Можно выделить также популяцию закончивших активное функционирование (старых) клеток.

Уровень специализации клеток в популяциях дифферона возрастает от стволовых до зрелых клеток. При этом происходят изменения состава и активности ферментов, органоидов клеток. Для гистогенетических рядов дифферона характерен принцип необратимости дифференцировки , т.е. в нормальных условиях переход от более дифференцированного состояния к менее дифференцированному невозможен. Это свойство дифферона часто нарушается при патологических состояниях (злокачественные опухоли, неоплазии).

Наличие в тканях малодифференцированных клеток, способных к митотическому делению, обеспечивает способность ткани к самообновлению и восстановлению (регенерации). Такую, имеющуюся в ткани совокупность клеток, способных к делению, называют камбием . Камбиальные элементы – это популяции стволовых, полустволовых клеток-предшественников, а также бластных клеток данной ткани, деление которых поддерживает необходимое число ее клеток и восполняет убыль популяции зрелых элементов. В тех тканях, в которых не происходит обновления клеток путем их деления, камбий отсутствует. По распределению камбиальных элементов ткани различают несколько разновидностей камбия:

*Локализованный камбий – его элементы сосредоточены в конкретных участках ткани, например, в многослойном эпителии камбий локализован в базальном слое;

* Диффузный камбий – его элементы рассеяны в ткани, например, в гладкой мышечной ткани камбиальные элементы рассредоточены среди дифференцированных миоцитов;

*Вынесенный камбий – его элементы лежат за пределами ткани и по мере дифференцировки включаются в состав ткани, например кровь как ткань содержит только дифференцированные элементы, элементы камбия находятся в органах кроветворения.

Регенерация тканей. Регенерация ткани – процесс, обеспечивающий её обновление в ходе нормальной жизнедеятельности (физиологическая регенерация) или восстановление после повреждения (репаративная регенерация). Хотя полноценная регенерация ткани включает обновление (восстановление) ее клеток и их производных, включая межклеточное вещество, основную роль в регенерации тканей играют клетки, так как именно они служат источником всех остальных компонентов тканей. Поэтому возможность регенерации ткани определяется способностью ее клеток к делению и дифференцировке или уровнем внутриклеточной регенерации. Хорошо регенерируют те ткани, которые имеют камбиальные элементы или представляют собой обновляющиеся или растущие леблоновские клеточные популяции . Активность деления (пролиферации) клеток каждой ткани при регенерации контролируется факторами роста, гормонами, цитокинами, кейлонами, а также характером функциональных нагрузок. Необходимо отличать тканевую и клеточную регенерацию путем деления клеток от внутриклеточной регенерации, которую следует понимать как процесс непрерывного обновления или восстановления структурных компонентов клетки после их повреждения. Внутриклеточная регенерация универсальна, то есть свойственна всем клеткам тканей организма человека. В тех тканях, которые являются стабильными клеточными популяциями и в которых отсутствуют камбиальные элементы (нервная, сердечная мышечная ткань), данный тип регенерации является единственно возможным способом обновления и восстановления их структуры и функции. Ткани в процессе жизнедеятельности могут подвергаться гипертрофии и атрофии. Гипертрофия ткани – увеличение ее объема, массы и функциональной активности, - обычно является следствием а) гипертрофии ее отдельных клеток (при неизменном их числе) вследствие усиленной внутриклеточной регенерации в условиях преобладания анаболитических процессов над катаболическими; б) гиперплазии – увеличении числа ее клеток путем активации клеточного деления (пролиферации ) и (или) в результате ускорения дифференцировки новообразующихся клеток; в) сочетания обоих процессов. Атрофия ткани – снижение ее объема, массы и функциональной активности вследствие а) атрофии ее отдельных клеток вследствие преобладания процессов катаболизма, б) гибели части ее клеток, в) резкого уменьшения скорости деления и дифференцировки клеток.

Межтканевые и межклеточные отношения . Ткань поддерживает постоянство своей структурно-функциональной организации (гомеостаз) как единого целого только при условии постоянного влияния гистологических элементов друг на друга (внутритканевые взаимодействия), а также одних тканей на другие (межтканевые взаимодействия). Эти влияния можно рассматривать как процессы взаимного узнавания элементов, образования контактов и обмена информацией между ними. При этом формируются самые различные структурно-пространственные объединения. Клетки в ткани могут находиться на расстоянии и взаимодействовать друг с другом через межклеточное вещество (соединительные ткани), соприкасаться отростками, иногда достигающими значительной длины (нервная ткань), или образовывать плотно контактирующие клеточные пласты (эпителий). Совокупность тканей, объединенных в единое структурное целое соединительной тканью, координированное функционирование которого обеспечивается нервными и гуморальными факторами, образует органы и системы органов целого организма.

Для образования ткани необходимо, чтобы клетки объединились и были связаны между собой в клеточные ансамбли. Способность клеток избирательно прикрепляться друг к другу или к компонентам межклеточного вещества осуществляется с помощью процессов узнавания и агдезии, которые являются необходимым условием поддержания тканевой структуры. Реакции узнавания и агдезии происходят вследствие взаимодействия макромолекул специфических мембранных гликопротеидов, получивших название молекул агдезии . Прикрепление происходит с помощью особых субклеточных структур: а) точечных агдезионных контактов (прикрепление клеток к межклеточному веществу), б) межклеточных контактов (прикрепление клеток друг к другу).

В их состав входят особые трансмембранные белки и гликопротеиды – кадгерины, иммуноглобулины, интегрины и коннексины, а также белки, осуществляющие прикрепление этих структур к компонентам клеточного матрикса, – актинин, винкулин, талин. Кроме того, на поверхности клеток находятся агдезивные рецепторы и соответствующие им лиганды, обеспечивающие специфическое взаимное распознавание элементов ткани. К агдезионным белкам межклеточного матрикса относят фибронектин и витронектин. Межклеточные контакты - специализированные структуры клеток, с помощью которых они механически скрепляются между собой, а также создают барьеры и каналы проницаемости для межклеточной коммуникации. Различают: 1) агдезионные клеточные контакты , выполняющие функцию межклеточного сцепления (промежуточный контакт, десмосома, полудесмасома), 2) замыкающие контакты , функция которых - образование барьера, задерживающего даже малые молекулы (плотный контакт), 3) проводящие (коммуникационные) контакты , функция которых состоит в передаче сигналов от клетки к клетке (щелевой контакт, синапс).

Регуляция жизнедеятельности тканей . Гуморальные факторы, обеспечивающие межклеточное взаимодействие в тканях и их метаболизм, включают в себя разнообразные клеточные метаболиты, гормоны, медиаторы, а также цитокины и кейлоны.

Цитокины являются наиболее универсальным классом внутри- и межтканевых регуляторных веществ. Они представляют собой гликопротеиды, которые в очень низких концентрациях оказывают влияние на реакции клеточного роста, пролиферации и дифференцировки. Действие цитокинов обусловлено наличием рецепторов к ним на плазмолемме клеток-мишеней. Эти вещества переносятся кровью и обладают дистантным (эндокринным) действием, а также распространяются по межклеточному веществу и действуют локально (ауто – или паракринно). Важнейшими цитокинами являются интерлейкины (ИЛ), факторы роста , колониестимулирующие факторы (КСФ), фактор некроза опухоли (ФНО), интерферон . Клетки различных тканей обладают большим количеством рецепторов к разнообразным цитокинам (от 10 до 10000 на клетку), эффекты которых нередко взаимо перекрываются, что обеспечивает высокую надёжность функционирования этой системы внутриклеточной регуляции.

Кейлоны представляют собой факторы, вырабатываемые дифференцированными клетками данной ткани и угнетающие деление её малодифференцированных камбиальных элементов. Благодаря продукции кейлонов осуществляется поддержание относительного постоянства числа клеток в зрелой ткани. При повреждении ткани и убыли её зрелых клеток снижение продукции кейлонов вызывает усиленную пролиферацию клеток, приводящую к регенерации ткани.

Межтканевые отношения. Ткани в организме существуют не изолированно, а в постоянном взаимодействии с другими тканями, что способствует поддержанию их нормальной функциональной организации. Это так называемые индуктивные взаимодействия, утрата которых, например, при культивировании тканей in vitro в оптимальных условиях вызывает изменения морфологии и потерю ряда функций, характерных для этих тканей in vivo. Межтканевые взаимодействия осуществляются посредством локальных метаболитов и дистантных гуморальных факторов, включающих в себя гормоны, нейромедиаторы и другие информационные молекулы. Взаимодействие тканей, образующих органы на уровне целостного организма, контролируются эндокринной, нервной и иммунной системами. Межтканевые отношения определяют структуру и функцию органа, обеспечивают оптимальные уровни физиологической и репаративной регенерации.

1.Тема: эпителиальные ткани. Железы.

Цели занятия:

Научиться:

1.Характеризовать основные морфофункциональные и гистогенетические особенности эпителиальных тканей.

2.Сопоставлять микроскопические, ультрамикроскопические и гистохимические особенности различных видов эпителиальных тканей с выполняемой ими функцией. Объяснять механизм секреторного процесса в железистых эпителиальных клетках.

3. Определять эпителиальную ткань на микроскопическом уровне,

идентифицировать различные виды покровного и железистого эпителия.

4.Научиться определять тип экзокринных желез по их строению и характеру выделяемого секрета.

Эпителиальные ткани , или эпителии (от греч. epi – над и thele – сосок, тонкая кожица) – часто выступают как пограничные ткани , располагаясь на границе с внешней средой, покрывают поверхность тела, выстилают его полости, слизистые оболочки внутренних органов и образуют большинство желез. В связи с этим различают два вида эпителиев :

I . Покровные эпителии (образуют разнообразные выстилки в виде пластов).

II . Железистые эпителии (образуют железы).

Общие морфологические признаки эпителия как ткани:

1.Эпителиоциты располагаются плотно друг к другу.

2.Между клетками практически нет межклеточного вещества.

3.Между клетками находятся межклеточные контакты.

4.Эпителии часто занимают пограничное положение (обычно между тканями внутренней среды и внешней средой).

5.Для эпителиоцитов характерна полярность клеток. Различают апикальный и базальный полюсы, последний обращен к базальной мембране. Многослойным эпителиям свойственна вертикальная анизоморфность неодинаковые морфологические свойства клеток различных слоев эпителиального пласта.

6.Эпителиоциты располагаются на базальной мембране – особом неклеточном образовании, которое создает основу для эпителия, обеспечивает барьерную и трофическую функции.

7.В эпителии отсутствуют сосуды; питание осуществляется путем диффузии веществ через базальную мембрану из сосудов соединительной ткани.

8.Для большинства эпителиев характерна высокая способность к регенерации – физиологической и репаративной, которая осуществляется благодаря камбию.

Морфологические особенности клеток составляющих эпителиальную ткань варьируют в широких пределах, различаясь как в разных типах эпителиев, так и между отдельными клетками в пределах одного типа. Эти особенности тесно связаны с функцией клеток и их положением в эпителиальном пласте.

Форма эпителиоцитов служит важным классификационным признаком, как отдельных клеток, так и эпителиальных пластов вцелом. Выделяют плоские, кубические и призматическиеклетки. Ядро эпителиоцитов может иметь различную форму, которая обычно соответствует форме клетки: в плоских– оно дисковидное, в кубических – сферическое, в цилиндрических – эллипсоидное. В большинстве клеток ядро сравнительно светлое, содержит хорошо заметное крупное ядрышко, однако в оровевающих эпителиях по мере дифференцировки клеток оно уменьшается, уплотняется или лизируется – подвергается кариопикнозу, кариорексису или кариолизису.

Цитоплазма эпителиоцитов содержит все органеллы общего значения, а в некоторых клетках – также органеллы специального значения, обеспечивающие выполнение специфических функций данных клеток. В клетках железистого эпителия хорошо развит синтетический аппарат. В связи с полярностью клеток органеллы распределены в их цитоплазме неравномерно.

Цитоскелет эпителиоцитов хорошо развит, представлен микротрубочками, микрофиламентами (диаметром до 4нм) и промежуточными филаментами (диаметром 8-10 нм). Последние в эпителиоцитах особенно многочисленны и называются тонофиламентами, которые при фиксации склеиваются, образуя крупные агрегаты, выявляемые под световым микроскопом и описанные под названием тонофибрилл.

Цитокератины белки, образующие тонофиламенты, которые специфичны для клеток эпителиальных тканей. Идентифицировано около 30 различных форм цитокератинов, причем выработка каждого вида цитокератина кодируется особым геном. Для конкретного вида эпителия (а в многослойных эпителиях – для каждого слоя) характерен определенный набор цитокератинов, экспрессию которых рассматривают как маркер дифференцировки эпителиальных клеток. Изменения нормальной экспрессии цитокератинов могут указывать на нарушения дифференцировки клеток и в ряде случаев служить важным диагностическим признаком их злокачественного перерождения.

Поверхности эпителиоцита (латеральная, базальная, апикальная) обладают отчетливой структурно-функциональной специализацией, которая особенно хорошо выявляется в однослойном эпителии, в том числе в железистом эпителии.

    Латеральная поверхность эпителиоцитов обеспечивает взаимодействие клеток за счет межклеточных контактов, которые обуславливают механическую связь эпителиоцитов друг с другом – это плотные контакты, десмосомы, интердигитации , а также химическую (метаболическую, ионную и электрическую) связь между эпителиоцитами – это щелевые контакты.

    Базальная поверхность эпителиоцитов прилежит к базальной мембране, к которой она прикреплена с помощью полудесмосом. В функциональном плане базальная и латеральная (до уровня плотных соединений) части плазмолеммы эпителиоцита в совокупности образует единый комплекс, мембранные белки которого служат: а) рецепторами, воспринимающими различные сигнальные молекулы, б) переносчиками питательных веществ, поступающих из сосудов подлежащей соединительной ткани, в) ионными насосами и др.

Базальная мембрана (БМ) связывает эпителий и подлежащую соединительную ткань и образована компонентами, которые вырабатываются этими тканями, БМ поддерживает нормальную архитектонику, дифференцировку и поляризацию эпителия; обеспечивает избирательную фильтрацию питательных веществ. На светооптическом уровне на препаратах она имеет вид тонкой полоски, плохо окрашивается гематоксилином и эозином. На ультраструктурном уровне в базальной мембране выделяют три слоя (в направлении от эпителия):

1) светлая пластинка , которая соединяется с полудесмосомами эпителиоцитов, содержит гликопротеины (ламинин) и протеогликаны (гепарансульфат), 2) плотная пластинка содержит коллаген IV, V, VII типов, имеет фибриллярную структуру. Тонкие якорные филаменты пересекают светлую и плотную пластинки, переходя в 3) ретикулярную пластинку , где якорные филаменты связываются с коллагеновыми (коллаген I и II типов) фибриллами соединительной ткани.

В физиологических условиях базальная мембрана препятствует росту эпителия в сторону соединительной ткани, что нарушается при злокачественном росте, когда раковые клетки прорастают сквозь базальную мембрану в подлежащую соединительную ткань (инвазивный рост опухоли).

Специфичные признаки эпителиев. Базальная исчерченность эпителиоцитов – термин, используемый для описания базального отдела некоторых клеток (например, в канальцах почки и части выводных протоков слюнных желез). На базальной поверхности много пальцевидных впячиваний плазмолеммы вглубь клетки. В цитоплазме базальной части клеток вокруг впячиваний плазмолеммы много митохондрий, которые обеспечивают энергозависимый процесс вывода молекул, ионов за пределы клетки.

Апикальная поверхность эпителиоцитов может быть относительно гладкой или образует выпячивания. У некоторых эпителиоцитов на ней имеются специальные органеллы – микроворсинки и реснички. Микроворсинки максимально развиты в эпителиоцитах, участвующих в процессах всасывания (например, в тонкой кишке или канальцах проксимального отдела нефрона), где их совокупность называется щеточной (исчерченной) каемкой.

Микрореснички – подвижные структуры, содержащие комплексы микротрубочек.

Источники развития эпителиев. Эпителии развиваются из всех трех зародышевых листков, начиная с 3 – 4 недели эмбрионального развития человека. В зависимости от эмбрионального источника различают эпителий эктодермального, мезодермального и энтодермального происхождения.

Что мы знаем о такой науке, как гистология? Косвенно с её основными положениями можно было ознакомиться еще в школе. Но более детально эта наука изучается в высшей школе (университетах) в медицине.

На уровне школьной программы мы знаем, что существует четыре типа тканей, и они являются одной из базовых составляющих нашего тела. А вот людям, которые планируют выбрать или уже выбрали своей профессией врачебное дело, необходимо более детально знакомиться с таким разделом биологии, как гистология.

Что такое гистология

Гистология - это наука, изучающая ткани живых организмов (человека, животных и других их формирование, строение, функции и взаимодействие. Данный раздел науки включает в себя несколько других.

Как учебная дисциплина эта наука включает:

  • цитологию (науку, изучающую клетку);
  • эмбриологию (изучение процесса развития зародыша, особенностей формирования органов и тканей);
  • общую гистологию (науку о развитии, функциях и структуре тканей, изучает особенности тканей);
  • частную гистологию (изучает микростроение органов и их систем).

Уровни организации человеческого организма как целостной системы

Данная иерархия объекта изучения гистологии состоит из нескольких уровней, каждый из которых включает последующий. Таким образом, визуально представить это можно как многоуровневую матрёшку.

  1. Организм . Это биологически целостная система, которая формируется в процессе онтогенеза.
  2. Органы . Это комплекс тканей, которые взаимодействуют между собой, выполняя свои основные функции и обеспечивая выполнение органами базовых функций.
  3. Ткани . На этом уровне объединены клетки вместе с производными. Изучаются типы тканей. Несмотря на то что они могут состоять из разнообразных генетических данных, основные их свойства определяют базовые клетки.
  4. Клетки . Данный уровень представляет основная структурно-функциональная единица ткани - клетка, а также её производные.
  5. Субклеточный уровень . На этом уровне изучаются составляющие клетки - ядро, органеллы, плазмолемма, цитозоль и прочее.
  6. Молекулярный уровень . Данный уровень характеризуется изучением молекулярного состава компонентов клеток, а также их функционирования.

Наука, изучающая ткани: задачи

Как и для любой науки, для гистологии также выделен ряд задач, которые выполняются в ходе изучения и развития данной сферы деятельности. Среди таких задач наиболее важными являются:

  • исследование гистогенеза;
  • трактовка общей гистологической теории;
  • изучение механизмов тканевой регуляции и гомеостаза;
  • изучение таких особенностей клетки, как адаптивность, изменчивость и реактивность;
  • разработка теории регенерации тканей после повреждений, а также методов заместительной терапии тканей;
  • трактовка устройства молекулярно-генетической регуляции, создание новых методов а также перемещения стволовых эмбриональных клеток;
  • изучение процесса развития человека в фазе эмбриона, других периодов человеческого развития, а также проблем с воспроизведением и бесплодием.

Этапы развития гистологии как науки

Как известно, область изучения строения тканей получила название «гистология». Что это такое, учёные принялись выяснять еще до нашей эры.

Так, в истории развития этой сферы можно выделить три основных этапа - домикроскопический (до 17-го века), микроскопический (до 20-го века) и современный (до сегодня). Рассмотрим каждый из этапов более конкретно.

Домикроскопический период

На данном этапе гистологией в её начальном виде занимались такие ученые, как Аристотель, Везалий, Гален и многие другие. В то время объектом изучения были ткани, которые отделялись от организма человека или животного методом препарирования. Данный этап начался в 5-м столетии до нашей эры и продлился до 1665 года.

Микроскопический период

Следующий, микроскопический, период начался с 1665 года. Датирование его объясняется великим изобретением микроскопа в Англии. Учёный использовал микроскоп для изучения различных объектов, включая биологические. Результаты исследования были опубликована в издании «Монография», где и было впервые использовано понятие «клетка».

Выдающимися учеными этого периода, изучавшими ткани и органы, были Марчелло Мальпиги, Антони ван Левенгук и Неемия Грю.

Строение клетки продолжали изучать такие учёные, как Ян Эвангелиста Пуркинье, Роберт Браун, Маттиас Шлейден и Теодор Шванн (его фото размещено ниже). Последний в итоге сформировал которая является актуальной и до сегодня.

Продолжает своё развитие такая наука, как гистология. Что это такое, на данном этапе изучают Камилло Гольджи, Теодор Бовери, Кит Робертс Портер, Кристиан Рене де Дюв. Также к этому имеют отношение работы и других ученых, таких как Иван Дорофеевич Чистяков и Пётр Иванович Перемежко.

Современный этап развития гистологии

Последний этап наука, изучающая ткани организмов, начинает с 1950-го года. Временные рамки определены так потому, что именно тогда для исследования биологических объектов был впервые использован электронный микроскоп, а также введены новые методы исследования, включая применение компьютерных технологий, гистохимии и гисторадиографии.

Что такое ткани

Перейдем непосредственно к главному объекту изучения такой науки, как гистология. Ткани - это эволюционно возникшие системы клеток и неклеточных структур, которые объединены благодаря схожести строения и имеющие общие функции. Другими словами, ткань - это одна из составляющих организма, которая представляет собой объединение клеток и их производных, и является основой для построения внутренних и внешних органов человека.

Ткань состоит не исключительно из клеток. В состав ткани могут входить следующие компоненты: мышечные волокна, синцитий (одна из стадий развития половых клеток мужчины), тромбоциты, эритроциты, роговые чешуйки эпидермиса (постклеточные структуры), а также коллагеновое, эластичное и ретикулярное межклеточные вещества.

Появление понятия «ткань»

Впервые понятие «ткань» было применено английским учёным Неемией Грю. Изучавший тогда ткани растений, ученый заметил сходство клеточных структур с волокнами ткани текстиля. Тогда (1671 год) ткани и были описаны таким понятием.

Мари Франсуа Ксавье Биша, французский анатом, в своих работах еще более прочно закрепил понятие о тканях. Разновидности и процессы в тканях также изучались Алексеем Алексеевичем Заварзиным (теория параллельных рядов), Николаем Григорьевичем Хлопиным (теория дивергентного развития) и многими другими.

А вот первая классификация тканей в таком виде, в каком мы знаем её сейчас, впервые была предложена немецкими микроскопистами Францем Лейдигом и Келикером. Согласно этой классификации, типы тканей включают 4 основные группы: эпителиальная (пограничная), соединительная (опорно-трофическая), мышечная (сокращаемая) и нервная (возбудимая).

Гистологическое исследование в медицине

Сегодня гистология как наука, изучающая ткани, очень помогает при диагностировании состояния внутренних органов человека и назначении дальнейшего лечения.

Когда человеку диагностируют подозрение на наличие злокачественной опухоли в организме, одним из первых назначается гистологическое исследование. Это, по сути, изучение образца тканей из организма пациента, полученных путем биопсии, пункции, кюретажа, с помощью хирургического вмешательства (эксцизионная биопсия) и другими способами.

Благодаря наука, изучающая строение тканей, помогает назначить максимально правильное лечение. На фото выше можно рассмотреть образец тканей трахеи, окрашенный гематоксилином и эозином.

Такой анализ проводится в том случае, если необходимо:

  • подтвердить или опровергнуть поставленный ранее диагноз;
  • установить точный диагноз в случае, когда возникают спорные вопросы;
  • определить наличие злокачественной опухоли на ранних стадиях;
  • наблюдать за динамикой изменений в злокачественных заболеваниях с целью их предупреждения;
  • осуществить дифференциальную диагностику протекающих в органах процессов;
  • определить наличие раковой опухоли, а также стадию её роста;
  • провести анализ происходящих в тканях изменений при уже назначенном лечении.

Образцы тканей детально изучаются под микроскопом традиционным или ускоренным способом. Традиционный способ более долгий, он применяется намного чаще. При этом используется парафин.

А вот ускоренный метод даёт возможность получить результаты анализа в течение часа. Такой способ используется тогда, когда есть необходимость срочно принять решение относительно удаления или сохранения органа пациента.

Результаты гистологического анализа, как правило, наиболее точные, поскольку дают возможность детально изучить клетки тканей на предмет наличия заболевания, степени поражения органа и методов его лечения.

Таким образом, наука, изучающая ткани, даёт возможность не только исследовать под организма, органов, тканей и клеток живого организма, но еще и помогает проводить диагностику и лечение опасных заболеваний и патологических процессов в организме.


Гистология относится к морфологическим наукам. В отличие от анатомии, изучающей строение органов на макроскопическом уровне, гистология изучает строение органов и тканей на микроскопическом и электронно-микроскопическом уровне. При этом подход к изучению различных элементов производится с учетом выполняемой ими функции. Такой метод изучения структур живой материи называется гистофизиологическим, и гистология нередко именуется гистофизиологией. При изучении живой материи на клеточном, тканевом и органном уровнях рассматриваются не только форма, размеры и расположение интересующих структур, но методами цито– и гистохимии определяется химический состав веществ, образующих данные структуры. Изучаемые структуры также рассматриваются с учетом их развития как во внутриутробном периоде, так и на протяжении начального онтогенеза. Именно с этим связана необходимость включения в гистологию эмбриологии.

Основным объектом гистологии в системе медицинского образования является организм здорового человека, и потому данная учебная дисциплина именуется как гистология человека. Главной задачей гистологии как учебного предмета является изложение знаний о микроскопическом и ультрамикроскопическом (электронно-микроскопическом) строении клеток, тканей органов и систем здорового человека в неразрывной связи с их развитием и выполняемыми функциями. Это необходимо для дальнейшего изучения физиологии человека, патологической анатомии, патологической физиологии и фармакологии. Знание этих дисциплин формирует клиническое мышление. Задачей гистологии как науки является выяснение закономерностей строения различных тканей и органов для понимания протекающих в них физиологических процессов и возможности управления этими процессами.

Ткань - исторически сложившаяся система клеток и неклеточных структур, имеющая общность строения, и нередко происхождения и специализирующаяся на выполнении определенных функций. Ткани образуются из зародышевых листков. Этот процесс называется гистогенез. Ткань закладывается из стволовых клеток. Это полипотентные клетки с большими возможностями. Они устойчивы к воздействию вредных факторов окружающей среды. Стволовые клетки могут становиться полу стволовыми и даже размножаться (пролиферировать). Пролиферация - увеличение количества клеток и увеличение ткани в объеме. Эти клетки способны дифференцироваться, т.е. приобретать свойство зрелых клеток. Только зрелые клетки выполняют специализированную функцию, Т.о. для клеток в ткани характерна специализация.

Скорость развития клеток генетически предопределена, т.е. ткань детерминирована. Специализация клеток должна происходить в микроокружении. Дифферон - совокупность всех клеток развившихся из одной стволовой клетки. Для тканей характерна регенерация. Она бывает двух типов: физиологическая и репаративная.

Физиологическая регенерация осуществляется двумя механизмами. Клеточная протекает путем деления стволовых клеток. Таким путем регенерируют древние ткани - эпителиальная, соединительная. Внутриклеточная в основе лежит усиление внутриклеточного метаболизма, в результате чего восстанавливается внутриклеточный матрикс. При дальнейшей внутриклеточной гипертрофии происходит гиперплазия (увеличение количества органелл) и гипертрофия (увеличение клетки в объеме). Репаративная регенерация - восстановление клетки после повреждения. Осуществляется такими же методами, как и физиологическая, но в отличии протекает в несколько раз быстрее.

Классификация тканей

С позиции филогенеза предполагается, что в процессе эволюции организмов как у беспозвоночных, так и позвоночных образуются 4 тканевых системы, обеспечивающие основные функции организма: покровные, отграничивающие от внешней среды; внутренней среды - поддерживающие гомеостаз; мышечные - отвечающие за движение, и нервные - за реактивность и раздражимость. Объяснение этому феномену дали А.А. Заварзин и Н.Г. Хлопин, которые заложили основы учения об эволюционной и онтогенетической детерминации тканей. Так, было выдвинуто положение о том, что ткани образуются в связи с основными функциями, обеспечивающими существование организма во внешней среде. Поэтому изменения тканей в эволюции идут параллельными путями (теория параллелизмов А.А. Заварзина).

Однако дивергентный путь эволюции организмов ведет к возникновению все большего разнообразия тканей (теория дивергентной эволюции тканей Н.Г. Хлопина). Из этого следует, что ткани в филогенезе развиваются и параллельными рядами, и дивергентно. Дивергентная дифференциация клеток в каждой из четырех тканевых систем в конечном итоге привела к большому разнообразию видов тканей, которые гистологи в последующем стали объединять в системы или группы тканей. Однако стало ясно, что в ходе дивергентной эволюции ткань может развиваться не из одного, а из нескольких источников. Выделение основного источника развития ткани, дающего начало ведущему клеточному типу в ее составе, создает возможности для классификации тканей по генетическому признаку, а единство структуры и функции - по морфофизиологическому. Однако из этого не следует, что удалось построить совершенную классификацию, которая была бы общепризнанной.

Большинство гистологов в своих работах опираются на морфофункциональную классификацию А.А. Заварзина, сочетая ее с генетической системой тканей Н.Г. Хлопина. В основу известной классификации А.А. Клишова (1984) положена эволюционная детерминированность четырех систем тканей, развивающихся у животных разных типов параллельными рядами, вместе с органоспецифической детерминацией конкретных разновидностей тканей, образующихся дивергентно в онтогенезе. Автор в системе эпителиальных тканей выделяет 34 ткани, в системе крови, соединительных и скелетных тканей - 21 ткань, в системе мышечных тканей - 4 ткани и в системе нервных и нейроглиальных тканей - 4 ткани. Эта классификация включает практически все конкретные ткани человека.

В качестве общей схемы приведен вариант классификации тканей по морфофизиологическому принципу (горизонтальное расположение) с учетом источника развития ведущего клеточного дифферона конкретной ткани (расположение по вертикали). Здесь даны представления о зародышевом листке, эмбриональном зачатке, тканевом типе большинства известных тканей позвоночных в соответствии с представлениями о четырех тканевых системах. В приведенной классификации не отражены ткани внезародышевых органов, которые обладают рядом особенностей. Таким образом, иерархические отношения живых систем в организме крайне сложны. Клетки, как системы первого порядка, формируют диффероны. Последние образуют ткани как мозаичные структуры или являются единственным диффероном данной ткани. В случае полидифферонной структуры ткани необходимо выделить ведущий (основной) клеточный дифферон, который во многом определяет морфофизиологические и реактивные свойства ткани.

Ткани формируют системы следующего порядка - органы. В них также выделяется ведущая ткань, обеспечивающая главные функции данного органа. Архитектоника органа определяется его морфофункциональными единицами и гистионами. Системы органов являются образованиями, включающими все нижележащие уровни с их собственными законами развития, взаимодействия и функционирования. Все перечисленные структурные компоненты живого находятся в тесных взаимоотношениях, границы условны, нижележащий уровень является частью вышележащего и так далее, составляя соответствующие целостные системы, высшей формой организации которой является организм животных и человека.

Эпителиальные ткани. Эпителий

Эпителиальные ткани - древнейшие гистологические структуры, которые в фило- и онтогенезе возникают первыми. Основное свойство эпителиев - пограничность. Эпителиальные ткани (от греч. epi - над и thele - кожица) располагаются на границах двух сред, отделяя организм или органы от окружающей среды. Эпителии, как правило, имеют вид клеточных пластов и образуют наружный покров тела, выстилку серозных оболочек, просветов органов, сообщающихся с внешней средой во взрослом состоянии или в эмбриогенезе. Через эпителии осуществляется обмен веществ между организмом и окружающей средой. Важной функцией эпителиальных тканей является защита подлежащих тканей организма от механических, физических, химических и других повреждающих воздействий. Некоторые эпителии специализированы на выработке специфических веществ - регуляторов деятельности других тканей организма. Производными покровных эпителиев являются железистые эпителии.

Особый вид эпителия - эпителий органов чувств. Эпителии развиваются с 3-4-й недели эмбриогенеза человека из материала всех зародышевых листков. Некоторые эпителии, например эпидермис, формируются как полидифферонные ткани, так как в их состав включаются клеточные диффероны, развивающиеся из разных эмбриональных источников (клетки Лангерганса, меланоциты и др.). В классификациях эпителия по происхождению за основу, как правило, берется источник развития ведущего клеточного дифферона - дифферона эпителиоцитов. Цитохимическим маркером эпителиоцитов являются белки - цитокератины, образующие тонофиламенты. Цитокератины характеризуются большим разнообразием и служат диагностическим маркером конкретного вида эпителия.

Различают эктодермальные, энтодермальные и мезодермальные эпителии. В зависимости от эмбрионального зачатка, служащего источником развития ведущего клеточного дифферона, эпителии подразделяются на типы: эпидермальный, энтеродермальный, целонефродермальный, эпендимоглиальный и ангиодермальный. По гистологическим признакам строения ведущего (эпителиального) клеточного дифферона различают однослойные и многослойные эпителии. Однослойные эпителии по форме составляющих их клеток бывают плоские, кубические, призматические или цилиндрические. Однослойные эпителии подразделяют на однорядные, если ядра всех клеток лежат на одном уровне, и многорядные, в которых ядра расположены на разных уровнях, т. е. в несколько рядов.

Многослойные эпителии подразделяются на ороговевающие и неороговевающие. Многослойные эпителии называют плоскими, учитывая форму клеток наружного слоя. Клетки базального и других слоев могут иметь при этом цилиндрическую или неправильную форму. Кроме названных, выделяют еще переходный эпителий, строение которого меняется в зависимости от степени его растяжения. На основе данных об органоспецифической детерминации эпителии подразделяются на следующие типы: кожный, кишечный, почечный, целомический и нейроглиальный. В составе каждого типа различают несколько разновидностей эпителиев с учетом их строения и функций. Эпителии перечисленных типов стойко детерминированы. Однако при патологии возможна трансформация одного вида эпителия в другой, но лишь в пределах одного тканевого типа. Например, среди эпителиев кожного типа многорядный мерцательный эпителий воздухоносных путей может переходить в многослойный плоский. Такое явление получило название метаплазия. Несмотря на разнообразие строения, выполняемых функций и происхождения из разных источников, все эпителии имеют ряд общих признаков, на основе которых их объединяют в систему или группу эпителиальных тканей. Эти общие морфофункциональные признаки эпителиев следующие.

Большинство эпителиев по своей цитоархитектонике представляют собой однослойные или многослойные пласты плотно сомкнутых клеток. Клетки соединены с помощью межклеточных контактов. Эпителий находится в тесных взаимодействиях с подлежащей соединительной тканью. На границе между этими тканями имеется базальная мембрана (пластина). Эта структура участвует в формировании эпителиально-соединительнотканных взаимоотношений, выполняет функции прикрепления с помощью полудесмосом эпителиоцитов, трофическую и барьерную. Толщина базальной мембраны обычно не превышает 1 мкм. Хотя в некоторых органах ее толщина значительно возрастает. Электронно-микроскопически в составе мембраны выделяют светлую (расположенную ближе к эпителию) и темную пластинки. Последняя содержит коллаген IV-гo типа, обеспечивающий механические свойства мембраны. С помощью адгезивных белков - фибронектина и ламинина осуществляется прикрепление эпителиоцитов к мембране.

Через базальную мембрану путем диффузии веществ происходит питание эпителия. Базальную мембрану рассматривают в качестве барьера для роста эпителия вглубь. При опухолевых разрастаниях эпителия она разрушается, что позволяет измененным раковым клеткам врастать в подлежащую соединительную ткань. Эпителиоциты обладают гетерополярностью. Строение апикальной и базальной частей клетки разное. В многослойных пластах клетки различных слоев отличаются друг от друга по структуре и функциям. Это называют вертикальной анизоморфией. Эпителии обладают высокой способностью к регенерации за счет митозов камбиальных клеток. В зависимости от местоположения камбиальных клеток в эпителиальных тканях различают диффузный и локализованный камбий.

Многослойные ткани

Толстые, функция - защитная. Все многослойные эпителии имеют эктодермальное происхождение. Они образуют покровы кожи (эпидермис) выстилает слизистую ротовой полости, пищевода, конечного отдела прямой кишки, влагалища, мочеиспускательных путей. В силу того, что эти эпителии в большей степени контактирует с внешней средой, клетки располагаются в несколько этажей, поэтому эти эпителии в большей степени выполняют защитную функции. Если нагрузка увеличивается, то эпителий подвергается ороговению.

Многослойный плоский ороговевающий. Эпидермис кожи (толстый - 5 слоев и тонкий) В толстой коже эпидермис содержит 5 слоев (подошвы, ладони). Базальный слой представлен стволовыми базальными и пигментными клетками (10 к 1), которые вырабатывают зерна меланина, они накапливаются в клетках, избыток выделяется, поглощается базальными, шиповатыми клетками и чрез базальную мембрану проникает в дерму. В шиповатом слое в движении находятся эпидермальные макрофаги, Т-лимфоциты памяти, они поддерживают местный иммунитет. В зернистом слое начинается процесс ороговения с образованием кератогиалина. В блестящем слое процесс ороговения продолжается, образуется белок элеидин. Завершается ороговение в роговом слое. Роговые чешуйки содержат кератин. Ороговение - это защитный процесс. В эпидермисе образуется мягкий кератин. Роговой слой пропитан кожным салом и с поверхности увлажнен потовым секретом. В этих секретах содержатся бактерицидные вещества (лизоцим, секреторные иммуноглобулины, интерферон). В тонкой коже зернистый и блестящий слои отсутствуют.

Многослойный плоский неороговевающий. На базальной мембране находится базальный слой. Клетки этого слоя имеют цилиндрическую форму. Они часто делятся митозом и являются стволовыми. Часть из них оттесняются от базальной мембраны, то есть выталкиваются и вступают на путь дифференцировки. Клетки приобретают полигональную форму, могут располагаться в несколько этажей. Образуется слой шиповатых клеток. Клетки фиксированы десмосомами, тонкие фибриллы которых и придают вид шипиков. Клетки этого слоя могут, но редко делится митозом, поэтому клетки первого и второго слоев можно назвать ростковыми. Наружный слой плоских клеток постепенно уплощается, ядро сморщивается, клетки постепенно слущиваются с эпителиального пласта. В процессе дифференцировки этих клеток происходит изменение формы клеток, ядер, окраски цитоплазмы (базофильный - эозинофильный), изменение окраски ядра. Такие эпителии встречаются в роговице, влагалище, пищеводе, ротовой полости. С возрастом или при неблагоприятных условиях возможно частичные или признаки ороговения.

Многослойный переходный уроэпителий. Выстилает мочевыводящие пути. В нем выделяют три слоя. Базальный слой (ростковый). В клетках этого слоя плотные ядра. Промежуточный слой - содержит три, четыре и более этажей. Наружный слой клеток - они имеют форму груши или цилиндра, крупные размеры, хорошо окрашиваются базофильными красителями, могут делиться, обладают способностью секретировать муцины, которые защищают эпителий от воздействия мочи.

Железистый эпителий

Способность клеток организма интенсивно синтезировать активные вещества (секрет, гормон), необходимые для осуществления функции других органов, характерна для эпителиальной ткани. Эпителии, вырабатывающие секреты, называются железистыми, а его клетки - секреторными клетками, или секреторными гландулоцитами. Из секреторных клеток построены железы, которые могут быть оформлены в виде самостоятельного органа или являться только его частью. Различают эндокринные (endo - внутри, krio - отделяю) и экзокринные (ехо - снаружи) железы. Экзокринные железы состоят из двух частей: концевой (секретирующей) части и выводных протоков, по которым секрет поступает на поверхность организма или в полость внутреннего органа. Выводные протоки обычно не принимают участие в образовании секрета.

Эндокринные железы лишены выводных протоков. Их активные вещества (гормоны) поступают в кровь, в связи с чем функцию выводных протоков выполняют капилляры, с которыми железистые клетки очень тесно связаны. Экзокринные железы разнообразны по строению и функции. Они могут быть одноклеточными и многоклеточными. Примером одноклеточных желез служат бокаловидные клетки, встречающиеся в простом столбчатом каемчатом и псевдомногослойном реснитчатом эпителиях. Несекретирующая бокаловидная клетка цилиндрической формы и сходна с несекреторными эпителиоцитами. Секрет (муцин) накапливается в апикальной зоне, а ядро и органеллы смещаются к базальной части клетки. Смещенное ядро приобретает форму полулуния, а клетка - бокала. Затем секрет изливается из клетки, а она вновь приобретает столбчатую форму.
Экзокринные многоклеточные железы могут быть однослойными и многослойными, что обусловлено генетически. Если железа развивается из многослойного эпителия (потовая, сальная, молочная, слюнные железы), то и железа многослойна; если из однослойного (железы дна желудка, матки, поджелудочная железа), то они однослойны.
Характер ветвления выводных протоков экзокринных желез различен, поэтому они подразделяются на простые и сложные. У простых желез неветвящийся выводной проток, у сложных - ветвящийся.

Концевые отделы у простых желез разветвляются и не разветвляются, у сложных - разветвляются. В связи с этим у них и соответствующие названия: разветвленная железа и неразветвленная железа. По форме концевых отделов экзокринные железы классифицируют на альвеолярные, трубчатые, трубчато-альвеолярные. У альвеолярной железы клетки концевых отделов формируют пузырьки или мешочки, у трубчатых - образуют вид трубочки. Форма концевой части трубчато-альвеолярной железы занимает промежуточное положение между мешочком и трубочкой.

Клетки концевого отдела именуются гландулоцитами. Процесс синтеза секрета начинается с момента поглощения гландулоцитами из крови и лимфы исходных компонентов секрета. При активном участии органелл, синтезирующих секрет белкового или углеводного характера, в гландулоцитах образуются секреторные гранулы. Они накапливаются в апикальной части клетки, а затем путем обратного пиноцитоза выделяются в полость концевого отдела. Завершающий этап секреторного цикла - восстановление клеточных структур, если в процессе секреции они разрушились. Строение клеток концевой части экзокринных желез обусловлено составом выделяемого секрета и способом его образования.
По способу образования секрета железы делят на голокринные, апокринные, мерокринные (эккринные). При голокринной секреции (holos - целый) железистый метаморфоз гландулоцитов начинается с периферии концевого отдела и протекает в направлении выводного протока.

Примером голокринной секреции является сальная железа. Стволовые клетки с базофильной цитоплазмой и округлым ядром расположены на периферии концевой части. Они интенсивно делятся митозом, поэтому мелкие по размеру. Перемещаясь к центру железы, секреторные клетки увеличиваются, так как в их цитоплазме постепенно накапливаются капельки кожного жира. Чем больше откладывается в цитоплазме жировых капель, тем интенсивнее протекает процесс деструкции органелл. Он завершается полным разрушением клетки. Плазмолемма разрывается, а содержимое гландулоцита поступает в просвет выводного протока. При апокринной секреции (аро - от, сверху) разрушается апикальная часть секреторной клетки, являясь затем составной частью ее секрета. Данный тип секреции совершается в потовой или молочной железах. При мерокринной секреции клетка не разрушается. Такой способ образования секрета типичен для многих желез организма: железы желудка, слюнные железы, поджелудочная железа, эндокринные железы.

Таким образом, железистый эпителий так же, как и покровный, развивается из всех трех зародышевых листков (эктодермы, мезодермы, энтодермы), расположен на соединительной ткани, лишен кровеносных сосудов, поэтому питание осуществляется диффузионным способом. Клеткам свойственна полярная дифференцировка: в апикальном полюсе локализуется секрет, в базальном полюсе - ядро и органеллы.

Регенерация. Покровные эпителии занимают пограничное положение. Они часто повреждаются, поэтому характеризуются высокой регенерационной способностью. Регенерация осуществляется главным образом митомическим и очень редко амитотическим способом. Клетки эпителиального пласта быстро изнашиваются, стареют и гибнут. Их восстановление называется физиологической регенерацией. Восстановление эпителиальных клеток, утраченных по причине травмы и другой патологии, называется репаративной регенерацией. В однослойных эпителиях регенерационной способностью обладают или все клетки эпителиального пласта, или, если эпптелиоциты высокодифференцированны, то за счет зонально лежащих своих стволовых клеток. В многослойных эпителиях стволовые клетки находятся на базальной мембране, поэтому лежат в глубине эпителиального пласта. В железистом эпителии характер регенерации обусловлен способом образования секрета. При голокринной секреции стволовые клетки находятся снаружи железы на базальной мембране. Делясь и дифференцируясь, стволовые клетки преобразуются в железистые. В мерокринных и апокринных железах восстановление эпителиоцитов протекает главным образом путем внутриклеточной регенерации.



Организм человека состоит из тканей - исторически сложившаяся система клеток и неклеточных структур, обладающих общностью строения и специализированных на выполнении определенных функций.

Виды:

1. эпителиальная

2. кровь и лимфа

3. соединительная

4. мышечная

5. нервная

В состав каждого органа входит несколько видов тканей. В течение жизни организма происходит изнашивание и отмирание клеточных и неклеточных элементов (физиологическая дегенерация) и их восстановление (физиологическая регенерация).

В течение жизни в тканях происходят медленно текущие возрастные изменения. Ткани восстанавливаются при повреждении неодинаково. Эпителий восстанавливается быстро, поперечно-полосатая только при определенных условиях, в нервной ткани восстанавливаются только нервные волокна. Восстановление тканей при их повреждении - репаративная регенерация.

Характеристика эпителиальной ткани.

По происхождению эпителий образуется из 3 зародышевых листков:

1.из эктодермы - многослойный - кожный

2.из энтодермы - однослойный - кишечный

3.из мезодермы - эпителий почечных канальцев, серозных оболочек, половых почек

Эпителий покрывает поверхность тела, выстилает слизистые оболочки внутренних полых органов, серозные оболочки, образует железы. Делится на покровный (кожный) и железистый (секреторный).

Покровный - пограничная ткань, выполняет функции защиты, обмена веществ (газообмен, всасывание и выделение), создает условия для подвижности органов (сердце, легкие). Секреторный образует и выделяет вещества (секреты) во внешнюю среду или в кровь и лимфу (гормоны). Секреция - способность клеток образовывать и выделять вещества, необходимые для жизнедеятельности клеток. Эпителий всегда занимает пограничное положение между внешней и внутренней средой. Это пласты клеток - эпителиоцитов - неодинаковых по форме. Эпителиоциты располагаются на базальной мембране, которая состоит из аморфного вещества и фибриллярных структур. Являются полярными, т.е. по-разному располагаются их базальные и верхушечные отделы. Они способны к быстрой регенерации. Между клетками нет межклеточного вещества. Клетки соединяются с помощью контактов - десмосом. Кровеносные сосуды отсутствуют. Тип питания ткани диффузный через базальную мембрану из подлежащих слоев. Ткань прочная из-за наличия тонофибрилл.

В основе классификации эпителия лежит отношение клеток к базальной мембране и форма эпителиоцитов.

ЭПИТЕЛИЙ

ПОКРОВНЫЙ ЖЕЛЕЗИСТЫЙ

Однослойный

Плоский

Кубический

Призматический

Многорядный

Многослойный

Плоский неороговевающий

Плоский ороговевающий

Переходный

Эндокринные железы

Одноклеточные

(бокаловидные клетки)

Экзокринные железы

Многоклеточные

Однослойный плоский представлен эндотелием и мезотелием. Эндотелий выстилает интиму кровеносных и лимфатических сосудов, камеры сердца. Мезотелий - серозные оболочки полости брюшины, плевры и перикарда. Однослойный кубический - слизистые оболочки почечных канальцев, протоков желез, бронхов. Однослойный призматический - слизистую желудка, тонкого и толстого кишечника, матки, маточных труб, желчного пузыря, протоков печени, поджелудочной железы, канальцев почек. Многорядный мерцательный - слизистую воздухоносных путей. Многослойный плоский неороговевающий - роговицу глаза, слизистую оболочку полости рта и пищевода. Многослойный плоский ороговевающий выстилает кожу (эпидермис). Переходный - мочеотводящие пути.

Экзокринные железы выделяют свой секрет в полости внутренних органов или на поверхность тела. Обязательно имеют выводные протоки. Эндокринные железы выделяют секрет (гормоны) в кровь или лимфу. Они не имеют протоков. Одноклеточные экзокринные выделяют слизь, располагаются в дыхательных путях, в слизистой оболочке кишечника (бокаловидные клетки). Простые железы имеют неветвящийся выводной проток, сложные - ветвящийся. Различают 3 типа секреции :

1. мерокриновый тип (железистые клетки сохраняют свои структуры - слюнные железы)

2. апокриновый тип (верхушечное разрушение клеток - молочные железы)

3. голокриновый тип (полное разрушение клеток, клетки становятся секретом - сальные железы)

Виды экзокринных желез:

1. белковые (серозные)

2. слизистые

3. сальные

4. смешанные

Эндокринные железы состоят только из железистых клеток, не имеют протоков и выделяют во внутреннюю среду орган6изма гормоны (гипофиз, эпифиз, нейросекреторные ядра гипоталамуса, щитовидная, околощитовидные железы, тимус, надпочечники)

Соединительная ткань, ее виды.


Она очень разнообразна по своему строению, но имеет общий морфологический признак - в ней мало клеток, но много межклеточного вещества, включающего в себя основное аморфное вещество и специальные волокна. Это ткань внутренней среды организма, имеет мезодермальное происхождение. Она участвует в построении внутренних органов. Ее клетки отделены прослойками межклеточного вещества. Чем оно плотнее, тем лучше выражена механическая, опорная функция (костная ткань). Трофическая функция лучше обеспечивается полужидким межклеточным веществом (рыхлая соединительная ткань, окружающая кровеносные сосуды).

Функции соединительной ткани:

1. Механическая, опорная, формообразующая (кости, хрящи, связки)

2. Защитная

3. Трофическая (регуляция питания, обмена веществ и подержание гомеостаза)

4. Пластическая (участие в приспособительных реакциях к изменяющимся условиям среды - заживление ран)

5. Может участвовать в кроветворении при патологии

СОЕДИНИТЕЛЬНАЯ

СОБСТВЕННО СОЕДИНИТЕЛЬНАЯ

СКЕЛЕТНАЯ

Волокнистая

1. рыхлая

2. плотная

3. оформленная

4. неоформленная

Со специальными свойствами

1. ретикулярная

2. жировая

3. слизистая

4. пигментная

Хрящевая

1. гиалиновый хрящ

2. эластический хрящ

3. волокнистый хрящ

Костная

1.грубоволокнистая

2.пластинчатая:

компактное вещество

губчатое вещество

В рыхлой соединительной ткани волокна межклеточного вещества расположены рыхло и имеют разное направление. В плотной имеется большое количество плотно-расположенных волокон, много аморфного вещества и мало клеток.

Строение рыхлой волокнистой соединительной ткани.

Виды клеток:

  1. фибробласты
  2. малодифференцированные
  3. макрофаги
  4. тканевые базофилы
  5. плазмоциты
  6. липоциты
  7. пигментоциты

Межклеточное вещество содержит основное аморфное вещество - коллоид - и волокна :

1. коллагеновые

2. эластические

3. ретикулярные

Фибробласты - наиболее многочисленные клетки (fjbra - волокно, blastos - росток), участвует в образовании основного аморфного вещества и специальных волокон - клетки-ткачи.

Малодифференцированные клетки могут превращаться в адвентициальные клетки (адвентиция - оболочка) и клетки-перициты, сопровождающие кровеносные и лимфатические сосуды. Макрофаги (macros - большой, fagos - пожирающий), участвуют в фагоцитозе и секретируют в межклеточное вещество интерферон, лизоцим, пирогенны. В совокупности формируют макрофагическую систему. Тканевые базофилы (тучные клетки) вырабатывают гепарин, препятствующий свертыванию крови. Плазмоциты участвуют в гуморальном иммунитете и синтезируют антитела - гамма-иммуноглобулины. Липоциты - жировые клетки (резерв), формируют жировую ткань. Пигментоциты содержат меланин. Основное вещество имеет вид геля, обеспечивает транспорт веществ, механическую, опорную и защитную функции.

Коллагеновые волокна (kola - клей) - толстые, прочные, нерастяжимые. Состоят из фибрилла и белка коллагена. Эластические волокна содержат белок эластин, тонкие хорошо растяжимые, увеличиваются в 2-3 раза. Ретикулярные - незрелые коллагеновые волокна.

Рыхлая соединительная ткань содержится во всех органах, т.к. сопровождает кровеносные и лимфатические сосуды. Плотная неоформленная волокнистая ткань образует соединительно - тканную основу кожи, плотная оформленная ткань - сухожилия мышц, связки, фасции, перепонки. В соединительной ткани со специальными свойствами преобладают однородные клетки.

Ретикулярная соединительная имеет сетевидное строение. Состоит из ретикулярных клеток и ретикулярных волокон. Ретикулярные клетки имеют отростки, которые, переплетаясь, образуют сеть. Ретикулярные волокна располагаются во всех направлениях. Она образует скелет костного мозга, лимфатических узлов и селезенки. Жировая ткань - скопление липоцитов. В большом количестве содержится в большом и малом сальниках, брыжейке кишки и вокруг некоторых органов (почки). Является депо жира, защищает от механических повреждений, обеспечивает физическую терморегуляцию. Слизистая ткань имеется только у зародыша в пупочном канатике, защищая пупочные сосуды от повреждения. Пигментная - скопление меланоцитов - кожа в области сосков, мошонки, анального отверстия, родимые пятна, родинки и радужка глаз.

Скелетная выполняет функции опоры, защиты, вводно-солевого обмена.

Хрящевая ткань состоит из хрящевых пластинок, собранных по - трое, основного вещества и волокон.

Виды хрящей :

1. Гиалиновый хрящ - суставные хрящи, хрящи ребер, эпифизарные хрящи. Он прозрачен, голубоватого цвета (стекловидный).

2. Эластический хрящ - в органах, где возможны изгибы (ушная раковина, слуховая труба, наружный слуховой проход, надгортанник). Непрозрачный, желтого цвета.

3. Волокнистый - межпозвоночные диски, мениски, внутрисуставные диски, грудино-ключичный и височно-нижнечелюстной суставы. Непрозрачный, желтого цвета.

Рост и питание хряща осуществляется за счет надхрящницы, окружающей его. Хрящевая клетка - хондроцит.

Костная ткань является очень прочной из-за межклеточного вещества, пропитанного солями сальция. Она образует все кости скелета, является депо кальция и фосфора.

Виды клеток:

· Остеобласты (osteon - кость, blastos - росток) - молодые клетки, образующие костную ткань.

· Остеоциты (osteon - кость, cutos - клетка) - основные клетки, утратившие способность к делению

· Остеокласты (osteon - кость, clao - раздроблять) - клетки, разрушающие кость и обызвествляющие хрящ.

Грубоволокнистая соединительная ткань - пучки коллагеновых волокон, расположенных в разных направлениях. Находится в зародышах и молодых организмах.

Пластинчатая костная ткань состоит из костных пластинок и образует все кости скелета. Если костные пластинки упорядочены, образуется компактное вещество (диафизы трубчатых костей), если образуют перекладины, губчатое вещество (эпифизы трубчатых костей).

Мышечная ткань.

Образует скелетные мышцы и мышечные оболочки внутренних органов, кровеносных и лимфатических сосудов. Благодаря ее сокращению происходят дыхательные движения, передвижение пищи, крови и лимфы по сосудам. Произошла из мезодермы. Основным свойством является ее сократимость - способность укорачиваться на 50% длины.

Виды мышечной ткани:

1. поперечно-полосатая (исчерченная и скелетная)

2. гладкая (неисчерченная и висцеральная)

3. сердечная

Поперечно-полосатая образует скелетные мышцы (скелетная). Состоит из вытянутых волокон, имеющих форму цилиндрических нитей, концы которых крепятся к сухожилиям. Эти параллельные нити - миофибриллы - сократительный аппарат мышц. Каждая миофибрилла состоит из более тонких нитей - миофиламенты, содержащие сократительные белки актин и миозин.

На микроскопическом уровне эта ткань состоит из правильно чередующихся дисков с разными свойствами: темные диски (А) - анизотропные, содержат актин и миозин, светлые диски (И), содержат только актин. Они по-разному преломляют световые лучи, придавая ткани исчерченность или полосатость. Клетки этой ткани сливаются между собой - симпласт. Снаружи ткань покрыта оболочками (эндомизий и сарколлема), которые предохраняют ткань от растяжения.

Гладкая мышечная ткань образует стенки полых внутренних органов, кровеносных и лимфатических сосудов, содержится в коже и в сосудистой оболочке глазного яблока. Имеет хорошо выраженные клетки - миоциты - веретенообразной формы. Они собраны в пучки, а пучки в пласты. Сокращение медленное, длительное, автономное. Ткань способна сокращаться до 12 часов в сутки (роды).

Сердечная находится в сердце. Состоит из клеток кардиомиоцитов цилиндрической формы. Они объединяются друг с другом, образуя функциональные волокна. В ткани также содержатся проводящие кардиомиоциты, способные вырабатывать электрические импульсы с частотой 70-90 раз в минуту и способные передавать сигналы к сокращению сердца (проводящая система сердца).

Признаки

Поперечно-полосатая

Гладкая

Сердечная

Местонахождение ткани

Крепится к костям - сарколемма - мясо

Стенки внутренних органов, кровеносных и лимфатических сосудов

Стенка сердца

Форма клетки

Вытянутая

Веретенообразная

Вытянутая

Число ядер

Множество

Одно

Одно-два

Положение ядер

Периферия

Центр

Центр

Полосатость

Скорость сокращения

Высокая

Низкая

Промежуточная

Регуляция сокращения

Произвольная

Непроизвольная

Непроизвольная

Нервная ткань.


Является главным компонентом нервной системы, осуществляющую регуляцию всех процессов и взаимосвязь с внешней средой. Обладает легкой возбудимостью и проводимостью. Произошла из эктодермы. Она включает в себя нейроны (нейроциты) и клетки нейроглии.

Нейрон - многоугольная клетка неправильной формы с отростками, по которым проходят нервные импульсы. Они содержат базофильное вещество, вырабатывающее белки, и нейрофибриллы, проводящие нервные импульсы.

Виды отростков:

1. Длинные (аксоны), проводят возбуждение от тела нейрона, axis - ось. Аксон как правило один, начинается от возвышения на нейроне - аксональный холмик, в котором генерируется нервный импульс.

2. Короткие (дендриты), проводят возбуждение к телу нейрона, dendron - дерево.

Существует одно исключение в организме: в околопозвоночных ганглиях аксоны нейронов короткие, а дендриты длинные.

Классификация нейронов по количеству отростков:

1. Псевдоуниполярные (отросток отходит от нейрона, затем Т-образно делится) - боковые рога спинного мозга.

2. Биполярные (содержат 2 отростка)

3. Мультиполярные (множество отростков)

Классификация по функциям:

1.Афферентные (чувствительные) - проводят импульсы от рецепторов, располагаются на периферии.

2.Промежуточные (вставочные, кондукторные) - осуществляют связь между нейронами (боковые рога спинного мозга)

3.Эфферентные (двигательные) - передают импульсы от ЦНС к рабочему органу.

Нейроглия окружает нейроны и выполняет опорную, трофическую, секреторную и защитную функции. Делится на макроглию и микроглию.

Макроглия (глиоциты):

1. эпендимоциты (спинно-мозговой канал и желудочки головного мозга)

2. астроциты (опора для ЦНС)

3. олигодендроциты (окружают тела нейронов)

Микроглия (глиальные макрофаги) - осуществляют фагоцитоз.

Нервные волокна - отростки нервных клеток, покрытые оболочками. Нерв - совокупность нервных волокон, заключенные в соединительно-тканную оболочку.

Виды нервных волокон:

1. миелиновые (мякотные): состоят из осевого цилиндра, покрытого шванновской и миелиновой оболочками. Через равные промежутки миелиновая оболочка прерывается, оголяя шванновские клетки - перехват Л. Ранвье. Возбуждение передается по таким волокнам скачками через перехваты Ранвье с высокой скоростью - сальтоторно.

2. безмиелиновые (безмякотные): состоят из осевого цилиндра, покрытого только шванновскими клетками. Возбуждение передается очень медленно.

Физиологические свойства нервной ткани:

1. Возбудимость - способность нервного волокна отвечать на действие раздражителя изменением физиологических свойств и возникновением процесса возбуждения.

2. Проводимость - способность волокна проводить возбуждение.

3. Рефрактерность - отсутствие возбудимости нервной ткани. Относительная рефрактерность - временное отсутствие возбудимости (отдых). Абсолютная рефрактерность - возбудимость утеряна полностью.

4. Лабильность - способность живой ткани возбуждаться в единицу времени определенное число раз. В нервной ткани она высокая.

Законы проведения возбуждения:

1. Закон анатомической и физиологической непрерывности волокна (перевязка нерва, охлаждение или обезболивание новокаином прекращает процесс возбуждение).

2. Закон двустороннего проведения возбуждения (при нанесении раздражения возбуждение передается в обе стороны: центробежно и центростремительно).

3. Закон изолированного проведения возбуждения (возбуждение не передается на соседние волокна).

Введенский Н.Е. (1883) - нервы практически неутомляемы, т.к. малы энергозатраты при возбуждении и высокая лабильность.

На этом основании И.М.Сеченов - отдых, сопровождающийся умеренной работой мышечных групп (активный отдых) более эффективен для борьбы с утомлением двигательного аппарата, чем покой (пассивный отдых).

Отростки нейронов контактируют между собой и с другими клетками и тканями для передачи нервных импульсов. Синапс (sunaps - связь) - функциональное соединение между пресинаптическим окончанием аксона и мембраной постсинаптической клетки (Шеррингтон).

Строение синапса:

1. пресинаптическая мембрана

2. синаптическая щель

3. постсинаптическая мембрана

1. - электрогенная мембрана, включающая в себя большое количество пузырьков:

· гранулярная (норадреналин)

· агранулярная (ацетилхолин)

2. - открывается во внеклеточное пространство и заполнено межтканевой жидкостью

3. электрогенная мембрана мышечного волокна, имеющая большое количество складок, содержащая холинорецепторы (взаимодействуют с ацетилхолином), адренорецепторы (взаимодействуют с норадреналином) и фермент холинэстераза (разрушает ацетилхолин).

Виды синапсов:

1. По виду медиатора:

· Адренергические

· Холинергические

2. По действию:

· Возбуждающие

· Тормозные

3. По способу передачи возбуждения:

· Электрические

· Химические:

1. По локализации:

· Центральные

· Периферические

Виды центральных синапсов:

1. аксосоматические

2. аксодендритические

3. аксоаксональные

Виды периферических синапсов:

1. нервно-мышечные

2. нервно-железистые

Ткань – это система клеток и межклеточного вещества, объединенных единством строения, функции и происхождения. В организме человека различают 4 вида тканей: эпителиальные, соединительные, мышечные, нервная. Ткани состоят из клеток и межклеточного вещества, соотношение которых различно. Межклеточное вещество обычно гелеобразное и может содержать волокна.

Эпителиальная ткань (рис. 2.2) представлена клетками-эпителиоцитами, образующими сплошные пласты, в которых нет сосудов. Питание эпителия происходит путем диффузии питательных веществ через опорную базальную мембрану, отделяющую эпителий от подлежащей рыхлой соединительной ткани.

Покровный эпителий бывает однослойным (плоским, кубическим, многорядным мерцательным, цилиндрическим) и многослойным (ороговевающим, неороговевающим, переходным).

Однослойный плоский эпителий выстилает серозные оболочки, альвеолы легких. В камерах сердца, сосудах он уменьшает трение протекающих жидкостей и называется эндотелием. Многорядный мерцательный эпителий покрывает слизистые оболочки дыхательных путей, маточные трубы и состоит из ресничных и бокаловидных слизистых клеток, ядра которых расположены на разных уровнях. Реснички - выросты цитоплазмы на свободном конце столбчатых клеток этого эпителия. Они постоянно колеблются, препятствуя попаданию любых чужеродных частиц в легкие, продвигая яйцеклетку в маточных трубах. Кубический эпителий встречается в собирательных канальцах почек, выстилает протоки поджелудочной железы. Цилиндрический эпителий представлен высокими узкими клетками с функциями секреции и всасывания. Иногда на свободной поверхности клеток имеется щеточная кайма, состоящая из микроворсинок, увеличивающих поверхность всасывания (в тонкой кишке). Бокаловидные клетки, расположенные между цилиндрическими эпителиоцитами, выделяют слизь, защищающую слизистую желудка от вредного действия желудочного сока и облегчающую прохождение пищи в кишечнике.

Железистый эпителий образует железы (потовые, сальные и др), выполняющие функции выделения. Железы бывают многоклеточными (печень, гипофиз) и одноклеточными (бокаловидная клетка мерцательного эпителия, выделяющая слизь). Экзокринные железы расположены в коже или полых органах. Они обычно имеют выводные протоки и выводят секрет или наружу (пот, кожное сало, молоко), или в полость органа (бронхиальная слизь, слюна). Их секреты оказывают местное воздействие. Экзокринные железы делятся на простые и сложные в зависимости от того, ветвится или нет их выводной проток. Эндокринные железы не имеют выводных протоков, выделяют свои гормоны (адреналин и др.) в кровь и лимфу, влияя на весь организм.



Многослойный эпителий состоит из нескольких рядов клеток. Только нижний слой клеток расположен на базальной мембране. Эпидермис (многослойный плоский ороговевающий эпителий) покрывает кожу. Его нижний слой представлен ростковыми клетками, среди которых находятся пигментные клетки меланоциты с черным пигментом меланином, придающим цвет коже. Слизистые оболочки выстилает многослойный плоский неороговевающий эпителий (полость рта, глотка, пищевод и др.). Переходный эпителий может иметь разное количество слоев в зависимости от степени наполнения органа мочой (мочевыводящие пути).

Соединительная ткань составляет 50% веса тела, разнообразна по строению и функциям, широко распространена в организме.

Собственно соединительная ткань образует строму и капсулы внутренних органов, находится в коже, связках, сухожилиях, фасциях, сосудистых стенках, оболочках мышц и нервов. В организме эта ткань выполняет пластическую, защитную, опорную и трофическую функции. Она состоит из клеток и межклеточного вещества, содержащего волокна и основное вещество. Главная клетка – подвижный фибробласт – образует основное вещество и выделяет волокна: коллагеновые, эластические, ретикулиновые. Различают собственно соединительную ткань, хрящевую и костную.

Собственно соединительная ткань представлена рыхлой и плотной волокнистой соединительной тканью с функциями опорно-механической, защитной (плотная волокнистая соединительная ткань, хрящевая, костная). Трофическую (питательную) функцию выполняют рыхлая волокнистая и ретикулярная соединительная ткань, кровь и лимфа.

Рыхлая волокнистая соединительная ткань (рис. 2.3.) содержит фибробласты, фиброциты и др. клетки и волокна, по-разному расположенные в основном веществе в зависимости от строения и функции органа. Эта ткань составляет строму паренхиматозных органов, сопровождает кровеносные сосуды, участвует в иммунных, воспалительных реакциях, заживлении ран.

Плотная волокнистая соединительная ткань может быть неоформленной и оформленной в зависимости от упорядоченности расположения ее волокон. В сетчатом слое кожи соединительно-тканные волокна беспорядочно переплетаются. В сухожилиях, связках, фасциях эти волокна образуют пучки, расположенные в определенном направлении и придающие этим образованиям прочность (рис.2.4).

Ретикулярная соединительная ткань, состоящая из ретикулярных клеток и волокон, образует основу кроветворных и иммунных органов (красного костного мозга, лимфатических узлов и фолликулов, селезенки, вилочковой железы). Основная ее клетка – многоотростчатый ретикулоцит, выделяющий тонкие ретикулиновые волокна. Отростки клеток соединяются друг с другом с образованием сети, в петлях которой расположены кроветворные клетки и форменные элементы крови.

Жировая соединительная ткань образует подкожно-жировой слой, расположена под брюшиной, в сальниках. Ее клетки – шаровидные липоциты - накапливают жировые капли. Жировая ткань – депо важнейшего источника энергии жира и связанной с ним воды, имеет хорошие теплоизоляционные свойства.

Хрящевая ткань состоит из хондроцитов, образующих группы из двух-трех клеток, и основного вещества – плотного, упругого геля. Хрящ не имеет сосудов, питание осуществляется из капилляров покрывающей его надхрящницы. Различают три разновидности хряща. Гиалиновый хрящ – полупрозрачный, гладкий, плотный, блестящий. Он почти не содержит волокон, образует суставные, реберные хрящи, хрящи гортани, трахеи, бронхов. Волокнистый (фиброзный) хрящ имеет много прочных коллагеновых волокон и образует фиброзные кольца межпозвоночных дисков, внутрисуставные диски, мениски, лобковый симфиз. Эластический хрящ желтоват, содержит множество спиралевидных эластических волокон, обуславливающих упругость. Из него состоят некоторые хрящи гортани, ушная раковина и др.

Костная ткань твердая и прочная, образует скелет. Состоит из зрелых многоотростчатых клеток – остеоцитов, молодых – остеобластов, вмонтированных в твердое межклеточное вещество, содержащее минеральные соли. При повреждении кости остеобласты участвуют в процессах регенерации. Третий вид клеток костной ткани - многоядерные остеокласты способны фагоцитировать (поглощать) межклеточное вещество костной и хрящевой ткани в процессе роста и перестройки кости.

Мышечная ткань обладает возбудимостью, проводимостью и сократимостью. Основная клетка – миоцит. Выделяют три вида мышечной ткани (рис. 2.5). Поперечнополосатая скелетная мышечная ткань образует скелетные мышцы и некоторые внутренние органы (язык, глотку, гортань и др.). Поперечнополосатая сердечная мышечная ткань формирует сердце. Гладкая мышечная ткань расположена в глазном яблоке, стенках сосудов и полых внутренних органов (в желудке, кишечнике, трахее, бронхах и др.).

Скелетная мышечная ткань состоит из многоядерных, поперечно счерченных мышечных волокон длиной до 4-10 см, оболочка которых по электрическим свойствам похожа на мембрану нервных клеток. Волокна содержат специальные сократительные органеллы, миофибриллы - продольные нити, способные при возбуждении укорачиваться. Миофибриллы образованы сократительными белками – актином и миозином с разными светопреломляющими и физико-химическими свойствами, что обуславливает чередование темных и светлых поперечных полосок (дисков) при микроскопии этой мышечной ткани. Цитоплазма мышечного волокна содержит эндоплазматическую сеть. Ее мембраны связаны с оболочкой клетки и активно транспортируют Са + из цитоплазмы в трубочки эндоплазматической сети. Скелетная мышца при кратковременных нагрузках покрывает свои энергетические потребности как за счет аэробного, так и за счет анаэробного окисления. Сокращение скелетных мышц осуществляется быстро, контролируется сознанием и регулируется соматической нервной системой.

Сердечная мышечная ткань, миокард, состоит из клеток - поперечно исчерченных кардиомиоцитов, которые с помощью вставочных дисков соединяются в функционально единую сеть. Возбуждение, возникающее в каком-либо отделе сердца, распространяется на все мышечные волокна миокарда. Миокард чрезвычайно чувствителен к недостатку кислорода: он покрывает свои энергетические потребности только за счет аэробного окисления. Миокард сокращается непроизвольно и регулируется вегетативной нервной системой.

Гладкая мышечная ткань состоит из тонких одноядерных, не имеющих исчерченности веретенообразных миоцитов длиной до 0,5 см, собранных в пучки или пласты. Их актиновые и миозиновые нити расположены беспорядочно, не образуя миофибрилл. Сокращение гладкой мышечной ткани происходит медленно (кроме мышц, регулирующих ширину зрачка), непроизвольно и контролируется вегетативной нервной системой.

Нервная ткань состоит из нервных клеток – нейронов и нейроглии. Нейроны вырабатывают нервные импульсы, нейрогормоны и медиаторы. Нейроны и нейроглия формируют единую нервную систему, регулирующую взаимосвязь организма с внешней средой, координирующую функции внутренних органов и обеспечивающую целостность организма.

Нейрон имеет тело, отростки и концевые аппараты. По количеству отростков различают нейроны с одним, двумя и несколькими отростками (униполярные, биполярные и мультиполярные - последние у человека преобладают). Коротких ветвящихся отростков – дендритов - у нейрона может быть до 15. Они соединяют нейроны между собой, передавая нервные импульсы. По единственному длинному (до 1,5 м), тонкому, не ветвящемуся отростку – аксону – нервный импульс перемещается от тела нейрона к мышце, железе или другому нейрону (рис.2.6)

Нервные волокна заканчиваются концевыми аппаратами - нервными окончаниями. Аксоны заканчиваются на мышцах и железах эффекторами - двигательными нервными окончаниями. Рецепторы - чувствительные нервные окончания. В ответ на раздражение в рецепторах возникает процесс возбуждения, который регистрируется как очень слабый переменный электрический ток (нервные импульсы, биотоки). В нервных импульсах закодирована информация о раздражителе. Синапсы - контакты между нервными клетками и их отростками. Передача возбуждения в синапсах и эффекторах происходит с помощью биологически активных веществ – медиаторов (ацетихолина, норадреналина и др.).

Нейроны не делятся митозом в обычных условиях. Восстановительные функции принадлежат нейроглии. Клетки нейроглии выстилают полости головного и спинного мозга (желудочки, каналы), служат опорой для нейронов, окружая их тела и отростки, осуществляют фагоцитоз и обмен веществ, выделяют некоторые медиаторы.

Похожие статьи